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MODELS FOR STOCHASTIC MORTALITY

Abstract. This paper is an attempt to present and analyse stochastic
mortality models. We propose a couple of continuous-time stochastic models
that are natural generalizations of the Gompertz law in the sense that they
reduce to the Gompertz function when the volatility parameter is zero. We
provide a statistical analysis of the available demographic data to show that
the models fit historical data well. Finally, we give some practical examples
for the multidimensional models.

1. Introduction. In the life insurance industry the problem of unpre-
dictable mortality intensity is of importance. It is possible that in the future
the mortality parameters of the society will be far from those assumed in the
actuarial plan of an insurance product. This can happen even if the assump-
tions were very conservative. For example, a new virus or an environmental
threat may emerge that will increase the mortality of the whole population.
On the other hand, a new medicine may be invented and the mortality inten-
sity will decrease. Such changes may affect the population as a whole or only
selected age groups. Thus, a deeper consideration of the future mortality
structure is a must. This problem is crucial for both reserving and pricing.

The aim of this paper is to address this issue. Statistical analysis of the
available demographic data is provided. We also propose continuous-time
stochastic models that are natural generalizations of the Gompertz law in
the sense that they reduce to the Gompertz function when the volatility
parameter is zero. These models have some interesting features. For example,
they have a few parameters only, these parameters are not functions of time,
and at least one of these models can also be efficiently used for mortality
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option-pricing. Statistical multivariate tests for all three models are provided
that allow us to decide which one fits the empirical data best. Finally, we
give some practical examples for our multidimensional model.

The paper is organized as follows. An introduction of existing and new
models is provided in Section 2. Section 3 contains a reality-check—the mod-
els are tested against the demographic data. Finally, some applications can
be found in Section 4.

2. Mortality models. Let us consider a homogeneous cohort of people
born in year y. The standard actuarial notation 7_;p{ is the probability that
a (t —y)-year-old member of this cohort survives until 7'. If 1 is the hazard
rate of a single life, we have

Ttpf =€~ it ds,

2.1. Existing models. If the environment and living conditions do not
change over time, we can assume that the cohort’s mortality intensity is a
function of time only. In classical actuarial theory and practice, pf is often
expressed by the so called Gompertz assumption (see any actuarial textbook,
e.g. [1]) as a function of ¢:

/,Li/ ~ A—{—BBCt

where A, B and C' are constants. This model provides a surprisingly accurate
approximation in many cases, it is commonly accepted and has been exten-
sively used by practitioners for over a century. Despite its obvious simplicity
and usefulness, this method has a serious drawback—it is deterministic and
thus it cannot accommodate future randomness. Hence the need for a non-
deterministic model emerges and there are a few approaches toward such
models in the existing literature.

Predictions of the survival probability p,, mortality intensity p, (also
called: force of mortality, mortality rate, hazard rate) as well as the central
mortality rate m, are possible. Among others, the Lee—Carter model pre-
sented in [11] and further developed by many authors (e.g. [17], [18]) and
the CMI recommendations [4] are broadly applied. The Lee—Carter method
provides not only mortality predictions but also confidence bounds. The fact
that it provides some insight into the random nature of future mortality is
of course a useful and desirable feature.

Since the Lee—Carter method is based on time series analysis, it only
provides a discrete analysis of the problem. Continuous-time stochastic mor-
tality models are presented in [15] and [5]. The models there were selected
mainly to enable mortality-derivative pricing, which is the main objective of
those papers. In particular the extended Cox—Ingersoll-Ross (CIR) model is
used by Dahl in [5]. The CIR model is important for the stochastic modeling
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of interest rates. In this model the mortality intensity process is described
by the following SDE:

dpy = ay(by — pf)dt + ci\/ pf dB,

where the parameters a;, by and ¢; are functions of time. In this setup !
is a mean reverting process with mean b;. Mean reversion is one of Dahl’s
important motivations for using this model for mortality intensity. Also [15]
uses a mean reverting process to model the mortality intensity. Both papers
suggest that mean reversion is desired or even required for the mortality
model. Tt is certainly important for interest rate models, which John Hull
explains in [9] this way: There are compelling economics arguments in favor
of mean reversion. When rates are high, the economy tends to slow down
and there is less requirement for funds on the part of borrowers. As a result,
rates decline. When rates are low, there tends to be a high demand for funds
on the part of borrowers. As a result rates tend to rise. This motivation does
not seem to hold for the mortality intensity, though.

Another argument against mean reversion is that usually it is difficult
to estimate the mean from the data. In a practical application one would
probably have to assume a priori a particular form of the mean function.
One possibility is the celebrated Gompertz law.

Since there is no evidence that the demographic data are mean reverting,
we want to show that there exist a few stochastic processes that are not mean
reverting but fit the data well, have nice analytical properties and have a
simple structure.

In the remainder of this section, we will be omitting the superscripts in
pf and py if this does not lead to confusion.

2.2. New models. Because there can be some reservations to the idea
of mean reverting mortality models, we propose to use a different group of
models. These models are defined and described in this subsection.

2.2.1. One-dimensional models. We suggest using the following diffusion
processes for modeling mortality intensity:

(1) dpy = apudt + podB, ¢ € [t T),

for 3 =0, 8 = 0.5 and 8 = 1. Here py, > 0 is the starting value of the
process g, a > 0 and o are constants, and By is the Brownian motion. We
also define G = au; and H = utﬁ o. Unique solutions exist for § = 0 and
B = 1 because the Lipschitz condition holds in these cases. For § = 0.5 we
can apply a special case of the Yamada—Watanabe theorem and see that a
weakened Lipschitz condition holds.

Models of such type have many advantages over the mean reverting or
even over the Lee—Carter model. First, they are intuitive because they are
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all natural generalizations of the Gompertz law. Next, they have a trans-
parent structure and are easy to simulate and test. They also have only two
parameters (plus the starting value p,) and these parameters are constant
over time, which makes them easy to calibrate and finally, apply.
Note that p; as defined in (1) does not need to have the affine structure.
If 8 = 0 then the dynamics of the process is given by

(2) dpy = apdt + odB,  t € [to, T).

If the famous Vasicek interest rate model dr = o/ (b —r)dt + od B did not
require a’ and b to be strictly positive, equation (2) could have been viewed
as a special case of the Vasi¢ek model. Our model is no more mean reverting.

The drawback of the process (2) is that it can be negative. This is un-
desirable for the interest rates, and unacceptable for the mortality intensity.
We can overcome this problem by defining u; = max(e, y¢) for some small,
positive €.

The second model that we propose for modeling continuous-time mortal-
ity intensity is given by the following SDE:

(3) dpe = apdt + o\/pe dB,  t € [to, T).

If p; follows (3), it is positive for any ¢ with probability one. This model
could be viewed as a special case of the Cox—Ingersoll-Ross model, although
formally the definition of CIR requires its coefficients to be strictly positive.
Because here by = 0 and a; < 0, this model is no more mean reverting.
Surprisingly, we will see that this model fits the empirical data well and
there exist explicit formulas for some important functionals of u; in this
model.

The last proposal (for = 1) is to use the geometric Brownian motion as
the stochastic replacement for the Gompertz assumption. Let the behavior
of py be described by the following SDE:

(4) dpy = apgdt + opdBy, € [to, T).

Of course In(;) has the normal distribution with mean a — ¢2/2 and vari-
ance o2. Hence i is positive for any ¢. This model is well known as the
model for stock dynamics. In the interest rate literature (see e.g. [2, Ch.
3.2]) it is known as the Dothan model but is not extensively used due to
obvious limitations—in this model, the interest rates converge to infinity,
which is undesirable. However, such behavior is reasonable in the case of
mortality intensity.

Note that the mortality intensity modeling—unlike the usual interest rate
modeling—takes place under the physical measure here.

2.2.2. Multi-dimensional models. The models (2), (3) and (4) are one-
dimensional—they describe the mortality intensity of a single cohort only.
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Albeit the one-dimensional models seem to be reasonable for each single
cohort, one expects that there must be some dependence between the mor-
talities of people of different ages. For example during a war or a pandemic,
the mortality of the whole population increases. The dependence between
mortalities in people of like ages would be especially strong. The increase
of mortality in people aged say, 82 would—intuitively—be accompanied by
an increase in the mortality of those 83 years old, but not necessarily the
infants.

To incorporate this common sense rule, the k-dimensional vector of Brow-
nian motions must be used as the source of randomness in the models. This
leads to vector-valued equations analogous to (2)—(4) but where the variables
e, ¢ and py, are replaced with their k-dimensional versions. Then the multi-
plications between these variables are understood as multiplications for each
component separately. The volatility parameter o is replaced with a k x k
matrix o. The covariance matrix is X = oo .

In this setup, we can not only describe the behavior of an individual
cohort but also incorporate the dependences between the mortality of people
in different ages. Such effects can now be well modeled by the covariance
matrix Y. The values X;; are expected to decrease with |i — j| but to always
stay non-negative.

2.3. Probability of survival. Assuming we have a correct model for py,
we still need to be able to calculate some functionals of this process to apply
the model. A functional that can be especially useful is the probability of
survival.

2.3.1. Survival of a single cohort. Let {Fi} ey, 1) be a filtration over the
probability space (£2,F, P). Let u; be measurable w.r.t. F;. The stochastic
process

(5) p(t.T) = E(e™ % #+ | F,)

denotes the conditional probability that a person born in year y and aged

t will survive until the age of T'. From Ito’s lemma it follows that p(¢,T") is
the solution of the PDE:

0 0 H? §?

(6)  GptT)+G gt T) + 5 55p(tT) = up(t T) =0,

with the condition p(T,T") = 1 (see for instance |8, Ch. VIIL.5]). Here G and
H are the appropriate coefficients in the Ito equations (2), (3) and (4). For
instance G = au; and H = ¢ if § = 0. It is useful to give a simplest formula
possible for (5) and this is done in the following

THEOREM 2.1. Let the force of mortality be defined by (2), (3) or (4).
Then the probability of survival is as follows:
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(i) if 8 =0 then
p(t,T) = 61‘4(t7T)Jr]\7(t7T)ut7
where

N(t,T) = ~(1 -1,

QI'—‘

2

Q

M(t,T) = (2a(T t) — 46T 4 ¢2a(T=t) 4 3)

,.[;
OJ

(ii) o B =0.5 then
p(t,T) = Nt

where

2(€td_er)
N, T) = d = a2 + 202
(t7) (d+ a)etd + (d — a)eTd’ o=+ 2o,

(i) of B =1 then

p(t,T) = :;—]; S sin(2+/r sinh y) S f(2)sin(yz) dz dy
0 0

2 D
F(Qp)r Ka0(2v/7),

where Ky() is the modified Bessel function of the second kind of
order q and

_242 2 T —¢ 2
f(z) = zexp o tp” + o) ) r ig—p coshH
8 2 2’
_2Ht _].
r=—3, pP=5-a

Proof. The proof is similar to the corresponding proofs for the Vasi¢ek

and CIR models.

(i) Assume the affine structure p(t, T) = eMETHNEDIRE swhere M (T, T)
= N(T,T) = 0. Making use of (6) and separating the terms that depend on
w1 and those that do not, we get

O N@T) +aN (@t T) = 1,

ot

0 o?

—Mt,T)+ —N(t,T)* =
T (t.T) + - Nt T)" =0,

so that N(t,T) = 1(1 —¢® o(T=1)) and finally

02

M(t.T) =~ | Nt 1)?dt+C
B 0'2(T _ t) B 0.2(46(1(T7t) _ e2a(T7t) _ 3)

2a2 4a3
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(ii) Again assume the affine structure as in (i). Making use of (6) yields
this time

0 o? 9
0
5 M(t.T) =0.

From the second equation and the boundary condition it follows that M (¢,T")
= 0. In the first equation the transformation

2N ()’
N(t,T) = ~( )
02N (t)
leads to the second-order linear equation
N"(t) +aN'(t) — 5 N(t) = 0.

Because a®+202 > 0, we can introduce an auxiliary variable d = Va2 + 2072,
Now the general solution for N(¢,T') is

]\Nf(t) = Dyetld=a)/2 4 Dge_t(d+a)/2,
for constants D; and Ds do not depending on ¢. Hence

Dy(d — a)et(d*“)m — Dy(d+ a)eft(d+a)/2
02Dy el(d=a)/2 4 52 Dye—t(d+a)/2

N(t,T) =

d—a Td

dra€ S0 that we have

Applying the boundary condition yields Dy = Dy
the explicit formula.

(iii) The formal proof will be omitted, since the same formula can be
found in [2, Ch. 3] for the interest rates. The geometric Brownian motion as
a model for interest rates was originally introduced in [7]. w

Some practical applications of this theorem can be found in Section 4.
One coule also be interested in the conditional variance of the random
variable e~ )¢ #sds_ Since

Var(e™Vt #ads| F) = B(e=V 245 | 7)) — (B(e % P=d5 | F))2,

only the expression E(e*StT 2usds | 7,) is of interest in this case. But based
on Ito’s lemma we can say that if y; is defined by (1), then 2y, is given by

d(2u) = (2apedt + 0 + 0P 0?)dt + 2uf 0d B
= 2apdt + 20 5dB,  t € [to, T).

So to give an explicit formula for E(e*StT 2usds | 7)) it suffices to reapply
Theorem 2.1 for p; with modified parameters G and H.
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2.3.2. Survival probability for many cohorts. Let y = (Yo, Y1+, Yk—1)
and m = (mg, m1, ..., mg_1) be vector values. Then another point of interest
is the formula for the expectation of the linear combination:

() PT) = B el )
= E(moe_ Sz ;AEO ds I mk_le_ Sf N?S/k—l ds | ]:t)

If the insurer has a portfolio of Zf:_ol m,; pure endowment policies, where
m; policy holders were born in year y;, formula (7) will provide the expected
number of claims from this portfolio at time 7'. This problem can be solved
using the results from Theorem 2.1 for every cohort independently.

A more interesting case is if we are interested in the variance of

T
m - e St Hsds We have

k—1k—1
(8)  Var(m-e Vi mads| £,y = mim; Cov(e™ W 1 ds o=l ds | )
i=0 j=0
k—1k—1 R
— mimj(E(e_St pditps’ ds | )
i=0 j=0

_ E(G*StT pdt ds ’ft)E(G*StT ps? ds | F)).
T, Yiy Vi
The only part of (8) that is problematic is E(e~ ' (#s'+4#s")ds | 7)) Since
1Y + 1Y’ is not an Ito process any more (unless the covariance matrix is
trivial), we cannot apply Theorem 2.1 to calculate this expectation. Hence,
in the remainder of this paper the variance of a portfolio will be determined

using Monte Carlo methods.

3. Statistical analysis of demographic data. We examined the life
tables published by The Human Mortality Database (see [10]) for the coun-
tries providing consistent datasets and sufficient long history, i.e. Austria,
Belgium, Bulgaria, Canada, Czech Republic, Denmark, England & Wales,
Finland, France, Hungary, Italy, Japan, Latvia, Lithuania, Netherlands, Nor-
way, Spain, Sweden, Switzerland and the USA.

3.1. Preliminaries. Using these life tables, the mortality intensity was
recomputed from the ¢,’s based on the assumption of the constant mortal-
ity intensity in fractional ages. All the data were subject to the following
preliminary steps:

1. All the data concerning youth (24 or younger) were removed.

2. All the data concerning the elderly (76 or older) were removed due
to instabilities caused by the small size of the cohort (I;) and the
possibility of effects described in [13].

3. Only cohorts currently aged 25-75 were considered (most recent data).
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4. Only the most recent 15 or 40 observations for each cohort (year of
birth) were of concern.

5. If sufficiently long data were not available for a cohort, the cohort was
omitted.

Finally, two datasets were obtained. The first one contains the mortality
intensity of people currently aged 39-75 (37 cohorts) in 15 subsequent cal-
endar years. Hence it is a 15 x 37 matrix for each country. Each row is one
observation and each column is one cohort. We have labeled this the “short
history data” set.

The other dataset (the “long history data”) consists of 12 cohorts observed
in 40 subsequent calendar years. It concerns people currently aged 64-75. It
is a 40 x 12 matrix for each country.

3.2. Extracting the white noise. We will test if the refined data fits the
discretized SDE of the three models proposed in Section 2.2. Note that the
equations (9) and (11) are only Euler-type approximations of (2) and (3).
This is due to the fact that we assume the transition probabilities to be
normally distributed, which is not exactly true. However, (9) and (11) can
be used as good approximations of the corresponding continuous models.

For B = 0 the discretized version of (2), i.e.

9) pit1 — pi = apt; + o (Biy1 — By)
leads to the following:
(10) T = fit1 — fi — afhi.

For each 7, z; should be normally distributed with mean zero and variance
diag(X). We can now test if (x;) for i = tg,to+1,...,T form a (multivariate)
Gaussian white noise. To do this, we have to first estimate the parameter a
by matching the first moment of z;. Now, F(z;) = E(pi+1 — i — ap;) =0
yields the following straightforward estimator:

T-1
i (B — i)
- T-1 ’
Zi:to i
Having a estimated, we further compute (z;) and perform white-noise tests.

For 3 = 0.5 we use a similar procedure. Hence we test if the discretized
version of (3), i.e.

(11) piv1 — pi = api + o\/pi(Biy1 — Bi),
fits the demographic data. In this model
(12) z; = Hit1 — g — Qlly

Vi

should be normally distributed with mean zero and variance diag(X). We
estimate the parameter a by matching the first moment of x; analogous
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to the previous example. Now, E(z;) = E(’Ml;\/’;_'_%) = 0 leads to the

following estimator:

T-1 1 [ T-1 [
i+1 — i i
a= / .
izt;) vV i Zzt;) \ i
We further compute (z;) and perform white-noise tests.

If 8 =1, the discretized version of (4) are tested against the demographic
data. The logarithm of the sequence (u;) is taken and differentiated. This
way we get another sequence

(13) r; = log puiy1 — log p1;
that should form a Gaussian white noise. We will test if this is indeed the
case.

3.3. Hypothesis testing for one-dimensional models. We will perform
one-dimensional analysis of (x;) defined in (10), (12) and (13). For each
country and for each cohort the null hypothesis is that the sequence (z;) is
a one-dimensional Gaussian white noise.

To test normality, we use the one-dimensional Shapiro—Wilk test. To test
the independence of each sample, a Box—Ljung small sample test is performed
for the auto covariance function with lag 1 (see [14]). Especially for the data
of length 15, the results of the Box—Ljung test can be used for orientation
purposes only because this is an asymptotic test and it is recommended for
large samples only. Therefore, an additional turning point test was done for
each cohort.

Assuming that the null hypothesis is true for each cohort and that the test
for each cohort is an independent experiment, the number of passing cohorts
for each test should follow the binomial model with a 95% probability of
success and 5% probability of failure (probability of a type I error). The
number of trials equals the number of cohorts examined in each country.
For example if there were 12 cohorts examined, the number of rejected tests
should not exceed 2 (with a 5% significance level). If there were 37, the
number of rejected tests should not exceed 4.

For the short history data and § = 0 at least one test was not rejected
for a reasonably large set of countries. However, only Lithuania passed both
independence and normality tests. The number of countries where the tests
were not rejected may seem small, but note that our hypothesis is that all 37
cohorts follow the model. In the rejected countries, only some of the cohorts
do not.

We can see that the model for 8 = 0.5 can be applied to the short history
data of Hungary, Latvia and Lithuania. This is a reasonably large set and it
makes this model the best of all three considered.
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We can see that the geometric Brownian model (8 = 1) can be applied
to the Hungarian and Lithuanian short history data. This model is also
applicable for not all, but for most cohorts in the short history data for each
country.

For the long history data the model with § = 0 or § = 1 cannot be
applied to any country as a model for all generations. However, it still fits a
fair fraction of generations in all these countries.

The model with 8 = 0.5 can be fitted to all the cohorts in two countries,
Hungary and Latvia. In addition it still fits half the generations in all other
countries as well.

The results may seem disappointing at first, but it is important to re-
member that we were testing the hypothesis that all 37 or all 12 cohorts
examined follow the three models. It is possible that in some countries one
or two cohorts behave in a different way. This will cause that the hypothesis
is rejected but it does not mean that the models cannot be used for some or
even most of the cohorts in those countries.

3.4. Hypothesis testing for multi-dimensional models. After a one-dimen-
sional introduction, it is time to test the proper multi-dimensional model. We
want to check if the vector sequence (z;) defined for our three models forms
a multivariate Gaussian white noise. Most multivariate tests are designed
for samples of large sizes and low dimensions. In our case dimension is the
number of cohorts in each country examined. Therefore, we will restrict our
37-dimensional and 12-dimensional data to three dimensions only. We will
examine the cohorts that are currently 70, 71 and 72 years old. We will
restrict ourselves to the long history data because the multivariate tests for
the short data (of length 15) would not make much sense.

Ifz; = (xll, x?, ... ,:cf), the matrix auto covariance function of the series

(x;) is defined by I'(h) = (7i;), where

%ij (h) = E((x} — E(a}))(x]_,, = E(x]_;)))-

Two things have to be tested to decide if (z;) forms a white noise: inde-
pendence and normality. We will test the multivariate normality using the
multivariate Shapiro-Wilk test (see e.g. [6], [19]). For independence we will
test the null hypothesis that the auto covariance function I'(h) is zero for
h =1,...,[n/4], where n is the size of the sample. To do so, the portman-
teau x? cross-correlation test is calculated (see [14, Ch. 4.4]). Because of
little power of this test for small samples, [14] suggests an adjustment for
short data. So, additionally, the small-sample x? test is also calculated and
its p-values are summarized.

The Shapiro-Wilk test and the small-sample portmanteau x? test show
that the 8 = 0 model seems to fit Japan only. The 8 = 0.5 model, however,
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does a better job and can be applied to Belgium, Bulgaria, Czech Repub-
lic, Italy, Japan and Switzerland. If § = 1, the model fits Austria and the
Netherlands.

The p-values of the portmanteau test suggest that in some cases the
residuals do not form a white noise but do form some self-dependent se-
quence, maybe an autoregressive time series. However, the results prove
that all three models are worth considering. In general, for almost 50% of

the countries examined, at least one of the multivariate models considered
fits.

3.5. Correlation between cohorts in multi-dimensional models. We will
continue with only those countries where a model was successfully fitted.
We will try to determine if a simple form of the correlation matrix between
the increments of the Brownian motions driving two cohorts ¢ and j can
be assumed. As already discussed, we would expect this matrix to have
non-negative values only. We also expect that values closest to the matrix’s
diagonal are higher. In our three-dimensional case we will test a simple hy-
pothesis:

1 for |i — j| =0,
(14) Cor(z},z]) =4 0.3 for|i—j|=1,
0 for i — j| = 2.

Asterisks in Table 1 denote those countries where all three hypotheses
from (14) hold. We can see that e.g. for § = 0.5, the hypotheses were accepted
for all the countries except Italy and Japan.

This result, together with the ones described in previous subsections, pro-
vides a simple and transparent framework for modeling stochastic mortality.

Randomness of cohorts is based on a multivariate Gaussian distribution and
there is also a simple form of the correlation matrix between the cohorts.

Table 1. Three-dimensional model: correlation tests

B=0 B8=05 p=1

Austria * * *
Belgium *

Bulgaria * *

Czech Rep. * *

Ttaly

Japan

Netherlands *

Switzerland
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4. Applications. In this section we will provide numerical examples of
how the systematic mortality risk models can be applied in practice.

4.1. FEvaluating Theorem 2.1. First, we review the explicit formula for
p(t,T) given by (2). We numerically evaluate the formula based on parame-
ters estimated from the 40-year-long Austrian data, the same as used in Sec-
tion 3. The cohort of the 70-year-olds is used. Using the estimation method
given in the previous section for 8 = 0, we come up with ¢ = 0.06637 and
o = 0.00056.

By Theorem 2.1, we use the formula p(t, T) = eMETHNETe where

2
N(T) = (=" T0), M1, T) = T (2a(T—1) ~4e"T 4200 43)
a a

for T' € [t,t + 5]. Calculation based on these simple equations is compared
with the numbers obtained from 40 thousand Monte Carlo simulations. This
is summarized in Figure 1.

©
2
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Probability of survival from Monte Carlo simulation

Fig. 1. The top diagram shows the exact probability of survival (the light line in the middle
of the chart) and 10 possible realizations of the stochastic process (black surrounding
points). The bottom diagram shows the exact probability of survival obtained from the
analytical formula vs. the probability based on 40 thousand Monte Carlo simulations
(black dots). The identity line is also included in the graph.

Both graphs show that the formula given by the theorem is confirmed
by the Monte Carlo simulations. The first graph shows the exact probability
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of survival and 10 possible realizations of the stochastic process oS0 ts ds_
The other plot shows the expected value of this process obtained from the
simulations vs. the expected value obtained from the analytical formula. The
sixty points (denoting the probabilities for different T') lay exactly on the
line y = z, as expected. The simplicity of the formula given by Theorem 2.1
is obvious and it makes the explicit formula advantageous over the time-
consuming process of multiple Monte Carlo simulations.

4.2. Pure endowment portfolio. Consider an insurer that at time 0 sold
3n pure endowment contracts to people of age 70, 71 and 72. Assume that the
contracts were equally distributed among the ages, i.e. each of the three age
groups consists of n people. Using the notation from the previous subsection,
m = (n,n,n). In addition, each contract is supposed to pay 1/n if the
policyholder is still alive at time T'. We also assume that n is large, so that
only the systematic risk is an issue for the insurer.

The actuary responsible for the pure endowment product will typically
be interested in estimating the value p¥™(0,T') as defined in (7). Most prob-
ably, he will also be interested in the 95% confidence interval for the value
E(m - e~ rsds | Fy).

We will model the mortality of this insurer’s clients using the model
defined by (11), so here 3 = 0.5. The parameter a and variances for individual
cohorts will be estimated from the Austrian data, used in Section 3. The 40-
year-long dataset will be used for the estimation. We examine two separate
scenarios and then compare the results. First, we assume that the three
cohorts in question are described by three independent stochastic processes.
In the second scenario, we assume that the correlation matrix is not an
identity matrix.

Figure 2 presents the results of the analysis where the quantile lines were
calculated with the Monte Carlo methods based on 40 thousand simulations
with variance reduction techniques. Of course the value of p(0,T") for T'= 0
is three and it falls with time. What is essential is that for T' = 3 the expected
value of claims is 2.11 and the 95% confidence interval is (2.05,2.17) so the
level of uncertainty is remarkable. A conservative actuary would typically
want to set an additional reserve to cover the risk introduced by the relatively
wide confidence intervals.

The 95% confidence interval gets even wider if the mortalities of the
cohorts are related. If we assume the correlation matrix to have the form

1 2/3 1/3
(15) 2/3 1 2/3 |,
1/3 2/3 1

the interval becomes (2.03,2.20) so it is over 40% wider than in the uncor-
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Fig. 2. The solid line is p(0,T) for T € [0,10]. The dashed lines are the 95% confidence
intervals if the cohorts are independent, and the dependent case is marked with dotted
lines

related case. Of course, the higher the correlation of mortalities between the
cohorts, the larger the amount of the systematic mortality risk the company
faces. If the cohorts are strongly correlated, the insurer cannot diversify sys-
tematic risk by selling insurance to people of different ages. Since there are
good reasons to believe that the cohorts’ mortalities are in fact correlated
(see Section 3.5), we conclude that the systematic risk embedded in the pure
endowment insurance may be significant.

4.3. Mortality options. In the stochastic mortality environment, both
mortality increase and decrease can be dangerous for a company that has an
unbalanced, large portfolio of life insurances. In the first situation (mortality
increases) the portfolio of life insurances with the benefit payable at the
time of death will cause unexpected losses. In the second, the portfolio of
pure endowments will cause high losses. The problem with this “systematic”
mortality risk is that it cannot be handled in the usual way—Dby increasing
the number of policies sold.

If 7_;p+ denotes a stochastic process

T
Togpy = e Y Hudu

then the (actuarial) price of the underlying r_¢p; at time s € [¢,T] based on
the equivalence rule under the physical probability measure P is

(16) S(S) = e_T(T_S)EP(Tftpt ’]:s) = e_T(T_S)sftptEP(Tfsps |‘7:s)
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Fig. 3. Sample trajectories of the underlying mortality instrument S(s) and the mortality
call option C(s) for T'= 61 and b = 0.03

The easiest way to protect against the systematic mortality risk is to
buy an European call option that pays (S(T) — K)* at time 7. Figure 3
shows sample trajectories of both the underlying asset and the corresponding
trajectory of the option. In addition both diagrams show the 0.05 and 0.95
quantile lines. The interest rate r was set to zero.

In this example we will use a modification of the model defined in (4). Let
Y; be the geometric Brownian motion. Define a martingale Y; with expected
value one,

Yy Y;f —ta
(17) V= g = Ve
and set puy = (A+ BeCt)?t. It is easy to check that u; satisfies the following
Ito stochastic differential equation:

BCet¢ A + Bet® A + Bet®
dﬂt = <Mt<m —a) +a7>dt+deBt~

Now, since the discounted price of the underlying asset S(s) is an Ito process
and an Fs-martingale, there is no arbitrage on the market and there exists
a unique replication strategy for the derivatives. So the fair market price of
the options exists and the price of the call option is

C(s) = e "T=9ELS(T) - K)t = e " T EP(S(T) — K)™.

To price the mortality call option, we will concentrate on the probability
distribution of (7_;p; — K)* or simply the probability distribution of 7_;p;:

g)
:P(e_f“"d"< ° ]:s>
s—tPt

P(Tftpt <z | fs) = P(Tsps <
s—tPt
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%)

e st
Yu_suue_(“_s)a du > —In
Y, T

Yopue ““du > —In

:p<
g

s—tDt

)

B N 0 e N

e Pt
—P(A(s,T) > S1 L),
< (s,T) > Y. n . .7:)
where
T—s
(18) A(s,T) = S Y. e "yt s du
0

and Y, is an independent copy of Y;,. The problem is that such an integral
usually has an unknown distribution (in particular it is not log-normally
distributed). The methods used in this subsection to bypass this problem
are similar to the methods used in the average Asian or weighted average
Asian option pricing. A comprehensive study of Asian options and the ways
to price them can be found, for example, in [16], [9].

The Levy approzimation was proposed in [12]. It was originally designed
for pricing Asian average options. Here we will use a modification of this
method that can be applied both to the weighted average options and to our
purposes.

The fundamental idea is to approximate the distribution of A(s,T") given
in (18) with the log-normal distribution. Hence we assume that In A(s,T') is
normally distributed with mean «(s,T) and variance 3(s,T)? and then use
these parameters in Proposition 4.2. This approximation was proved to be
accurate at least for the standard average options. Comparing the first two
moments of the log-normal distribution with the first two moments of the
real distribution of A(s,T'), we obtain

n 5, T)?
a(s,T) =2l E(A(s,T)) — %,

B(s,T)?> =In E(A(s,T)%) — 2In E(A(s, T)).
It remains to give the formulas for E(A(s,T)) and E(A(s,T)?) and this
is done in the following
LEMMA 4.1. For A(s,T) defined in (18),
T—s
E(A(SvT)) = S Hu+s du7
0
T—sT—s )
E(A(s,T)?) = S S Latsfhots€ Y do du.
0 0
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Proof. Recall that
T—s
A(s,T) = S Hytse Y, du.
0

The equality for the first moment is apparent. As for the second moment of
A(s,T), if n < m, we have

E(YoYn) = E(V2)E(Yn/Yn) = E(Y2)E(Yy_p) = e2netnt e(m=n)a

n

_ _(n+m)a+tnb?
=e ,

otherwise
E(Y,Yy,) = elntmatm?,

So
T—sT—s
E(A(s,T)?) = S S Lt sivsse” T E(Y,Y,) do du
0 0
T—sT—u
= | fiu s sfipy se” (TR gy, gy
0 0
T—sT—s
+ S S HutsHots€
0 0
T—sT—s
= S S ,uu+suy+se(“/\”)b2 dvdu. m
0 0

(u+v)ae(u+v)a+vb2 dv du

Now, we can formulate

PROPOSITION 4.2. Assume that A(s,T) is log-normally distributed. Then
the price at time s of a mortality call option issued at t and maturing at T
with strike price K can be expressed by

e TIEY (roipf — K)T | F)

P (€2 s=tPE) (s
_ e—T(T—S) S (Ys U ) ( ) du ZfK < sftp*
B(s) "
K
0 otherwise.

Proof. If _1p; < K then the assertion is obvious. For K < s_;p; we have
E((r-w} — K)* | Fs) = EP ((s-e0} 7515 — K)* | Fy)

o0
_ S p<e—sfu:;dv >
K

" .7:5>du

s—tPt
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< F. >du
s= tpt eas *
= <A —In s—tPt ’ fs> du

s— tpt u

s5— tpt

Hﬂu d’U

5 u

In A(s, T) <ln<Y In = tpt)‘f)

i In(%~ In S‘;pt ) — a(s)
S @( = (s) )du. [
K

Note that the price of the mortality call option is always less than one.

The accuracy of this approximation was checked against the result ob-
tained with the Monte Carlo method for different volatility parameters b.
The parameters were estimated from the Polish mortality table for men for
the year 2003 (see [3]), where A = —2.4366 - 107°, B = 7.5436 - 10~° and
C = 0.0794. Here a = 0. We price the options at issue time, i.e. t = s, and
they mature at 7' = 61. For ¢t = s the strike price is K(t) = E(7—_¢p:) and
Y; = 1. The interest rate r is zero. The exact values and the ratio %
are summarized in Table 2. Figure 4 shows the price surfaces and the com-
parison between the exact Monte Carlo price and the approximate one.

s— tpt

Q

Table 2. Exactness of the Levy-like approximation. m: Monte Carlo results, 1: Levy-like
approximation, r: ratio = [/m

t =26 t =36 t =46 t = 56
1 m r 1 m r 1 m r 1 m r
b=0.1 0.016 0.017 0.983 0.012 0.012 0.965 0.007 0.007 0.922 0.001 0.002 0.704
b=0.4 0.043 0.037 1.144 0.039 0.035 1.114 0.025 0.025 1.026 0.005 0.007 0.730
b=0.7 0.027 0.021 1.325 0.035 0.027 1.319 0.034 0.028 1.214 0.009 0.011 0.803

b=1.1 0.010 0.007 1.393 0.018 0.012 1.433 0.027 0.019 1.398 0.013 0.140 0.932

As can be expected, the option price falls with ¢t and grows with b, at least
for small b. Such properties are known from the traditional options on the
financial market, priced with the Black—Scholes formula. The option price
falls again for b > 0.5, which may be surprising. This is because for large b the
price of a single underlying instrument falls and hence so does the derivative’s
price. The approximation seems to be sufficiently exact in the critical regions
where the option price reaches its maximum. The approximation does not
fit well for very large volatility (overestimates) and for very short time to
expiration (underestimates). However, in the latter case, the exact price of
the option is close to zero so the systematic risk can anyway be neglected.
Moreover, even in those cases the Levy-like approximation can be used as a
first order approximation for the mortality call option price.
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Fig. 4. Price of the mortality call option for different volatilities and issue times. Exact
(Monte Carlo) results, Levy-like approximations and their comparison

5. Conclusion. We have proposed a few stochastic mortality models
and proved them to fit the historical data relatively well. We have also
shown how widely these models can be applied in life insurance. Mortality
derivatives are good examples: they can help fully protect against systematic
mortality risk. This way insurers can price their product not worrying about
the future mortality parameters and do business on the basis of determin-
istic mortality models. Other applications include more reliable mortality
projections and confidence intervals for future payments from a portfolio of
risk in life insurance.
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