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ROBUST ESTIMATION OF THE SCALE
AND WEIGHTED DISTRIBUTIONS

Abstract. The concept of robustness given by Zieliriski (1977) is consid-
ered in cases where violations of models are generated by weight functions.
Uniformly most bias-robust estimates of the scale parameter, based on order
statistics, are obtained for some statistical models. Extensions of results of
Zielinski (1983) and Bartoszewicz (1986) are given.

1. Preliminaries. Let X and Y be random variables with absolutely
continuous distributions F' and G respectively and F'(0) = G(0) = 0. Denote
by S the support and by F~'(u) = inf{z : F(z) > u}, u € (0,1), the
quantile (or reversed) function of F', and similarly for G.

We recall some basic facts about stochastic orders. We say that a random
variable X is smaller than Y in the stochastic order (F < G)if F(x) > G(x)
for every .

We say that X is smaller than Y in the star order (F <, G) if G™1F(z)/x
is non-decreasing on Sy where G~'F denotes the composition of G~ and F.

We say that X is smaller than Y in the conver order (F <. G) if G™1F(z)
is convex on Sp. It is well known that the convex order implies the star order.

A distribution F' is said to be IFR (increasing failure rate) if F <. G
where ( is an exponential distribution. Let X7.,, ..., X,., be order statistics
in a sample X1i,...,X, from the distribution F' and let Fj.,, denote the
distribution of X;.,, i = 1,...,n; G;., is defined similarly. It is well known
that if F' < G then Fj., <g Ginp; also if F' <. G (resp. F' <, G) we obtain
E:n <c Gi:n (resp. E:n < Gzn) for any i

We will use the following lemma:
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LEMMA 1 (Barlow and Proschan, 1966). If F' <, G then E[X;.]/E[Yin)
18 a non-decreasing function of i =1,...,n.

Let F be a distribution function, and w : R — RT such that 0 <
Elw(X)] < co. Then

xT
w(z)dF(2)
0
is the weighted distribution associated with F' with weight function w. The
weighted distribution F;, has a density
w(z)f(x)
Pl = B
The idea of weighted distributions is due to Fisher (1934). Rao (1965) de-
fined weighted distributions with a general weight function w. Rao and Patil
(1977) provided some statistical models leading to weighted distributions and
applied their results to the analysis of data relating to human population and
ecology. Patil and Ord (1976) defined some classes of distributions which are
invariant under weighting with weight functions of type %, a > 0. Bayarri
and Berger (1998) and also Chung and Kim (2004) considered robustness
for weighted distributions from the Bayesian point of view.
Many authors, e.g. Jain et al. (1989) and Bartoszewicz and Skolimowska
(2006), studied preservation of classes of life distributions under weighting.
The following result will be used.

1

Fol?) = Brugx]

LEMMA 2 (Jain et al., 1989). If F is IFR, and w is increasing and con-
cave, then F, is IFR.

2. Introduction. Zielinski (1977) proposed the following concept of ro-
bustness. Let the original statistical model be My = (X, A, Py) where (X, A)
is a given measurable space and Py is a given subset of the class P of all
probability measures. Let 7 : Py — 27 be a function called a wviolation of My
which has the property: P € 7(P) for all P € Py. Define P1 = Jpcp, 7(P).
Thus M; = (X, A, Py) is an extension of the model My. Let T be a suitable
statistic with distribution P (-) = P(T~!(-)) and g be a real-valued function
on P;. We have the following definitions.

DEFINITION 1 (Zieliniski, 1977). The function r7 : Py — R defined as
rr(P) = sup{o(Q") : Q € n(P)} —inf{o(Q7) : Q € 7(P)}
is called the p-robustness of the statistic T" in Mj.

DEFINITION 2 (Zielifiski, 1977). A statistic T is uniformly most o-robust
in a given class 7 of statistics if
rro(P) < rp(P)
for every P € Ppand T' € 7.
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Zielinski (1983) and Bartoszewicz (1986) used the above definitions to
solve the problem of robustness of unbiased estimation of the scale parameter
in some models.

EXAMPLE 1 (Bartoszewicz, 1986). Consider the statistical model
My = (R", B {F(;0) : 0 > 0}),
where {F(+;0) : > 0} is a class of distributions with scale parameter 6 (i.e.
F(z;0) = F(x/9)).
For fixed continuous distributions H, K, where H(0) = K(0) = 0 and

H <4 K, for every 6 we define mp (6) to be any set of distributions G(-;6)
satisfying the following conditions:

(i) H(0) <st G(;0) <st K(-;0) for every G(-;0) € 7y i (6), where
H(z:6) = H(2/6), K (x:0) = K(z/6):
(i) H(;0), K(0) € mu,x(0);
(iii) g r(0) N{F(;0): 0 >0} ={F(-;6)} for every 6’ > 0.
The set mp i (0) is called a violation of My generated by stochastic order.

Let 7 be the following class of unbiased estimates of the scale parameter
based on a sample X7q,..., X,:

n
T = {T:Zajxjm:aj >0,j=1,....n, ET] =9, 9>0},
j=1
where Ejy[T] is the expected value of T if the underlying distribution is
F(:;0). The problem is to find the uniformly bias-robust (under the above
violation) estimate of 6 in the class 7. Bartoszewicz (1986), using Lemma 1,
proved the following theorem.

THEOREM 1 (Bartoszewicz, 1986). Under the violation mp i (0) of the
model My:
(i) if H(+;0) <. F(-;0) <, K(:;0) then X1.,/E1[X1.n] is the uniformly
most bias-robust estimate of 0 in T;
(i) of K(+;0) <. F(:;0) <, H(:;0) then Xp.m/E1[Xnn] is the uniformly
most bias-robust estimate of 6 in T .
In this paper we give an extension of Theorem 1. We consider the viola-

tion of the original model My which is defined by a certain class of weight
functions.

3. Results. Let us consider the statistical model
My = (R*,B* {F(50) : 0 € RY}),

where RT is the real positive half-line, BT is the family of Borel subsets
of RT and {F(-;0) : # € R"} is a family of distributions with scale parameter
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6 € R*. This model is violated in such a way that in fact for any § we observe
the weighted distributions F,,(-; ) where w belongs to a suitable class W of
functions.

Next we define the following class of functions. For fixed a < 0 and
b >0, W, is the class of non-negative functions which satisfy the following
conditions:

(i) w(zx)/a? is non-increasing,
(ii) w(x)/x* is non-decreasing.

It is obvious that the constant functions belong to W, ;. Next we prove the
following theorem.

THEOREM 2. For every distribution F' and w € Wy, we have
Fma <st Fw <st Fxb-

Proof. The proof is similar to the proof of Theorem 4.1 in Arnold (1980).
We will prove only F,, <g F,. It suffices to show that

(1) Fy(x) — Fp(x) >0 for every x.
We have
R S UV N S
e e
= Br(x (g) w(F (u))du—E[Xb] (S)(F (u))® du
SRS N N g Blw(X)
e § [0 = e

1

Since the function w(F~1(u))/(F~!(u))® is non-increasing in u and

) — -y B 4,
Pary ) [ )~ ) T =,
the integrand
) L 1y El(X)]
WP~ (w) = (P () S

is first positive then negative as u varies from 0 to 1. Thus (1) holds. The
proof of the inequality F,« <g F, is similar.

Using {F(-;6) : § > 0} and W, ;, we can construct the following class of
distributions:
Wa,b(g) = {Fw(ae) TwE Wa,b}a
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It is obvious that for every 6 > 0 we have F'(-;0) € m,4(6). Next we give the
following characterization of the family {7, 4(6) : 6 > 0}.

THEOREM 3. Let {F(-;0):60 > 0} be the class of distributions with scale
parameter § and f(-;0) be a density of F(-;60). If for anyw € Wy and 0 # ¢’
the function w(-)f(-;6")/f(-;0) is not in Wy, then

(2) Tap(0) N{F(50) : 0 >0} = {F(;0)}
and
(3) Tap(0) N e p(0) = 0.

Proof. For w(x) = 1 we obtain f(-;6")/f(-;0) ¢ Wap, which yields (2).
To prove (3) suppose there exist wy, wy such that 6 # ¢ and Fy, (z;6) =
Fy,(x;0") for every x. Then

T

Fy, (2;0') = ﬁ ;0') dz
xX 9/)
] ;0)

B[ §)w1(z)f(2

1 wi(z J(z z;0)dz
= (0], Ty 1500
Thus wa(z) = wi(2) f(z;0)/f(2;0) € Wap.

Let T' € 7. Denote by E,.p[T] the expected value of T" if the underlying
distribution is Fy,(+;6). Obviously Ey[T]| denotes the expected value of T if
w(z) = const.

Let

rr(0) = sup Ey.|T| — inf Ey0|T
( ) Fy(50)€mq,5(0) b [ ] Fuy(50)€map(0) ¢ [ ]
be the oscillation of the bias of T" over 7, ;(6). This function is a measure of
robustness of the estimate T  with respect to the bias violation. Our problem
is to find 70 such that rpo(0) < r7(6) for every § and T € 7.

It is well known that if F' <4 G then E[X;.,] < E[Y.,] for any i. Thus
from Theorem 2 we obtain
(4) inf Ew|T| = Egayg|T), sup EypT] = Ep[T].

Fy(50)€map(0) Fiy (50)€mq 5(6)
Similarly to Zieliriski (1983), the problem of finding 7° is reduced to mini-
mizing

n
Z aj (B[ Xjin] — Egap[Xjm])  for every 0
j=1
under the unbiasedness condition

Zang[Xj:n] =40, 0 >0,
j=1
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which is equivalent to
n
> B [Xjm] = 1.
j=1

For every T' € 7 from (4) we have

n
. B[ Xjin] = Epap[ X
rr(0) = ; aj(Emb;G [Xj:n] - Ew“;G[Xj:nD > 1I§nj1£n - By [Xj:n]
Thus from the fact Fyo(z;0) = Fpo(2/6;1), a > 0, we obtain
X
70 = 7" for some j=1,...,n.
B[ X g

REMARK 1. It is not to hard to see that a similar result can be obtained
if the weight function depends on the scale parameter 0, i.e. wg(z) = w(x/0).

4. Robust estimation of the scale parameter in the weighted ex-
ponential model. Let the original model be My = (R*, B, {F(-;0):0>0})
where F'(-;0) is an exponential distribution function with scale parameter 6.
We give an extension of My under weighting. Define

Tap(0) = {Fuw(;0) :w € Wy}, where —1<a<0,b>0.
Thus we obtain
My = R, BT {m.5(0) : 0 > 0}).

It is well known that in this case Fja(-,0) is the gamma distribution with
shape parameter o + 1. A trivial verification shows that 7, satisfies condi-
tions (2) and (3). Thus, we can formulate the following theorem.

THEOREM 4. Under the violation mq of the model My, the uniformly
most bias-robust estimate of the scale parameter in the class T is

To _ Xn:n )

1+5+--++

n

Proof. This follows immediately from Theorem 1 in Bartoszewicz (1986).
We check at once that

Fra(+0) <st F(50) <s Fp(+50)
by Theorem 2. It is well known that

Fuo(50) i F(50) <i Fra(:50)
and it suffices to use Lemma 1.

It is easy to see that the above model is an extension of the model con-
sidered by Bartoszewicz (1986).
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5. Robust estimation of the scale parameter in the weighted
uniform model

5.1. Uniform model. Let the original model be My = (R*, BT, {F(-;0) :
6 > 0}) where F(-;6) is the uniform distribution on (0,6). We give an ex-
tension of My under weighting. Define

Tap(0) = {Fuw(50) :w e W}, —1<a<0,b>0.
Thus we have
My = (RY, B¥, {ra(0) : 0> 0}).

We can formulate the following theorem.

THEOREM 5. Under the violation 7,y of My, the uniformly most bias-
robust estimate of the scale parameter in the class T is

T° = (n+ 1) Xpn/n.
Proof. The proof is similar to the proof of Theorem 1.

As previously, this model is an extension of the model considered in
Bartoszewicz (1986). Next we give an extension of the uniform model.

5.2. Uniform model with monotone weight function. Now we will con-
sider more general situations than the one considered in Section 5.1.

Let the original model be My = (R*, BT, {F(-;0) : 6 > 0}) where F(-;0)
is the uniform distribution on (0, ). Let us define the following set of distri-
butions:

ml0) = {Ful60) s w € W}
where W is the class of positive, monotone weight functions. We obtain an
extension of My:
M, = (R+,B+, {71'1/\;(0) : 0 > O})
It is obvious that in this case weighted distributions have monotone densities
on [0,0] and if w is non-decreasing then

(5) Fy(50) <c F(;0) and F(:;0) <y Fy(;0) for every 0,
and similarly if w is non-increasing then
(6) F(0) <c Fy(;0) and F,(-;0) <g F(-;0) for every 6.

Let W be the class of functions w which are non-decreasing, and W’ the
class of functions w which are non-increasing. We check at once that

inf E,olT] = inf Ey.0lT],
Fu(50)emw (0) ol] Fu (50)€mpm (0) olT]

sSup Ew;@[T] = sup Ew;@[T]
Fu(-50)emw(0) Fu(-0)€m (0)

for any T' € 7. We can formulate the following lemma.
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LEMMA 3. For any w' e W, w" e W and T € T we have
Ew’;O[Xn:n] - Ew”;G[Xn:n]
El [Xnn] .

Ew’;O[T] - Ew”;O[T] >

Proof. 1t is easy to see from Theorem 1 that for any w',w” and T € T
we have

. Ew/'G[Xi:n] - Ew”'O[Xi:n]
EyolT| — EyrglT] > : d

Thus from (5), (6) and Lemma 1 we infer that
Xn:n
El [Xnn]
minimizes E,,.9[T] — Ey,9[T] for every T' € T and every 6.

Now we can formulate the following theorem.

THEOREM 6. Under the violation my of the model My, the uniformly
most bias-robust estimate of the scale parameter in the class T is

T° = (n4 1) X0 /0.

Proof. This follows from Lemma 3.

6. Estimation of the scale parameter in the weighted expo-
nential model with monotone failure rate. Let the original model be
My = (RT, BT, {F(:;0) : 0 > 0}) where F(-;0) is an exponential distribution
function with scale parameter 6. Let VW be the class of functions w which
are increasing and concave. Assume also that w(z) = 1 belongs to W and
for every w € W we have

lim w(z)e ™™ =0, 0<\<1.

Define
mw(0) = {Fy(0) : w e W}
Clearly myy(0) satisfies conditions (2) and (3).
Consider the extension of My under weighting

M, = (R+,B+,{7Tw(0) 10 > 0})

The problem is to find 7° € 7, the uniformly most bias-robust estimate of
the scale parameter under the violation . Clearly we have

(7) F(50) <st Fu(:30), weW,
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because w is increasing. Thus we check at once that
8 inf E,.¢[T) = Eg[T
(8) Jnf EulT] = EolT]

for any T € 7.
By definition of IFR distribution and Lemma 2,
Fy(50) <c F(-;0) for any w € W and every 6.
We can formulate the following lemma similar to Lemma 3, and a theorem
similar to Theorem 6.
LEMMA 4. For any w € W and T € T we have
Ew;O[Xn:n] - E9 [Xnn]
El [Xn:n]
THEOREM 7. Under the wiolation my of the model My the uniformly
most bias-robust estimate of the scale parameter is
T[) _ Xn:n
1+5+--++

Proof. This follows from (7), (8) and Lemma 4.

Ew;G[T] - E@[T] >
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