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A MULTIMODAL BETA DISTRIBUTION

WITH APPLICATION TO ECONOMIC DATA

Abstract. Beta distributions are popular models for economic data. In
this paper, a new multimodal beta distribution with bathtub shaped fail-
ure rate function is introduced. Various structural properties of this distri-
bution are derived, including its cdf, moments, mean deviation about the
mean, mean deviation about the median, entropy, asymptotic distribution of
the extreme order statistics, maximum likelihood estimates and the Fisher
information matrix. Finally, an application to consumer price indices is illus-
trated to show that the proposed distribution is a better model to economic
data than one based on the standard beta distribution.

1. Introduction. Beta distributions are very versatile and a variety of
uncertainties can be usefully modeled by them. Many of the finite range
distributions encountered in practice can be easily transformed into the
standard distribution. In economics, many times the data are modeled by
finite range distributions.

A random variable X is said to have the standard beta distribution with
parameters α and β if its probability density function (pdf) is

f(x) =
xα−1(1 − x)β−1

B(α, β)
(1)

for 0 < x < 1, α > 0 and β > 0, where

B(a, b) =

1\
0

ta−1(1 − t)b−1 dt

denotes the beta function. Many generalizations of (1) involving algebraic,
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exponential and hypergeometric functions have been proposed in the lit-
erature; see Chapter 25 in Johnson et al. (1995) and Gupta and Nadara-
jah (2004) for detailed accounts. In this paper, we introduce a new dis-
tribution that contains several of the known generalizations as particular
cases. We derive various structural properties of this new distribution, in-
cluding its cdf, moments, mean deviation about the mean, mean deviation
about the median, entropy, asymptotic distribution of the extreme order
statistics, maximum likelihood estimates and the Fisher information matrix
(Sections 2–8). We also present an application of the proposed model to con-
sumer price indices (Section 9). One of the attractive properties of this new
distribution is that its pdf is multimodal and that its failure rate function
can be bathtub shaped.

The calculations involve several special functions, including the incom-
plete beta function defined by

Bx(a, b) =

x\
0

ta−1(1 − t)b−1 dt,

the Gauss hypergeometric function defined by

2F1(a, b; c; x) =

∞∑

k=0

(a)k(b)k

(c)k

xk

k!

and the Appell function of the first kind defined by

F1(a, b, c; d; x, y) =
∞∑

m=0

∞∑

n=0

(a)m+n(b)m(c)nxmyn

(d)m+nm!n!
,

where (f)k = f(f + 1) · · · (f + k − 1) denotes the ascending factorial. The
properties of the above special functions can be found in Prudnikov et al.

(1986) and Gradshteyn and Ryzhik (2000).

2. Probability density function. We define the new distribution by
the pdf

f(x) =
Cxα−1(1 − x)β−1

(1 − ux)̺(1 − vx)λ
(2)

for 0 < x < 1, α > 0, β > 0, ̺ > 0, λ > 0, −1 < u < 1 and −1 < v < 1,
where C denotes the normalizing constant. Application of equation (2.2.8.5)
in Prudnikov et al. (1986, Volume 1) shows that the normalizing constant
is given by

1/C = B(α, β)F1(α, ̺, λ, α + β; u, v)

and thus we refer to (2) as the F1 beta distribution. This new distribution
is very flexible and it contains several of the known generalizations of (1) as
particular cases. The standard beta distribution in (1) is the particular case
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for either ̺ = 0 and λ = 0 or ̺ = 0 and v = 0 or u = 0 and λ = 0 or u = 0
and v = 0. Libby and Novick’s (1982) beta distribution is the particular
case for either ̺ = α+β and λ = 0 or u = v and ̺+λ = α+β. Armero and
Bayarri’s (1994) Gauss hypergeometric distribution is the particular case for
either ̺ = 0 or λ = 0.
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Fig. 1. Plots of the pdf (2) for u = 0.1, v = 0.4, ̺ = 2.5, λ = 8 (top) and u = 0.1, v = 0.9,

̺ = 9, λ = 2.5 (bottom)

Let us now consider the shape of (2). The first derivative of log f is

d log f

dx
=

α − 1

x
− β − 1

1 − x
+

̺u

1 − ux
+

λv

1 − vx
.

Setting this to zero, one obtains the cubic equation

Ax3 − Bx2 − Ex − α + 1 = 0,
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Fig. 2. Plots of the failure rate function of (2) for α = 0.1, β = 0.5, u = 0.5, v = 0.5,

̺ = 1 (top) and α = 0.1, β = 0.5, u = 0.5, ̺ = 1, λ = 8 (bottom)

where

A = uv(α − 2 + β − ̺ − λ),

B = uvα − uv + vα − 2v + uα − 2u + vβ + uβ − ̺uv − ̺ u − λuv − λv,

E = −vα + v − uα + u − α + 2 − β + ̺u + λv.

Thus, in principle, the pdf can contain up to three turning points. Some
possible shapes with more than one turning point are illustrated in Fig-
ure 1 for selected values of α, β, ̺ and λ. Some possible bathtub shapes of
the failure rate function f(x)/

T
∞

x
f(y) dy corresponding to (2) are shown in

Figure 2.
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3. Cumulative distribution function. Direct expressions for the cdf
of (2) are not possible. Here, we provide four series representations for the
cdf. Firstly, using the series expansion

(1 − ux)−̺ =
∞∑

j=0

(−̺

j

)
(−ux)j ,(3)

one can write

F (x) = C

x\
0

yα−1(1 − y)β−1(1 − uy)−̺(1 − vy)−λ dy

= C

x\
0

yα−1(1 − y)β−1

{ ∞∑

j=0

(−̺

j

)
(−uy)j

}
(1 − vy)−λ dy

= C
∞∑

j=0

(−̺

j

)
(−u)j

x\
0

yj+α−1(1 − y)β−1(1 − vy)−λ dy

= Cxα
∞∑

j=0

(−̺

j

)
(−ux)j

α + j
F1(α + j, 1 − β, λ, α + j + 1; x, vx),

where the last step follows by application of equation (2.2.8.5) in Prudnikov
et al. (1986, Volume 1). Similarly, using the series expansion

(1 − vx)−λ =
∞∑

j=0

(−λ

j

)
(−vx)j ,(4)

one can obtain

F (x) = Cxα
∞∑

j=0

(−λ

j

)
(−vx)j

α + j
F1(α + j, 1 − β, λ, α + j + 1; x, ux).

Thirdly, using both expansions (3) and (4), one can write

F (x) = C

x\
0

yα−1(1 − y)β−1

{ ∞∑

j=0

(−̺

j

)
(−uy)j

}{ ∞∑

k=0

(−λ

k

)
(−vy)k

}
dy

= C
∞∑

j=0

∞∑

k=0

(−̺

j

)(−λ

k

)
(−u)j(−v)k

x\
0

yj+k+α−1(1 − y)β−1 dy

= C
∞∑

j=0

∞∑

k=0

(−̺

j

)(−λ

k

)
(−u)j(−v)kBx(α + i + j, β),

where the last step follows from the definition of the incomplete beta func-
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tion. Finally, using the series expansion

(1 − x)β−1 =
∞∑

j=0

(
β − 1

j

)
(−x)j ,(5)

one can write

F (x) = C

x\
0

yα−1

{ ∞∑

j=0

(
β − 1

j

)
(−y)j

}
(1 − uy)−̺(1 − vy)−λ dy(6)

= C
∞∑

j=0

(
β − 1

j

)
(−1)j

x\
0

yj+α−1(1 − uy)−̺(1 − vy)−λ dy

= Cxα
∞∑

j=0

(
β − 1

j

)
(−x)j

α + j
F1(α + j, ̺, λ, α + j + 1; ux, vx),

where the last step follows by application of equation (2.2.8.5) in Prudnikov
et al. (1986, Volume 1). Note that the infinite sum in (6) will reduce to a
finite sum if β is an integer.

4. Moments. The nth moment of a random variable X with pdf (2)
can be calculated easily as

E(Xn) = C

1\
0

xα−1(1 − x)β−1

(1 − ux)̺(1 − vx)λ
dx

= CB(α + n, β)F1(α + n, ̺, λ, α + β + n; u, v),

where we have applied equation (2.2.8.5) in Prudnikov et al. (1986, Vol-
ume 1). One can also derive four series representations for the nth moment
similar to those in Section 3. Firstly, using the expansion (3), one can write

E(Xn) = C

1\
0

xn+α−1(1 − x)β−1(1 − ux)−̺(1 − vx)−λ dx

= C

1\
0

xn+α−1(1 − x)β−1

{ ∞∑

j=0

(−̺

j

)
(−ux)j

}
(1 − vx)−λ dx

= C
∞∑

j=0

(−̺

j

)
(−u)j

1\
0

yn+j+α−1(1 − x)β−1(1 − vx)−λ dx

= C

∞∑

j=0

(−̺

j

)
(−u)jB(n + α + j, β)

× 2F1(n + α + j, λ; n + α + β + j; v),
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where the last step follows by application of equation (2.2.6.1) in Prudnikov
et al. (1986, Volume 1). Similarly, using the expansion (4), one can obtain

E(Xn) = C
∞∑

j=0

(−λ

j

)
(−v)jB(n + α + j, β)

× 2F1(n + α + j, ̺; n + α + β + j; u).

Thirdly, using both expansions (3) and (4), one can write

E(Xn) = C

1\
0

xn+α−1(1−x)β−1

{ ∞∑

j=0

(−̺

j

)
(−ux)j

}{ ∞∑

k=0

(−λ

k

)
(−vx)k

}
dx

= C
∞∑

j=0

∞∑

k=0

(−̺

j

)(−λ

k

)
(−u)j(−v)k

1\
0

yn+j+k+α−1(1 − x)β−1 dx

= C
∞∑

j=0

∞∑

k=0

(−̺

j

)(−λ

k

)
(−u)j(−v)kB(n + α + i + j, β),

where the last step follows from the definition of the beta function. Finally,
using the series expansion (5), one can write

E(Xn) = C

1\
0

xn+α−1

{ ∞∑

j=0

(
β − 1

j

)
(−x)j

}
(1 − ux)−̺(1 − vx)−λ dx(7)

= C
∞∑

j=0

(
β − 1

j

)
(−1)j

1\
0

xn+j+α−1(1 − ux)−̺(1 − vx)−λ dx

= C
∞∑

j=0

(
β − 1

j

)
(−1)j

n + α + j

× F1(n + α + j, ̺, λ, n + α + j + 1; u, v),

where the last step follows by application of equation (2.2.8.5) in Prudnikov
et al. (1986, Volume 1). Note that the infinite sum in (8) will reduce to a
finite sum if β is an integer.

5. Mean deviations. The amount of scatter in a population is evi-
dently measured to some extent by the totality of deviations from the mean
and the median. These are known as the mean deviation about the mean
and the mean deviation about the median, defined by

δ1(X) =

1\
0

|x − µ|f(x) dx and δ2(X) =

1\
0

|x − M |f(x) dx,

respectively, where µ = E(X) and M = Median(X). These measures can be
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calculated using the relationships

δ1(X) =

µ\
0

(µ − x)f(x) dx +

1\
µ

(x − µ)f(x) dx(8)

= 2

1\
µ

(x − µ)f(x) dx

= 2

1\
µ

xf(x) dx − 2µ{1 − F (µ)}

= 2E(X) − 2

µ\
0

xf(x) dx − 2µ{1 − F (µ)}

and

δ2(X) =

M\
0

(M − x)f(x) dx +

1\
M

(x − M)f(x) dx(9)

= MF (M) − M{1 − F (M)} −
M\
0

xf(x) dx +

1\
M

xf(x) dx

= 2

M\
0

xf(x) dx − E(X).

Thus, calculating δ1(X) and δ2(X) amounts to calculating
Ta
0 xf(x) dx. Ap-

plying the series expansions (3)–(5) in the same way as in Sections 3 and 4,
one can obtain the four representations:

a\
0

xf(x) dx = Caα+1
∞∑

j=0

(−̺

j

)
(−ua)j

α + j + 1
(10)

× F1(α + j + 1, 1 − β, λ, α + j + 2; a, va),

a\
0

xf(x) dx = Caα+1
∞∑

j=0

(−λ

j

)
(−va)j

α + j + 1
(11)

× F1(α + j + 1, 1 − β, ̺, α + j + 2; a, ua),

a\
0

xf(x) dx = C
∞∑

j=0

∞∑

k=0

(−̺

j

)(−λ

k

)
(−u)j(−v)k(12)

× Ba(α + i + j + 1, β),

a\
0

xf(x) dx = Caα+1
∞∑

j=0

(
β − 1

j

)
(−x)j

α + j + 1
(13)

× F1(α + j + 1, ̺, λ, α + j + 2; ua, va).
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Expressions for the mean deviations follow by substituting (10)–(13) into
(8) and (9).

6. Rényi entropy. An entropy of a random variable X is a measure of
variation of the uncertainty. Rényi entropy is defined by

JR(γ) =
1

1 − γ
log

{\
fγ(x) dx

}
,

where γ > 0 and γ 6= 1 (Rényi, 1961). It follows easily by application of
equation (2.2.8.5) in Prudnikov et al. (1986, Volume 1) that

1\
0

fγ(x) dx = Cγ

1\
0

xγα−γ(1 − x)γβ−γ(1 − ux)−γ̺(1 − vx)−γλ dx

= CγB(αγ − γ + 1, βγ − γ + 1)
×F1(αγ − γ + 1, ̺γ, λγ, αγ + βγ − 2γ + 2; u, v).

Thus, Rényi entropy for (2) is given by

JR(γ) =
1

1 − γ
{γ log C + log B(αγ − γ + 1, βγ − γ + 1)

+ log F1(αγ − γ + 1, ̺γ, λγ, αγ + βγ − 2γ + 2; u, v)}.

7. Asymptotics. If X1, . . . , Xn is a random sample from (2) and if X =
(X1 + · · ·+ Xn)/n denotes the sample mean then by the usual central limit

theorem
√

n(X−E(X))/
√

Var(X) approaches the standard normal distribu-
tion as n → ∞. Sometimes one would be interested in the asymptotics of the
extreme values Mn = max(X1, . . . , Xn) and mn = min(X1, . . . , Xn). Note
from (2) that f(t) ∼ Ctα−1 as t → 0 and f(t) ∼ C(1−u)−̺(1−v)−λ(1−t)β−1

as t → 1. Thus, it follows by using L’Hospital’s rule that

1 − F (1 − xh)

1 − F (1 − h)
→ xβ and

F (xh)

F (h)
→ xα

as h → 0. Hence, it follows from Theorem 1.6.2 in Leadbetter et al. (1987)
that there must be norming constants an > 0, bn, cn > 0 and dn such that

Pr{an(Mn − bn) ≤ x} → exp{−(−x)β}
and

Pr{cn(mn − dn) ≤ x} → 1 − exp(−xα)

as n → ∞.

8. Estimation. Here, we consider maximum likelihood estimation of
the parameters when X1, . . . , Xn is a random sample from (2) and also
provide expressions for the associated Fisher information matrix. The log-
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likelihood is

log L(α, β, ̺, λ, u, v) = n log C + (α−1)
n∑

j=1

log Xj + (β−1)
n∑

j=1

log(1−Xj)

− ̺
n∑

j=1

log(1 − uXj) − λ
n∑

j=1

(1 − vXj).

The first derivatives with respect to the six parameters are:

∂ log L

∂α
=

n∑

j=1

log Xj +
n

C

∂C

∂α
,

∂ log L

∂β
=

n∑

j=1

log(1 − Xj) +
n

C

∂C

∂β
,

∂ log L

∂̺
= −

n∑

j=1

log(1 − uXj) +
n

C

∂C

∂̺
,

∂ log L

∂z
= −

n∑

j=1

log(1 − vXj) +
n

C

∂C

∂λ
,

∂ log L

∂u
= ̺

n∑

j=1

Xj

1 − uXj
+

n

C

∂C

∂u
,

∂ log L

∂v
= λ

n∑

j=1

Xj

1 − vXj
+

n

C

∂C

∂v
.

Thus, the maximum likelihood estimates of the six parameters are the solu-
tions of the equations:

n

C

∂C

∂α
= −

n∑

j=1

log Xj ,

n

C

∂C

∂β
= −

n∑

j=1

log(1 − Xj),

n

C

∂C

∂̺
=

n∑

j=1

log(1 − uXj),

n

C

∂C

∂λ
=

n∑

j=1

log(1 − vXj),

n

C

∂C

∂u
= − ̺

n∑

j=1

Xj

1 − uXj
,

n

C

∂C

∂v
= − λ

n∑

j=1

Xj

1 − vXj
.
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Calculation of the associated Fisher information matrix requires second-
order derivatives of log L. All of the second-order derivatives take the form

∂2 log L

∂θi∂θj
= − n

C2

∂C

∂θi

∂C

∂θj
+

n

C

∂2C

∂θi∂θj

except for

∂2 log L

∂̺∂u
=

n∑

j=1

Xj

1 − uXj
− n

C2

∂C

∂̺

∂C

∂u
+

n

C

∂2C

∂̺∂u
,

∂2 log L

∂2u
= −̺

n∑

j=1

X2
j

(1 − uXj)2
− n

C2

(
∂C

∂u

)2

+
n

C

∂2C

∂u2
,

∂2 log L

∂λ∂v
=

n∑

j=1

Xj

1 − vXj
− n

C2

∂C

∂λ

∂C

∂v
+

n

C

∂2C

∂λ∂v
,

∂2 log L

∂2v
= −λ

n∑

j=1

X2
j

(1 − vXj)2
− n

C2

(
∂C

∂v

)2

+
n

C

∂2C

∂v2
.

Thus, the elements of the Fisher information matrix are straightforward
upon noting that

E[Xn(1 − uX)−n] = CB(α + n, β)F1(α + n, ̺ + n, λ, α + β + n; u, v)

and

E[Xn(1 − vX)−n] = CB(α + n, β)F1(α + n, ̺, λ + n, α + β + n; u, v),

which follow by the use of equation (2.2.8.5) in Prudnikov et al. (1986,
Volume 1).

9. Application. We now illustrate an application of the proposed gen-
eralized beta distributions to consumer price index data. We collected the
data on this index for the six countries: United States, United Kingdom,
Japan, Canada, Germany and Australia. The data were extracted from the
web-site http://www.globalfindata.com/ and the range of data for each coun-
try is shown in the table below.

Country Range of data

Australia 1901 to 2003

Canada 1910 to 2003

Germany 1923 to 2003

Japan 1868 to 2003

United Kingdom 1800 to 2003

United States 1820 to 2003
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Taking the ratio W = X/(X + Y ), we attempted to model the relative
economic performance of each country against another over the range of
overlapping years. This yields 15 data sets for the variable W . As expected,
some of the data for W appeared to concentrate to a subinterval of [0, 1]
and so suitable location–scale transformations were applied to make the data
span from 0 to 1. For each data set, we fitted the standard beta distribution
and the F1 beta distribution (given by (1) and (2), respectively) by the
method of maximum likelihood. The quasi-Newton algorithm nlm in the R

software package (Dennis and Schnabel, 1983; Schnabel et al., 1985; Ihaka
and Gentleman, 1996) was used to maximize the likelihood.
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Fig. 5. The empirical and fitted densities for the consumer price indices of the United

States and Australia
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The results of the fits were remarkable. In each fit, the maximized log-
likelihood for the F1 beta model turned up significantly higher than that for
the standard beta model. Here, we give details for just two of the 15 data
sets:

• for the (United States, United Kingdom) data set the fitted estimates

were α̂ = 1.392, β̂ = 1.230 with log L = 5.145 for the standard beta
model and α̂ = 1.003, β̂ = 32.100, û = 0.995, v̂ = 0.995, ̺̂ = 16.581,
λ̂ = 15.427 with log L = 13.150 for the F1 beta model. The corre-
sponding fitted densities superimposed with the empirical density are
shown in Figure 3.

• for the (United States, Australia) data set the fitted estimates were

α̂ = 1.088, β̂ = 0.909 with log L = 1.372 for the standard beta model

and α̂ = 0.675, β̂ = 37.710, û = 0.996, v̂ = 0.996, ̺̂ = 19.146, λ̂ =
18.992 with log L = 11.518 for the F1 beta model. The corresponding
fitted densities superimposed with the empirical density are shown in
Figure 4.

So, we can conclude at least in this situation that the F1 beta model is
better than one based on the standard beta distribution.
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