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A MODEL FOR PROPORTIONS WITH
MEDICAL APPLICATIONS

Abstract. Data that are proportions arise most frequently in biomed-
ical research. In this paper, the exact distributions of R = X + Y and
W = X/(X +Y) and the corresponding moment properties are derived
when X and Y are proportions and arise from the most flexible bivariate
beta distribution known to date. The associated estimation procedures are
developed. Finally, two medical data sets are used to illustrate possible ap-
plications.

1. Introduction. Data comprising of proportions arise most frequently
in biomedical research. Enumeration of all of the published work on propor-
tions as related to bio medical research will be an exhaustive exercise. We
refer the readers to the excellent books by Aitchison (1986), Diggle et al.
(1994, 2002) and Fleiss et al. (2003).

In this paper, we consider the important problem of sums and ratios
of proportions. This problem always arises with respect to data on pro-
portions. For example, suppose that one wishes to test the effectiveness of
two treatments, say A and B. The two treatments are tested on a group of
patients. Let X denote the success proportion of treatment A and Y the
success proportion of treatment B. Clearly, X and Y are random variables.
The ratio W = X/(X 4+ Y) will represent the effectiveness of treatment A
over treatment B.

In the above example, the joint probability density function (pdf) of X
and Y will belong to the class of bivariate beta distributions. The most
generalized form of the bivariate beta distribution known to date (due to
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Connor and Mosimann (1969)) is given by the joint pdf

(1) fla,y) = Kty (1 =) (1 -2 —y) !

forx >0, y>0,x+y<1,a>0,b>0,c>0andd>0, where K is the
normalizing constant given by

I'la+c¢)l'(b+d)

I'(a)I(b)I'(e)I(d)’

The usual bivariate beta distribution arises as the particular case of (1) for
¢ = b+ d. The univariate marginals of (1) are given by

xafl(l o w)cfl

@) K=

fx(x) = Bla.0)

fr(y) = KB(a,d)y" ' (1 —y)** " 9Fi (a,b+d — cia+ d; 1 —y),
LEES

By = Lt O+ 9T+ I (b+d)

rore)(n+a+e)l'(n+b+d)’

where the 9 F} hypergeometric function (also known as the Gauss hyperge-
ometric function) is defined by

2Py (a, by m) =)

=0 (C)k k!’

where (f)r = f(f+1)---(f +k — 1) denotes the ascending factorial. The
conditional distributions of (1) are given by the pdfs

d—1
xa71<1 _ CC)C*b*d <1 z )

e
a,d)(1 —y)* 2F1 (a,b+d —c;a+d;1 —y)’

d—1
Frixtyla) = KBla. -2 (1- 22 )
Note that the conditional distribution of X/(1 — y) given Y = y belongs
to Libby and Novick (1982)’s generalized beta family with the parameters
a, d, 1 —y and b+ d — c. The conditional distribution of Y/(1 — x) given
X = x belongs to the standard beta family with the parameters b and d.
The conditional moments are:
(I—y) " oFi(m+ab+d—cm+a+d;1—y)
B(a,d) oF1 (a,b+d —c;a+d;1 —y) ’
B(b+n,d)

BY" ) = =g (=)

B(X™|y) =
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In this paper, we derive the exact distributions of R = X + Y and
W = X/(X +Y) (Section 2) and the corresponding moment properties
(Section 3) when X and Y are correlated beta random variables with the
joint pdf given by (1). We also derive the associated estimation procedures
(Section 4) and provide applications using two medical data sets (Sections
5 and 6).

The calculations of this paper involve several special functions, including
the incomplete beta function defined by

x
By(a,b) = | "7 (1 — )P~ dt,
0
the Appell function of the first kind defined by

F b d: m+n Jm(C)nz™y"
l(av y G5 d,l’ y Z Z n min! ’
)m

m=0n=0

and the 3F5 hypergeometric function defined by
o (@)k(0)(c)x o
Fs(a,b,c;d,e;x) = ——
of2 )= o H

The properties of the above special functions can be found in Prudnikov et
al. (1986) and Gradshteyn and Ryzhik (2000).

2. Probability density functions. Theorems 1 and 2 derive the pdfs
of R=X+Y and W = X/(X+Y) when X and Y are distributed according
to (1).

THEOREM 1. If X and Y are jointly distributed according to (1) then
the pdf fr(r) of R can be expressed in one of the equivalent forms:

(3) KB(a,b)r*t= Y1 — )t yFy (a,b+d — c;a + by 7),

(4) Kb Sk 12( > ) ' By(i +a,c—b—d+1),
=0
(5)  Krothl(1 — )t 12( —b- d) B+ a,b),

N

i=0 j=0 J
forO<r<1.
Proof. From (1), the joint pdf of (R, W) = (X + Y, X/R) becomes
(7) flr,w) = Krot =11 — )11 — )01 (1 — w)b L,
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Thus, the pdf of R can be written as

1
8)  fr(r)=Kr*7H (1 - )™t S (1 —rw)* % (1 — w)’ ! duw.
0

The result in (3) follows by applying equation (2.2.6.1) in Prudnikov et al.
(1986, Volume 1) to calculate the integral in (8). The result in (4) follows
by using the series expansion

) e S (i (]
=0 < ¢ )
to rewrite (8) as

1

fr(r) = Krott=1(1 — )t X (1 — rw)e 07! Z <b; 1) (—w)* dw
0 1=0
1

— (b—1 : :
_ K?"a+b_1(1 - T)d_l Z ( . >(_1)z S (1 _ rw)c—b—dwz—&-a—l dw
=0 0

— (b—1 -
- K a+b—1 1 — d—1 —1)? 77,7aBT . —b—d 1).
r (1—7) ; . (—=1)'r (i+a,c +1)
The result in (5) follows by using the series expansion

(10) (1= rw)=0d — f: <c —b- d> ()’

=0

to rewrite (8) as

fr(r) = Krott=1(1 — y)d-1 Sw“il(l —w)b! Z (C B b B d) (—rw)" dw
0 ;
00 1
_ KTa+b_1(1 o T)d_l Z <C - IZ - d> (—T)ixwi+a_1(1 - w)b—l dw
i=0 0

S i (C - i’ N d) (—7)'B (i +a,b).
1=0

The result in (6) follows by using both the series expansions (9) and (10). m

THEOREM 2. If X and Y are jointly distributed according to (1) then
the pdf fw(w) of W can be expressed in one of the equivalent forms:

(11) KB(a+b,dw* (1 —w) "t 9F (a+bb+d—c;a+b+d;w),
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(12) Kw ' (1 blz< > Y ' By(i+a+bc—b—d+1),
—b—d :
(13) Ku® (1 —w)’" 12 <C ) w)'B(i+a+b,d),

— _ — —b—d (_1)i+jwj

14)  Kw* (1 — w)! < ><c >7

14 Ku''(1—w) Zgzo i ) B el

for0<w < 1.

Proof. Using (7), the pdf of W can be written as

1

(15)  fur(w) = Ku™H (1= w)" ™t fro 711 = )1 —rw)
0

The result in (11) follows by applying equation (2.2.6.1) in Prudnikov et al.
(1986, Volume 1) to calculate the integral in (15). The result in (12) follows
by using the series expansion

(16) (1—r)dt= (4 )y
to rewrite (15) as

fw(w) = Kw* (1 - w)bls) r““’l{i (d; 1> (—T)Z}(l )t gy
1

— Kw®™ 1 b 1 Z < ) 1S T,i+a+b71(1 . T,w)cfbfd dr

0
= Kw®™ 1(1_ )b 1

xZ( ) Diw " B,(a+b+i,c—b—d+1).

The result in (13) follows by using the series expansion (10) to rewrite (15)
as

o) = K1 — 1 | 11— ﬂ“{i ( b d) <_my}dr

- 1
0 =0
1

_ Kwail(l o w)b—l Z <C - b - ) zS T,z+a+b 1 T)dildr
(3
=0 0

= Kw* 1(1 —w)’? i (C a 2 B >(—w)iB (i4+a+b,d).
=0

The result in (14) follows by using both the series expansions (16) and (10). m
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Note that if b— 1, d — 1 and ¢ — b — d are integers then the infinite sums
in (4)-(6) and (12)—(14) reduce to finite sums. Thus, these representations
provide a convenient way of computing the pdfs of R and W in the case
b—1,d—1 and ¢ — b — d are integers.

3. Moments. Here, we derive the moments of R = X +Y and W =
X/(X +Y) when X and Y are distributed according to (1). We need the
following lemma.

LEMMA 1. If X and Y are jointly distributed according to (1) then
KI'lm+a)['(n+b)I'(n+ c)I'(d)

I'm+n+a+c)'(n+b+d)
form >1 andn > 1. In particular,

E(X™MY™) =

abc
(a+c)(atec+1)(b+d)

(17) Cov(X,Y) = —

Proof. One can write

11—z
E(men) _ KS S xm—i—a—lyn—i-b—l(l _ x)c—b—d(l r— y)d—l dy dx
00
11—z
— KS S x(era)*ly(ner)fl(l . x)(n+c)f(n+b)fd(1 o y)dfl dy dz.
00

Thus, the result follows from (2). =

The moments of R = X +Y are now simple consequences of this lemma
as illustrated in Theorem 3. The moments of W = X/(X +Y) require a
separate treatment as shown by Theorem 4.

THEOREM 3. If X and Y are jointly distributed according to (1) then

KI( n—l+a)F(l+b)F(l+c)F(d)
Z() I'ln+a+co)l'(l+b+d)

forn > 1.
Proof. The result follows by writing

n n n—lyl
E(X+Y)") = ; <Z>E(X vh
and applying Lemma 1 to each expectation in the sum. =
THEOREM 4. If X andY are jointly distributed according to (1) then
(18) E(W")= KB(a+b,d)B(a+n,b)
X s3Fy(a+bb+d—c,a+n;a+b+d,a+b+n;l)
forn > 1.
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Proof. Using (11), one can write
1
(19) E(W™) = KB(a+b,d) | w1 (1 — w)"!
0
X oF1 (a+bb+d—c;a+ b+ d;w) dw.

The result of the theorem follows by applying equation (2.21.1.5) in Prud-
nikov et al. (1986, Volume 3) to calculate the integral in (19). =

4. Estimation. Here, we derive procedures for the maximum likelihood
estimation of the parameters of (1). If {(z;,v:), i = 1,...,n} is a random
sample from (1) then the log-likelihood function can be written as

log L(a, b, c,d)
= (a— 1)Zlogaci+ (b— 1)Zlogyi+ (c—b—d)Zlog(l — ;)
i=1 i=1

i=1
+(d— 1)Zlog(1 —x; —y;) +nlog'(a+c)+nlogI'(b+d)
i=1
—nlogI'(a) —nlog I'(b) — nlog I'(c) — nlog I'(d).

The first-order derivatives of log L with respect to a, b, ¢ and d are:

n

L b bt ),
al;fL = glog% - glog(l — ;) +n¥(b+d) — n¥(b),

al;fL = Zn; log(1 — ;) +n¥(a + ¢) — n¥(c),

al;SL = glog(l — T — i) — élog(l — ;) + n¥ (b + d) — n¥(d),

where ¥(x) = dlog I'(z)/dx denotes the digamma function. Thus, the max-
imum likelihood estimators of (a, b, c,d) are the simultaneous solutions of
the equations

(20) Z logz; = —n¥(a + ¢) + n¥(a),
i=1

(21) Zlog yi — Zlog(l —x;) = —n¥(b+d) + n¥(b),
i=1 i=1
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n
(22) ) log(1— ;) = —n¥(a+ c) + n¥(c),
=1

(23) Zlog (1—2; —y) — Zlog(l —x;) = —n¥(b+d) + n¥(d).
i=1 i=1

The associated Fisher information matrix requires the second-order deriva-
tives of log L which can be calculated as:

825125 L (o) = (a),
o ;Z;%L = ' (b+ d) — n¥'(b),
azlb‘;gdL = W' (b + d),

aQész =n¥'(a+c) —n¥'(c),
a?;sz = W' (b+d) — ¥'(d).

The remaining second-order derivatives are zero, which shows that the mles
of a and b are independent, so are the mles of ¢ and d, and the mles of b
and c. Since the non-zero second-order derivatives above are all constants
the corresponding elements of the Fisher information matrix are:

(24) E(— o ;;g L > — (a4 ¢) + ¥ (a),
(25) E(— a;fgf ) — W (a+ ),

(26) E(— o 8125 L > — W (b+ d) + n (b),
(27) E<_ a;(;gdL ) — W (b+d),

(28) E (— o akc’f L > = —nW(a+ c) +n¥'(c),
(29) E(— 62;2§L> = —nW'(b+ d) + 7'(d).

5. Data set 1. Here, we consider a data set on white-cell compositions
of 30 blood cells by two different methods, see Table 1 (data set 11 of
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Aitchison (1986)). The methods used are: microscopic inspection and image
analysis. The composition variables are: G = granulocytes, L. = lymphocytes

and M = monocytes.

Table 1. White cell compositions by two different methods

Microscopic inspection

Image analysis

Sample G L M G L M
1 0.732 0.256  0.012 0.763 0.223 0.014
2 0.664 0.280 0.056 0.681 0.262 0.057
3 0.725 0.214  0.067 0.748 0.198 0.054
4 0.806 0.175 0.019 0.867 0.116 0.017
5 0.620 0.351 0.029 0.565 0.408 0.026
6 0.856 0.113 0.031 0.885 0.086 0.029
7 0.957 0.030 0.013 0.966 0.023 0.011
8 0.927 0.053  0.020 0.935 0.047 0.018
9 0.903 0.072 0.025 0.921 0.055 0.024

10 0.936 0.055 0.009 0.943 0.048 0.009
11 0.871 0.114 0.015 0.888 0.097 0.015
12 0.445 0.523  0.032 0.569 0.401 0.038
13 0.240 0.736  0.024 0.225 0.747 0.028
14 0.475 0.472  0.053 0.577 0.370 0.054
15 0.318 0.663 0.019 0.272 0.706 0.022
16 0.462 0.516 0.022 0.544 0.432 0.025
17 0.376 0.252  0.372 0.364 0.245 0.391
18 0.440 0.240 0.320 0.496 0.180 0.324
19 0.583 0.142 0.275 0.629 0.099 0.272
20 0.399 0.169 0.432 0.500 0.115 0.384
21 0.804 0.152 0.044 0.805 0.155 0.04

22 0.655 0.263  0.082 0.659 0.247 0.094
23 0.725 0.218  0.057 0.769 0.179 0.052
24 0.650 0.298  0.052 0.665 0.283 0.052
25 0.370 0.166  0.464 0.388 0.159 0.452
26 0.175 0.802 0.023 0.262 0.709 0.028
27 0.328 0.627 0.045 0.395 0.561 0.043
28 0.427 0.511  0.062 0.388 0.542 0.07

29 0.943 0.046 0.011 0.948 0.041 0.011
30 0.860 0.108 0.032 0.886 0.086 0.027

The interest is in knowing whether the two different methods lead to
different compositional results, i.e. are the proportions of G and L the same
for microscopic inspection and image analysis? An obvious model in this
situation would be the bivariate beta distribution given by (1). We fitted
(1) to the three bivariate data sets on proportions: data set 1 containing
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the values (G, L) obtained by microscopic inspection, data set 2 containing
the values (G, L) obtained by image analysis, and data set 3 containing the
values (G, L) obtained by both microscopic inspection and image analysis.
The maximum likelihood estimates (@, b, e, d) obtained by solving (20)—(23)
are shown in Table 2. The last column of the table gives the negative loga-
rithm of the maximized likelihood (NLLH).

Table 2. Parameter estimates of (1)

Data set a b c d NLLH
1 2277  3.180 1.358 1.004 —56.6
2 2.406 2.880 1.276 1.017 —58.8
3 2.332 3.016 1.312 1.008 —115.2

We use the standard likelihood ratio test to test for homogeneity. Evi-
dently, the two methods are not significantly different in terms of the white
cell compositions. The variance covariance matrices of (a, b, ¢, d) for the three
data sets obtained by inverting the matrices given by (24)-(29) are:

0.334 0.000 0.141 0.000
0.000 0.727 0.000 0.144
0.141 0.000 0.103 0.000
0.000 0.144 0.000 0.053

0.380 0.000 0.139 0.000
0.000 0.586 0.000 0.130
0.139 0.000 0.090 0.000
0.000 0.130 0.000 0.054

0.177 0.000 0.069 0.000
0.000 0.324 0.000 0.068
0.069 0.000 0.048 0.000
0.000 0.068 0.000 0.027

The corresponding estimates of Corr(X,Y’) obtained using (17) are provided
by Table 3.

Table 3. Correlation coefficient

Data set Corr(X,Y)
1 —0.902
2 —0.894

3 —0.898
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Hence, one can conclude that the compositional variables are strongly cor-
related and that the two methods are homogeneous.

6. Data set 2. Here, we consider a data set on serum protein compo-
sitions of blood samples of 30 patients with two disease types, see Table 4
(data set 16 of Aitchison (1986)). The composition variables are: A = albu-
min, P = pre-albumin and G = globulin. The first 14 patients have disease
type A and the remaining have disease type B.

Table 4. Serum protein compositions of blood samples

Serum protein

Patient No A P G
Al 0.348 0.197 0.455
A2 0.386 0.239 0.383
A3 0.471 0.240 0.289
A4 0.427 0.245 0.328
A5 0.346 0.230 0.423
A6 0.485 0.231 0.284
A7 0.398 0.217 0.384
A8 0.537 0.219 0.244
A9 0.316 0.213 0.472
A10 0.543 0.251 0.206
All 0.409 0.228 0.362
Al12 0.322 0.236 0.442
Al13 0.372 0.229 0.399
Al4 0.348 0.197 0.455
B15 0.452 0.234 0.314
B16 0.490 0.189 0.321
B17 0.512 0.219 0.270
B18 0.429 0.180 0.383
B19 0.424 0.177 0.399
B20 0.377 0.175 0.448
B21 0.556 0.223 0.222
B22 0.264 0.206 0.530
B23 0.311 0.179 0.509
B24 0.338 0.194 0.467
B25 0.396 0.285 0.320
B26 0.438 0.244 0.318
B27 0.347 0.224 0.429
B28 0.376 0.181 0.442
B29 0.278 0.156 0.566

B30 0.333 0.190 0.477
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The interest is in knowing whether the two different disease types yield
different serum protein compositions, i.e. are the proportions of A and P
the same for the two different disease types? We model this situation by the
bivariate beta distribution given by (1). We fitted (1) to the three bivariate
data sets on proportions: data set 1 containing the values (A, P) for the
first 14 patients, data set 2 containing the values (A, P) for the last 16
patients, and data set 3 containing the values (A, P) for all the 30 patients.
The maximum likelihood estimates (&\,/I;, c, (SZ\) as well as the NLLH values
are shown in Table 5.

Table 5. Parameter estimates of (1)

~ ~

Data set a b c d NLLH
1 19.736  22.439 27.786 33.709 —43.3
2 14.778 11.765 22.993 22.451 —43.9
3 16.370 13.442 24.306 22.914 —84.2

Comparison of the NLLH values shows that the disease types are not sig-
nificantly different in terms of the serum protein compositions. The variance
covariance matrices of (@, b,¢,d) for the three data sets are:

54.864 0.000 75.864  0.000
0.000 71.025  0.000 105.124
75.864 0.000 109.547 0.000
0.000 105.124 0.000 161.478

26.775 0.000 40.763 0.000
0.000 16.869 0.000 31.484
40.763 0.000  65.606 0.000
0.000 31.484 0.000 62.693

17.558 0.000 25.539 0.000
0.000 11.786 0.000 19.659
25.539 0.000  39.098 0.000
0.000 19.659 0.000 34.785

For the combined data set (data set 3), the correlation coefficient between
the serum proteins A and P is —0.508.
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