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Paweª Bªa»ej (Wro
ªaw)
ROBUST ESTIMATION OF THE SCALEAND WEIGHTED DISTRIBUTIONS

Abstra
t. The 
on
ept of robustness given by Zieli«ski (1977) is 
onsid-ered in 
ases where violations of models are generated by weight fun
tions.Uniformly most bias-robust estimates of the s
ale parameter, based on orderstatisti
s, are obtained for some statisti
al models. Extensions of results ofZieli«ski (1983) and Bartoszewi
z (1986) are given.1. Preliminaries. Let X and Y be random variables with absolutely
ontinuous distributions F and G respe
tively and F (0) = G(0) = 0. Denoteby SF the support and by F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1), thequantile (or reversed) fun
tion of F , and similarly for G.We re
all some basi
 fa
ts about sto
hasti
 orders. We say that a randomvariable X is smaller than Y in the sto
hasti
 order (F ≤st G) if F (x) ≥ G(x)for every x.We say that X is smaller than Y in the star order (F ≤∗ G) if G−1F (x)/xis non-de
reasing on SF where G−1F denotes the 
omposition of G−1 and F.We say that X is smaller than Y in the 
onvex order (F ≤c G) if G−1F (x)is 
onvex on SF . It is well known that the 
onvex order implies the star order.A distribution F is said to be IFR (in
reasing failure rate) if F ≤c Gwhere G is an exponential distribution. Let X1:n, . . . , Xn:n be order statisti
sin a sample X1, . . . , Xn from the distribution F and let Fi:n denote thedistribution of Xi:n, i = 1, . . . , n; Gi:n is de�ned similarly. It is well knownthat if F ≤st G then Fi:n ≤st Gi:n; also if F ≤c G (resp. F ≤∗ G) we obtain
Fi:n ≤c Gi:n (resp. Fi:n ≤∗ Gi:n) for any i.We will use the following lemma:2000 Mathemati
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30 P. Bªa»ejLemma 1 (Barlow and Pros
han, 1966). If F ≤∗ G then E[Xi:n]/E[Yi:n]is a non-de
reasing fun
tion of i = 1, . . . , n.Let F be a distribution fun
tion, and w : R → R
+ su
h that 0 <

E[w(X)] < ∞. Then
Fw(x) =

1

E[w(X)]

x\
0

w(z) dF (z)is the weighted distribution asso
iated with F with weight fun
tion w. Theweighted distribution Fw has a density
fw(x) =

w(x)f(x)

E[w(X)]
.The idea of weighted distributions is due to Fisher (1934). Rao (1965) de-�ned weighted distributions with a general weight fun
tion w. Rao and Patil(1977) provided some statisti
al models leading to weighted distributions andapplied their results to the analysis of data relating to human population ande
ology. Patil and Ord (1976) de�ned some 
lasses of distributions whi
h areinvariant under weighting with weight fun
tions of type xα, α > 0. Bayarriand Berger (1998) and also Chung and Kim (2004) 
onsidered robustnessfor weighted distributions from the Bayesian point of view.Many authors, e.g. Jain et al. (1989) and Bartoszewi
z and Skolimowska(2006), studied preservation of 
lasses of life distributions under weighting.The following result will be used.Lemma 2 (Jain et al., 1989). If F is IFR, and w is in
reasing and 
on-
ave, then Fw is IFR.2. Introdu
tion. Zieli«ski (1977) proposed the following 
on
ept of ro-bustness. Let the original statisti
al model be M0 = (X ,A,P0) where (X ,A)is a given measurable spa
e and P0 is a given subset of the 
lass P of allprobability measures. Let π : P0 → 2P be a fun
tion 
alled a violation of M0whi
h has the property: P ∈ π(P ) for all P ∈ P0. De�ne P1 =

⋃

P∈P0
π(P ).Thus M1 = (X ,A,P1) is an extension of the model M0. Let T be a suitablestatisti
 with distribution P T (·) = P (T−1(·)) and ̺ be a real-valued fun
tionon P1. We have the following de�nitions.Definition 1 (Zieli«ski, 1977). The fun
tion rT : P0 → R

+ de�ned as
rT (P ) = sup{̺(QT ) : Q ∈ π(P )} − inf{̺(QT ) : Q ∈ π(P )}is 
alled the ̺-robustness of the statisti
 T in M1.Definition 2 (Zieli«ski, 1977). A statisti
 T 0 is uniformly most ̺-robustin a given 
lass T of statisti
s if

rT 0(P ) ≤ rT (P )for every P ∈ P0 and T ∈ T .



Robust estimation of the s
ale 31Zieli«ski (1983) and Bartoszewi
z (1986) used the above de�nitions tosolve the problem of robustness of unbiased estimation of the s
ale parameterin some models.Example 1 (Bartoszewi
z, 1986). Consider the statisti
al model
M0 = (R+,B+, {F (·; θ) : θ > 0}),where {F (·; θ) : θ > 0} is a 
lass of distributions with s
ale parameter θ (i.e.

F (x; θ) = F (x/θ)).For �xed 
ontinuous distributions H, K, where H(0) = K(0) = 0 and
H ≤st K, for every θ we de�ne πH,K(θ) to be any set of distributions G(·; θ)satisfying the following 
onditions:(i) H(·; θ) ≤st G(·; θ) ≤st K(·; θ) for every G(·; θ) ∈ πH,K(θ), where

H(x; θ) = H(x/θ), K(x; θ) = K(x/θ);(ii) H(·; θ), K(·; θ) ∈ πH,K(θ);(iii) πH,K(θ′) ∩ {F (·; θ) : θ > 0} = {F (·; θ′)} for every θ′ > 0.The set πH,K(θ) is 
alled a violation of M0 generated by sto
hasti
 order.Let T be the following 
lass of unbiased estimates of the s
ale parameter θbased on a sample X1, . . . , Xn:
T =

{

T =
n

∑

j=1

ajXj:n : aj ≥ 0, j = 1, . . . , n, Eθ[T ] = θ, θ > 0
}

,where Eθ[T ] is the expe
ted value of T if the underlying distribution is
F (·; θ). The problem is to �nd the uniformly bias-robust (under the aboveviolation) estimate of θ in the 
lass T . Bartoszewi
z (1986), using Lemma 1,proved the following theorem.Theorem 1 (Bartoszewi
z, 1986). Under the violation πH,K(θ) of themodel M0:(i) if H(·; θ) ≤∗ F (·; θ) ≤∗ K(·; θ) then X1:n/E1[X1:n] is the uniformlymost bias-robust estimate of θ in T ;(ii) if K(·; θ) ≤∗ F (·; θ) ≤∗ H(·; θ) then Xn:n/E1[Xn:n] is the uniformlymost bias-robust estimate of θ in T .In this paper we give an extension of Theorem 1. We 
onsider the viola-tion of the original model M0 whi
h is de�ned by a 
ertain 
lass of weightfun
tions.3. Results. Let us 
onsider the statisti
al model

M0 = (R+,B+; {F (·; θ) : θ ∈ R
+}),where R

+ is the real positive half-line, B+ is the family of Borel subsetsof R
+ and {F (·; θ) : θ ∈ R

+} is a family of distributions with s
ale parameter
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θ ∈ R

+. This model is violated in su
h a way that in fa
t for any θ we observethe weighted distributions Fw(·; θ) where w belongs to a suitable 
lass W offun
tions.Next we de�ne the following 
lass of fun
tions. For �xed a < 0 and
b > 0, Wa,b is the 
lass of non-negative fun
tions whi
h satisfy the following
onditions:(i) w(x)/xb is non-in
reasing,(ii) w(x)/xa is non-de
reasing.It is obvious that the 
onstant fun
tions belong to Wa,b. Next we prove thefollowing theorem.Theorem 2. For every distribution F and w ∈ Wa,b we have

Fxa ≤st Fw ≤st Fxb .Proof. The proof is similar to the proof of Theorem 4.1 in Arnold (1980).We will prove only Fw ≤st Fxb . It su�
es to show that(1) Fw(x) − Fxb(x) ≥ 0 for every x.We have
1

E[w(X)]

x\
0

w(z) dF (z) −
1

E[Xb]

x\
0

zb dF (z)

=
1

E[w(X)]

F (x)\
0

w(F−1(u)) du −
1

E[Xb]

F (x)\
0

(F−1(u))b du

=
1

E[w(X)]

F (x)\
0

[

w(F−1(u)) − (F−1(u))b E[w(X)]

E[Xb]

]

du.Sin
e the fun
tion w(F−1(u))/(F−1(u))b is non-in
reasing in u and
1

E[w(X)]

1\
0

[

w(F−1(u)) − (F−1(u))b E[w(X)]

E[Xb]

]

du = 0,the integrand
w(F−1(u)) − (F−1(u))b E[w(X)]

E[Xb]is �rst positive then negative as u varies from 0 to 1. Thus (1) holds. Theproof of the inequality Fxa ≤st Fw is similar.Using {F (·; θ) : θ > 0} and Wa,b we 
an 
onstru
t the following 
lass ofdistributions:
πa,b(θ) = {Fw(·; θ) : w ∈ Wa,b},



Robust estimation of the s
ale 33It is obvious that for every θ > 0 we have F (·; θ) ∈ πa,b(θ). Next we give thefollowing 
hara
terization of the family {πa,b(θ) : θ > 0}.Theorem 3. Let {F (·; θ) : θ > 0} be the 
lass of distributions with s
aleparameter θ and f(·; θ) be a density of F (·; θ). If for any w ∈ Wa,b and θ 6= θ′the fun
tion w(·)f(·; θ′)/f(·; θ) is not in Wa,b, then(2) πa,b(θ
′) ∩ {F (·; θ) : θ > 0} = {F (·; θ′)}and(3) πa,b(θ

′) ∩ πa,b(θ) = ∅.Proof. For w(x) ≡ 1 we obtain f(·; θ′)/f(·; θ) /∈ Wa,b, whi
h yields (2).To prove (3) suppose there exist w1, w2 su
h that θ 6= θ′ and Fw1
(x; θ) =

Fw2
(x; θ′) for every x. Then

Fw1
(x; θ′) =

1

E[w1(X)]

x\
0

w1(z)f(z; θ′) dz

=
1

E[w1(X)]

x\
0

w1(z)
f(z; θ′)

f(z; θ)
f(z; θ) dz.Thus w2(z) = w1(z)f(z; θ′)/f(z; θ) ∈ Wa,b.Let T ∈ T . Denote by Ew;θ[T ] the expe
ted value of T if the underlyingdistribution is Fw(·; θ). Obviously Eθ[T ] denotes the expe
ted value of T if

w(x) = const.Let
rT (θ) = sup

Fw(·;θ)∈πa,b(θ)
Ew;θ[T ] − inf

Fw(·;θ)∈πa,b(θ)
Ew;θ[T ]be the os
illation of the bias of T over πa,b(θ). This fun
tion is a measure ofrobustness of the estimate T with respe
t to the bias violation. Our problemis to �nd T 0 su
h that rT 0(θ) ≤ rT (θ) for every θ and T ∈ T .It is well known that if F ≤st G then E[Xi:n] ≤ E[Yi:n] for any i. Thusfrom Theorem 2 we obtain(4) inf

Fw(·;θ)∈πa,b(θ)
Ew;θ[T ] = Exa;θ[T ], sup

Fw(·;θ)∈πa,b(θ)
Ew;θ[T ] = Exb;θ[T ].Similarly to Zieli«ski (1983), the problem of �nding T 0 is redu
ed to mini-mizing

n
∑

j=1

aj(Exb;θ[Xj:n] − Exa;θ[Xj:n]) for every θunder the unbiasedness 
ondition
n

∑

j=1

ajEθ[Xj:n] = θ, θ > 0,



34 P. Bªa»ejwhi
h is equivalent to
n

∑

j=1

ajE1[Xj:n] = 1.

For every T ∈ T from (4) we have
rT (θ) =

n
∑

j=1

aj(Exb;θ[Xj:n] − Exa;θ[Xj:n]) ≥ min
1≤j≤n

Exb;θ[Xj:n] − Exa;θ[Xj:n]

E1[Xj:n]
.

Thus from the fa
t Fxα(x; θ) = Fxα(x/θ; 1), α > 0, we obtain
T 0 =

Xj:n

E1[Xj:n]
for some j = 1, . . . , n.Remark 1. It is not to hard to see that a similar result 
an be obtainedif the weight fun
tion depends on the s
ale parameter θ, i.e. wθ(x) = w(x/θ).4. Robust estimation of the s
ale parameter in the weighted ex-ponential model. Let the original model be M0 = (R+,B+, {F (·; θ) : θ>0})where F (·; θ) is an exponential distribution fun
tion with s
ale parameter θ.We give an extension of M0 under weighting. De�ne

πa,b(θ) = {Fw(·; θ) : w ∈ Wa,b}, where −1 < a < 0, b > 0.Thus we obtain
M1 = (R+,B+, {πa,b(θ) : θ > 0}).It is well known that in this 
ase Fxα(·, θ) is the gamma distribution withshape parameter α + 1. A trivial veri�
ation shows that πa,b satis�es 
ondi-tions (2) and (3). Thus, we 
an formulate the following theorem.Theorem 4. Under the violation πa,b of the model M0, the uniformlymost bias-robust estimate of the s
ale parameter in the 
lass T is

T 0 =
Xn:n

1 + 1
2 + · · · + 1

n

.Proof. This follows immediately from Theorem 1 in Bartoszewi
z (1986).We 
he
k at on
e that
Fxa(·; θ) ≤st F (·; θ) ≤st Fxb(·; θ)by Theorem 2. It is well known that
Fxb(·; θ) ≤∗ F (·; θ) ≤∗ Fxa(·; θ)and it su�
es to use Lemma 1.It is easy to see that the above model is an extension of the model 
on-sidered by Bartoszewi
z (1986).



Robust estimation of the s
ale 355. Robust estimation of the s
ale parameter in the weighteduniform model5.1. Uniform model. Let the original model be M0 = (R+,B+, {F (·; θ) :
θ > 0}) where F (·; θ) is the uniform distribution on (0, θ). We give an ex-tension of M0 under weighting. De�ne

πa,b(θ) = {Fw(·; θ) : w ∈ Wa,b}, −1 < a < 0, b > 0.Thus we have
M1 = (R+,B+, {πa,b(θ) : θ > 0}).We 
an formulate the following theorem.Theorem 5. Under the violation πa,b of M0, the uniformly most bias-robust estimate of the s
ale parameter in the 
lass T is

T 0 = (n + 1)Xn:n/n.Proof. The proof is similar to the proof of Theorem 1.As previously, this model is an extension of the model 
onsidered inBartoszewi
z (1986). Next we give an extension of the uniform model.5.2. Uniform model with monotone weight fun
tion. Now we will 
on-sider more general situations than the one 
onsidered in Se
tion 5.1.Let the original model be M0 = (R+,B+, {F (·; θ) : θ > 0}) where F (·; θ)is the uniform distribution on (0, θ). Let us de�ne the following set of distri-butions:
πW(θ) = {Fw(·; θ) : w ∈ W}where W is the 
lass of positive, monotone weight fun
tions. We obtain anextension of M0:

M1 = (R+,B+, {πW(θ) : θ > 0}).It is obvious that in this 
ase weighted distributions have monotone densitieson [0, θ] and if w is non-de
reasing then(5) Fw(·; θ) ≤c F (·; θ) and F (·; θ) ≤st Fw(·; θ) for every θ,and similarly if w is non-in
reasing then(6) F (·; θ) ≤c Fw(·; θ) and Fw(·; θ) ≤st F (·; θ) for every θ.Let W ′ be the 
lass of fun
tions w whi
h are non-de
reasing, and W ′′ the
lass of fun
tions w whi
h are non-in
reasing. We 
he
k at on
e that
inf

Fw(·;θ)∈πW (θ)
Ew;θ[T ] = inf

Fw(·;θ)∈π
W′′ (θ)

Ew;θ[T ],

sup
Fw(·;θ)∈πW (θ)

Ew;θ[T ] = sup
Fw(·;θ)∈π

W′ (θ)
Ew;θ[T ]for any T ∈ T . We 
an formulate the following lemma.



36 P. Bªa»ejLemma 3. For any w′ ∈ W ′, w′′ ∈ W ′′ and T ∈ T we have
Ew′;θ[T ] − Ew′′;θ[T ] ≥

Ew′;θ[Xn:n] − Ew′′;θ[Xn:n]

E1[Xn:n]
.Proof. It is easy to see from Theorem 1 that for any w′,w′′ and T ∈ Twe have

Ew′;θ[T ] − Ew′′;θ[T ] ≥ min
1≤i≤n

Ew′;θ[Xi:n] − Ew′′;θ[Xi:n]

E1[Xi:n]
.Thus from (5), (6) and Lemma 1 we infer that

Xn:n

E1[Xn:n]minimizes Ew′;θ[T ] − Ew′′;θ[T ] for every T ∈ T and every θ.Now we 
an formulate the following theorem.Theorem 6. Under the violation πW of the model M0, the uniformlymost bias-robust estimate of the s
ale parameter in the 
lass T is
T 0 = (n + 1)Xn:n/n.Proof. This follows from Lemma 3.

6. Estimation of the s
ale parameter in the weighted expo-nential model with monotone failure rate. Let the original model be
M0 = (R+,B+, {F (·; θ) : θ > 0}) where F (·; θ) is an exponential distributionfun
tion with s
ale parameter θ. Let W be the 
lass of fun
tions w whi
hare in
reasing and 
on
ave. Assume also that w(x) ≡ 1 belongs to W andfor every w ∈ W we have

lim
x→∞

w(x)e−λx = 0, 0 < λ < 1.De�ne
πW(θ) = {Fw(·; θ) : w ∈ W}.Clearly πW(θ) satis�es 
onditions (2) and (3).Consider the extension of M0 under weighting

M1 = (R+,B+, {πW(θ) : θ > 0}).The problem is to �nd T 0 ∈ T , the uniformly most bias-robust estimate ofthe s
ale parameter under the violation πW . Clearly we have(7) F (·; θ) ≤st Fw(·; θ), w ∈ W ,
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ale 37be
ause w is in
reasing. Thus we 
he
k at on
e that(8) inf
w∈W

Ew;θ[T ] = Eθ[T ]for any T ∈ T .By de�nition of IFR distribution and Lemma 2,
Fw(·; θ) ≤c F (·; θ) for any w ∈ W and every θ.We 
an formulate the following lemma similar to Lemma 3, and a theoremsimilar to Theorem 6.Lemma 4. For any w ∈ W and T ∈ T we have

Ew;θ[T ] − Eθ[T ] ≥
Ew;θ[Xn:n] − Eθ[Xn:n]

E1[Xn:n]
.Theorem 7. Under the violation πW of the model M0 the uniformlymost bias-robust estimate of the s
ale parameter is

T 0 =
Xn:n

1 + 1
2 + · · · + 1

n

.Proof. This follows from (7), (8) and Lemma 4.
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