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NOTE ON UNIVERSAL ALGORITHMS FOR

LEARNING THEORY

Abstract. We study the universal estimator for the regression problem
in learning theory considered by Binev et al. This new approach allows us
to improve their results.

1. Introduction. S. Cucker and S. Smale [1] determined the scope of
learning theory. We present a general approach which corresponds to [2] and
[3]. The problem is the following. Let X = [0, 1]d and Y = [−A, A]. On the
product space Z = X ×Y there is an unknown probability Borel measure ̺.
We shall assume that the marginal probability measure ̺X(S) = ̺(S × Y )
on X is a Borel measure. We have

d̺(x, y) = d̺(y|x)d̺X(x).

We are given the data z ⊂ Z of m independent random observations
zj = (xj, yj), j = 1, . . . , m, identically distributed according to ̺. We are
interested in estimating the regression function

f̺(x) :=
\
Y

y d̺(y|x)

in L2(X, ̺X) norm which will be denoted by ‖ · ‖.
To do it let M = {Mv}v∈T denote any family of measurable functions

on X such that for all v ∈ T ,

0 ≤ Mv(x) ≤ 1, x ∈ X,(1)

and
∑

v∈T

Mv(x) = 1, x ∈ X.(2)
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An example is the family {χI}I∈T , where χI denotes the indicator function
of I and {I : I ∈ T} is any partition of X (in [2] the sets I are dyadic
cubes). Another example is obtained if we consider a triangulation T of X
with vertices {v}v∈T and the corresponding system of functions {Mv}v∈T

which are continuous on X, linear on each component of this triangulation
and

Mv(w) =

{

1 for vertices w = v,

0 for w 6= v.

It is not hard to check that the family {Mv}v∈T satisfies (1) and (2).

Now for a given family M we define the operator

QMf(x) =
∑

v∈T

cv(f)Mv(x),

where

cv(f) =
αv(f)

̺v
, αv(f) =

\
X

fMv d̺X , ̺v =
\
X

Mv d̺X ,

and the estimator

fz(x) =
∑

v∈T

cv(z)Mv(x),

where

cv(z) =
αv(z)

̺v(z)
, αv(z) =

1

m

m
∑

j=1

yjMv(xj), ̺v(z) =
1

m

m
∑

j=1

Mv(xj).

If ̺v = 0 then we define cv = 0, and if ̺v(z) = 0 then we put cv(z) = 0. Note
also that Eαv(z) = αv (here and subsequently, αv := αv(f̺), cv := cv(f̺))
and E̺v(z) = ̺v. Moreover

Var(yMv(x)) ≤
\
Z

y2M2
v (x) d̺(x, y) ≤ A2

\
X

M2
v (x) d̺X(x),

hence

Var(yMv(x)) ≤ A2
\
X

Mv(x) d̺X(x) = A2̺v,(3)

Var(Mv(x)) ≤ E(Mv(x))2 ≤ E(Mv(x)) = ̺v.(4)

Therefore by Bernstein’s inequality we have, for any ε > 0,

Prob{|αv − αv(z)| ≥ ε} ≤ 2 exp

(

− 3mε2

6A2̺v + 4Aε

)

,(5)

Prob{|̺v − ̺v(z)| ≥ ε} ≤ 2 exp

(

− 3mε2

6̺v + 2ε

)

.(6)

The main result of this paper is
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Theorem 1.1. For any family M,

E‖QMf̺ − fz‖2 = O

(

N

m

)

,

where N = |T |.
The new idea of the proof presented below allows us to improve the

result from [2] (in Corollary 2.2 of [2] the above expectation is bounded by
O((N/m) log N)).

Proof. By (1), (2) and the convexity of the square functions we have

E‖QMf̺ − fz‖2 ≤
\
X

∑

v∈T

E|cv − cv(z)|2Mv(x) d̺X(x)

=
∑

v∈T

E|cv − cv(z)|2̺v.

Note that if ̺v = 0 then E̺v(z) = 0, hence ̺v(z) = 0 ̺m-a.e. Consequently,

E‖QMf̺ − fz‖2 ≤
∑

v∈T, ̺v>0

E|cv − cv(z)|2̺v.

Fix v such that ̺v > 0. We can write

E|cv − cv(z)|2 =
\

̺v(z)>0

|cv − cv(z)|2 +
\

̺v(z)=0

|cv|2.

Note that if ̺v(z) = 0 ̺m-a.e. then Mv(xj) = 0 for all j, hence αv(z) = 0
̺m-a.e. Thus

E|cv − cv(z)|2 =
\

̺v(z)>0

|cv − cv(z)|2 +
\

̺v(z)=0

∣

∣

∣

∣

αv − αv(z)

̺v

∣

∣

∣

∣

2

.

For b 6= 0 and t 6= 0 we use the simple inequality
∣

∣

∣

∣

a

b
− s

t

∣

∣

∣

∣

≤ 1

|b| |a − s| + |s|
|bt| |t − b|(7)

to get
∣

∣

∣

∣

a

b
− s

t

∣

∣

∣

∣

2

≤ 2
|a − s|2

b2
+ 2

1

b2

s2

t2
|t − b|2,(8)

which in particular gives
∣

∣

∣

∣

av

̺v
− av(z)

̺v(z)

∣

∣

∣

∣

2

≤ 2
|av − av(z)|2

̺2
v

+ 2

(

av(z)

̺v(z)

)2 |̺v − ̺v(z)|2
̺2

v

.

For ̺v(z) > 0 we have
αv(z)

2

̺v(z)2
≤ A2,

thus

E|cv − cv(z)|2 ≤ 3

m̺2
v

Var(yMv(x)) +
2A2

m̺2
v

Var(Mv(x)).
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Consequently,

E‖QT f̺ − fz‖2 ≤ C
∑

v∈T

1

m̺2
v

(Var(yMv(x)) + Var(Mv(x)))̺v.

By (3) and (4) we get

E‖QT f̺ − fz‖2 ≤ O

(

∑

v∈T

1

m

)

= O

(

N

m

)

,

and this finishes the proof.

Note that if we take N = m1/(1+2s) for fixed s > 0 then

E‖QMf̺ − fz‖2 = O

(

1

m

)2s/(1+2s)

.(9)

To unify the linear and nonlinear approach in estimation let us introduce
the sets As similar to the definition given in [2]. We have f ∈ As, s > 0 (in
fact it makes sense to consider 0 < s ≤ 2) if f ∈ L2(̺X) and there is C such
that for all N there is a family M = {Mv}v∈T with properties (1) and (2)
such that N = |T | and

‖f − QMf‖ ≤ CN−s.(10)

By Theorem 1.2, (9) and (10), and since

E‖f̺ − fz‖2 ≤ 2E‖f̺ − QMf̺‖2 + 2E‖QMf̺ − fz‖2,

we get the optimal rate of estimation (see [4]). This approach improves the
rate of estimation in [2].

Theorem 1.2. Let f̺ ∈ As and let M be the family from the definition

of the space As such that N = |T | = [m1/(1+2s)]. Then

E‖f̺ − fz‖2 = O

(

1

m

)2s/(1+2s)

.

Finally, we will give a general version of Theorem 2.1 in [2]. Our proof
is analogous but partially simplified, so we present it for the sake of com-
pleteness. We improve the constant in estimation.

Theorem 1.3. For any family M and any η > 0,

Prob{‖QMf̺ − fz‖ > η} ≤ 4Ne−cmη2/N ,(11)

where N := |T | and c depends only on A.

Proof. By the convexity of the square function we have

‖QMf̺ − fz‖2 ≤
\
X

∑

v∈T

|cv − cv(z)|2Mv(x) d̺X(x)(12)

=
∑

v∈T

|cv − cv(z)|2̺v.
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This gives

Prob{‖QMf̺ − fz‖ > η} ≤ Prob
{

∑

v∈T

|cv − cv(z)|2̺v > η2
}

≤
∑

v∈T

Prob

{

|cv − cv(z)| >
η√
N̺v

}

.

Note that

Prob

{

|cv − cv(z)| >
η√
N̺v

}

= 0

provided ̺v ≤ η2/4A2N . To see this it is enough to transform this assump-
tion to the form η/

√
N̺v ≥ 2A and recall that |cv| and |cv(z)| are less

than A.

Therefore we can write

Prob{‖QMf̺ − fz‖ > η} ≤
∑

v : ̺v>η2/4A2N

Prob

{

|cv − cv(z)| >
η√
N̺v

}

.

To estimate the last sum, note that if

|αv(z) − αv| ≤
̺vη

4
√

N̺v

and

|̺v(z) − ̺v| ≤
̺vη

4A
√

N̺v

then (we know that ̺v > η2/4A2N)

|̺v(z) − ̺v| ≤
̺vη

4A
√

N η2

4A2N

=
1

2
̺v

(this gives in particular |̺v(z)| ≥ 1
2̺v), and using (7) we get

|cv(z) − cv| =

∣

∣

∣

∣

αv(z)

̺v(z)
− αv

̺v

∣

∣

∣

∣

≤ 1

|̺v(z)|
|αv(z) − αv| +

|αv|
|̺v(z)|̺v

|̺v(z) − ̺v|

≤ 1
1
2̺v

· ̺vη

4
√

N̺v
+

A
1
2̺v

· ̺vη

4A
√

N̺v
=

η√
N̺v

.

Therefore

Prob

{

|cv − cv(z)| >
η√
N̺v

}

≤ Prob

{

|αv(z) − αv| >
̺vη

4
√

N̺v

}

+ Prob

{

|̺v(z) − ̺v| >
̺vη

4A
√

N̺v

}

.

If we first use (5), (6) and then the fact that η/
√

N̺v ≤ 2A, we finally get
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Prob{‖QMf̺ − fz‖ > η}

≤
∑

v : ̺v>η2/4A2N

(

2 exp

(

− 3mη2

16N
(

6A2 + A η√
N̺v

)

)

+ 2 exp

(

− 3mη2

16A2N
(

6 + 1
2A · η√

N̺v

)

))

≤
∑

v : ̺v>η2/4A2N

2

(

exp

(

− 3

128
· mη2

NA2

)

+ exp

(

− 3

112
· mη2

NA2

))

≤ 4N exp

(

− 3

128A2
· mη2

N

)

,

which completes the proof of (11) with c = 3/128A2.
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