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Abstra
t. This paper is an attempt to present and analyse sto
hasti
mortality models. We propose a 
ouple of 
ontinuous-time sto
hasti
 modelsthat are natural generalizations of the Gompertz law in the sense that theyredu
e to the Gompertz fun
tion when the volatility parameter is zero. Weprovide a statisti
al analysis of the available demographi
 data to show thatthe models �t histori
al data well. Finally, we give some pra
ti
al examplesfor the multidimensional models.1. Introdu
tion. In the life insuran
e industry the problem of unpre-di
table mortality intensity is of importan
e. It is possible that in the futurethe mortality parameters of the so
iety will be far from those assumed in thea
tuarial plan of an insuran
e produ
t. This 
an happen even if the assump-tions were very 
onservative. For example, a new virus or an environmentalthreat may emerge that will in
rease the mortality of the whole population.On the other hand, a new medi
ine may be invented and the mortality inten-sity will de
rease. Su
h 
hanges may a�e
t the population as a whole or onlysele
ted age groups. Thus, a deeper 
onsideration of the future mortalitystru
ture is a must. This problem is 
ru
ial for both reserving and pri
ing.The aim of this paper is to address this issue. Statisti
al analysis of theavailable demographi
 data is provided. We also propose 
ontinuous-timesto
hasti
 models that are natural generalizations of the Gompertz law inthe sense that they redu
e to the Gompertz fun
tion when the volatilityparameter is zero. These models have some interesting features. For example,they have a few parameters only, these parameters are not fun
tions of time,and at least one of these models 
an also be e�
iently used for mortality2000 Mathemati
s Subje
t Classi�
ation: 62P05, 60H30.Key words and phrases: sto
hasti
 mortality, systemati
 mortality risk, mortality op-tion.Part of this work was done during the author's stay at Nationwide Insuran
e, USA.[53℄ 
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54 J. Iwanikoption-pri
ing. Statisti
al multivariate tests for all three models are providedthat allow us to de
ide whi
h one �ts the empiri
al data best. Finally, wegive some pra
ti
al examples for our multidimensional model.The paper is organized as follows. An introdu
tion of existing and newmodels is provided in Se
tion 2. Se
tion 3 
ontains a reality-
he
k�the mod-els are tested against the demographi
 data. Finally, some appli
ations 
anbe found in Se
tion 4.2. Mortality models. Let us 
onsider a homogeneous 
ohort of peopleborn in year y. The standard a
tuarial notation T−tp
y
t is the probability thata (t− y)-year-old member of this 
ohort survives until T . If µy

t is the hazardrate of a single life, we have
T−tp

y
t = e−

TT
t

µy
s ds.2.1. Existing models. If the environment and living 
onditions do not
hange over time, we 
an assume that the 
ohort's mortality intensity is afun
tion of time only. In 
lassi
al a
tuarial theory and pra
ti
e, µy

t is oftenexpressed by the so 
alled Gompertz assumption (see any a
tuarial textbook,e.g. [1℄) as a fun
tion of t:
µy

t ≈ A + BeCtwhere A, B and C are 
onstants. This model provides a surprisingly a

urateapproximation in many 
ases, it is 
ommonly a

epted and has been exten-sively used by pra
titioners for over a 
entury. Despite its obvious simpli
ityand usefulness, this method has a serious drawba
k�it is deterministi
 andthus it 
annot a

ommodate future randomness. Hen
e the need for a non-deterministi
 model emerges and there are a few approa
hes toward su
hmodels in the existing literature.Predi
tions of the survival probability px, mortality intensity µx (also
alled: for
e of mortality, mortality rate, hazard rate) as well as the 
entralmortality rate mx are possible. Among others, the Lee�Carter model pre-sented in [11℄ and further developed by many authors (e.g. [17℄, [18℄) andthe CMI re
ommendations [4℄ are broadly applied. The Lee�Carter methodprovides not only mortality predi
tions but also 
on�den
e bounds. The fa
tthat it provides some insight into the random nature of future mortality isof 
ourse a useful and desirable feature.Sin
e the Lee�Carter method is based on time series analysis, it onlyprovides a dis
rete analysis of the problem. Continuous-time sto
hasti
 mor-tality models are presented in [15℄ and [5℄. The models there were sele
tedmainly to enable mortality-derivative pri
ing, whi
h is the main obje
tive ofthose papers. In parti
ular the extended Cox�Ingersoll�Ross (CIR) model isused by Dahl in [5℄. The CIR model is important for the sto
hasti
 modeling
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 mortality 55of interest rates. In this model the mortality intensity pro
ess is des
ribedby the following SDE:
dµy

t = at(bt − µy
t )dt + ct

√
µy

t dB,where the parameters at, bt and ct are fun
tions of time. In this setup µy
tis a mean reverting pro
ess with mean bt. Mean reversion is one of Dahl'simportant motivations for using this model for mortality intensity. Also [15℄uses a mean reverting pro
ess to model the mortality intensity. Both paperssuggest that mean reversion is desired or even required for the mortalitymodel. It is 
ertainly important for interest rate models, whi
h John Hullexplains in [9℄ this way: There are 
ompelling e
onomi
s arguments in favorof mean reversion. When rates are high, the e
onomy tends to slow downand there is less requirement for funds on the part of borrowers. As a result,rates de
line. When rates are low, there tends to be a high demand for fundson the part of borrowers. As a result rates tend to rise. This motivation doesnot seem to hold for the mortality intensity, though.Another argument against mean reversion is that usually it is di�
ultto estimate the mean from the data. In a pra
ti
al appli
ation one wouldprobably have to assume a priori a parti
ular form of the mean fun
tion.One possibility is the 
elebrated Gompertz law.Sin
e there is no eviden
e that the demographi
 data are mean reverting,we want to show that there exist a few sto
hasti
 pro
esses that are not meanreverting but �t the data well, have ni
e analyti
al properties and have asimple stru
ture.In the remainder of this se
tion, we will be omitting the supers
ripts in

µy
t and py

t if this does not lead to 
onfusion.2.2. New models. Be
ause there 
an be some reservations to the ideaof mean reverting mortality models, we propose to use a di�erent group ofmodels. These models are de�ned and des
ribed in this subse
tion.2.2.1. One-dimensional models. We suggest using the following di�usionpro
esses for modeling mortality intensity:(1) dµt = aµtdt + µβ
t σdB, t ∈ [t0, T ],for β = 0, β = 0.5 and β = 1. Here µt0 > 0 is the starting value of thepro
ess µt, a > 0 and σ are 
onstants, and Bt is the Brownian motion. Wealso de�ne G = aµt and H = µβ

t σ. Unique solutions exist for β = 0 and
β = 1 be
ause the Lips
hitz 
ondition holds in these 
ases. For β = 0.5 we
an apply a spe
ial 
ase of the Yamada�Watanabe theorem and see that aweakened Lips
hitz 
ondition holds.Models of su
h type have many advantages over the mean reverting oreven over the Lee�Carter model. First, they are intuitive be
ause they are



56 J. Iwanikall natural generalizations of the Gompertz law. Next, they have a trans-parent stru
ture and are easy to simulate and test. They also have only twoparameters (plus the starting value µt0) and these parameters are 
onstantover time, whi
h makes them easy to 
alibrate and �nally, apply.Note that µt as de�ned in (1) does not need to have the a�ne stru
ture.If β = 0 then the dynami
s of the pro
ess is given by(2) dµt = aµtdt + σdB, t ∈ [t0, T ].If the famous Va²i£ek interest rate model dr = a′(b− r)dt+ σdB did notrequire a′ and b to be stri
tly positive, equation (2) 
ould have been viewedas a spe
ial 
ase of the Va²i£ek model. Our model is no more mean reverting.The drawba
k of the pro
ess (2) is that it 
an be negative. This is un-desirable for the interest rates, and una

eptable for the mortality intensity.We 
an over
ome this problem by de�ning µ∗
t = max(ε, µt) for some small,positive ε.The se
ond model that we propose for modeling 
ontinuous-time mortal-ity intensity is given by the following SDE:(3) dµt = aµtdt + σ

√
µt dB, t ∈ [t0, T ].If µt follows (3), it is positive for any t with probability one. This model
ould be viewed as a spe
ial 
ase of the Cox�Ingersoll�Ross model, althoughformally the de�nition of CIR requires its 
oe�
ients to be stri
tly positive.Be
ause here bt = 0 and at < 0, this model is no more mean reverting.Surprisingly, we will see that this model �ts the empiri
al data well andthere exist expli
it formulas for some important fun
tionals of µt in thismodel.The last proposal (for β = 1) is to use the geometri
 Brownian motion asthe sto
hasti
 repla
ement for the Gompertz assumption. Let the behaviorof µt be des
ribed by the following SDE:(4) dµt = aµtdt + σµtdBt, t ∈ [t0, T ].Of 
ourse ln(µt) has the normal distribution with mean a − σ2/2 and vari-an
e σ2. Hen
e µt is positive for any t. This model is well known as themodel for sto
k dynami
s. In the interest rate literature (see e.g. [2, Ch.3.2℄) it is known as the Dothan model but is not extensively used due toobvious limitations�in this model, the interest rates 
onverge to in�nity,whi
h is undesirable. However, su
h behavior is reasonable in the 
ase ofmortality intensity.Note that the mortality intensity modeling�unlike the usual interest ratemodeling�takes pla
e under the physi
al measure here.2.2.2. Multi-dimensional models. The models (2), (3) and (4) are one-dimensional�they des
ribe the mortality intensity of a single 
ohort only.
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 mortality 57Albeit the one-dimensional models seem to be reasonable for ea
h single
ohort, one expe
ts that there must be some dependen
e between the mor-talities of people of di�erent ages. For example during a war or a pandemi
,the mortality of the whole population in
reases. The dependen
e betweenmortalities in people of like ages would be espe
ially strong. The in
reaseof mortality in people aged say, 82 would�intuitively�be a

ompanied byan in
rease in the mortality of those 83 years old, but not ne
essarily theinfants.To in
orporate this 
ommon sense rule, the k-dimensional ve
tor of Brow-nian motions must be used as the sour
e of randomness in the models. Thisleads to ve
tor-valued equations analogous to (2)�(4) but where the variables
µt, a and µt0 are repla
ed with their k-dimensional versions. Then the multi-pli
ations between these variables are understood as multipli
ations for ea
h
omponent separately. The volatility parameter σ is repla
ed with a k × kmatrix σ. The 
ovarian
e matrix is Σ = σσT .In this setup, we 
an not only des
ribe the behavior of an individual
ohort but also in
orporate the dependen
es between the mortality of peoplein di�erent ages. Su
h e�e
ts 
an now be well modeled by the 
ovarian
ematrix Σ. The values Σij are expe
ted to de
rease with |i− j| but to alwaysstay non-negative.2.3. Probability of survival. Assuming we have a 
orre
t model for µt,we still need to be able to 
al
ulate some fun
tionals of this pro
ess to applythe model. A fun
tional that 
an be espe
ially useful is the probability ofsurvival.2.3.1. Survival of a single 
ohort. Let {Ft}t∈[t0,T ] be a �ltration over theprobability spa
e (Ω, F, P ). Let µt be measurable w.r.t. Ft. The sto
hasti
pro
ess(5) p(t, T ) = E(e−

TT
t

µs ds | Ft)denotes the 
onditional probability that a person born in year y and aged
t will survive until the age of T . From Ito's lemma it follows that p(t, T ) isthe solution of the PDE:(6) ∂

∂t
p(t, T ) + G

∂

∂µ
p(t, T ) +

H2

2

∂2

∂µ2
p(t, T ) − µp(t, T ) = 0,with the 
ondition p(T, T ) = 1 (see for instan
e [8, Ch. VIII.5℄). Here G and

H are the appropriate 
oe�
ients in the Ito equations (2), (3) and (4). Forinstan
e G = aµt and H = σ if β = 0. It is useful to give a simplest formulapossible for (5) and this is done in the followingTheorem 2.1. Let the for
e of mortality be de�ned by (2), (3) or (4).Then the probability of survival is as follows:



58 J. Iwanik(i) if β = 0 then
p(t, T ) = eM(t,T )+N(t,T )µt,where

N(t, T ) =
1

a
(1 − ea(T−t)),

M(t, T ) =
σ2

4a3
(2a(T − t) − 4ea(T−t) + e2a(T−t) + 3),(ii) if β = 0.5 then

p(t, T ) = eN(t,T )µt ,where
N(t, T ) =

2(etd − eTd)

(d + a)etd + (d − a)eTd
, d =

√
a2 + 2σ2,(iii) if β = 1 then

p(t, T ) =
rp

π2

∞\
0

sin(2
√

r sinh y)

∞\
0

f(z) sin(yz) dz dy

+
2

Γ (2p)
rpK20(2

√
r),where Kq( ) is the modi�ed Bessel fun
tion of the se
ond kind oforder q and

f(x) = x exp
−σ2(4p2 + x2)(T − t)

8

∣∣∣∣Γ
(

i
x

2
− p

)∣∣∣∣
2

cosh
πx

2
,

r =
2µt

σ2
, p =

1

2
− a.Proof. The proof is similar to the 
orresponding proofs for the Va²i£ekand CIR models.(i) Assume the a�ne stru
ture p(t, T ) = eM(t,T )+N(t,T )µt where M(T, T )

= N(T, T ) = 0. Making use of (6) and separating the terms that depend on
µ and those that do not, we get





∂

∂t
N(t, T ) + aN(t, T ) = 1,

∂

∂t
M(t, T ) +

σ2

2
N(t, T )2 = 0,so that N(t, T ) = 1

a(1 − ea(T−t)) and �nally
M(t, T ) = −σ2

2

\
N(t, T )2 dt + C

=
σ2(T − t)

2a2
− σ2(4ea(T−t) − e2a(T−t) − 3)

4a3
.



Models for sto
hasti
 mortality 59(ii) Again assume the a�ne stru
ture as in (i). Making use of (6) yieldsthis time 



∂

∂t
N(t, T ) + aN(t, T ) +

σ2

2
N(t, T )2 = 1,

∂

∂t
M(t, T ) = 0.From the se
ond equation and the boundary 
ondition it follows that M(t, T )

= 0. In the �rst equation the transformation
N(t, T ) =

2Ñ(t)′

σ2Ñ(t)leads to the se
ond-order linear equation
Ñ ′′(t) + aÑ ′(t) − σ2

2
Ñ(t) = 0.Be
ause a2+2σ2 > 0, we 
an introdu
e an auxiliary variable d =

√
a2 + 2σ2.Now the general solution for N(t, T ) is

Ñ(t) = D1e
t(d−a)/2 + D2e

−t(d+a)/2,for 
onstants D1 and D2 do not depending on t. Hen
e
N(t, T ) =

D1(d − a)et(d−a)/2 − D2(d + a)e−t(d+a)/2

σ2D1et(d−a)/2 + σ2D2e−t(d+a)/2
.Applying the boundary 
ondition yields D2 = D1

d−a
d+aeTd so that we havethe expli
it formula.(iii) The formal proof will be omitted, sin
e the same formula 
an befound in [2, Ch. 3℄ for the interest rates. The geometri
 Brownian motion asa model for interest rates was originally introdu
ed in [7℄.Some pra
ti
al appli
ations of this theorem 
an be found in Se
tion 4.One 
ould also be interested in the 
onditional varian
e of the randomvariable e−

TT
t

µs ds. Sin
e
Var(e−

TT
t

µs ds | Ft) = E(e−
TT
t

2µs ds | Ft) − (E(e−
TT
t

µs ds | Ft))
2,only the expression E(e−

TT
t

2µs ds | Ft) is of interest in this 
ase. But basedon Ito's lemma we 
an say that if µt is de�ned by (1), then 2µt is given by
d(2µt) = (2aµtdt + 0 + 0µ2β

t σ2)dt + 2µβ
t σdB

= 2aµtdt + 2µβ
t σdB, t ∈ [t0, T ].So to give an expli
it formula for E(e−

TT
t

2µs ds | Ft) it su�
es to reapplyTheorem 2.1 for µt with modi�ed parameters G and H.



60 J. Iwanik2.3.2. Survival probability for many 
ohorts. Let y = (y0, y1, . . . , yk−1)and m = (m0, m1, . . . , mk−1) be ve
tor values. Then another point of interestis the formula for the expe
tation of the linear 
ombination:
pym(t, T ) = E(m · e−

TT
t

µs ds | Ft)(7)
= E(m0e

−
TT
t

µ
y0
s ds + · · · + mk−1e

−
TT
t

µ
yk−1
s ds | Ft).If the insurer has a portfolio of ∑k−1

i=0 mi pure endowment poli
ies, where
mi poli
y holders were born in year yi, formula (7) will provide the expe
tednumber of 
laims from this portfolio at time T . This problem 
an be solvedusing the results from Theorem 2.1 for every 
ohort independently.A more interesting 
ase is if we are interested in the varian
e of
m · e−

TT
t

µs ds. We have
Var(m · e−

TT
t

µs ds | Ft) =

k−1∑

i=0

k−1∑

j=0

mimj Cov(e−
TT
t

µ
yi
s ds, e−

TT
t

µ
yj
s ds | Ft)(8)

=
k−1∑

i=0

k−1∑

j=0

mimj(E(e−
TT
t

µ
yi
s +µ

yj
s ds | Ft)

− E(e−
TT
t

µ
yi
s ds | Ft)E(e−

TT
t

µ
yj
s ds | Ft)).The only part of (8) that is problemati
 is E(e−

TT
t

(µ
yi
s +µ

yj
s ) ds | Ft). Sin
e

µyi
s + µ

yj
s is not an Ito pro
ess any more (unless the 
ovarian
e matrix istrivial), we 
annot apply Theorem 2.1 to 
al
ulate this expe
tation. Hen
e,in the remainder of this paper the varian
e of a portfolio will be determinedusing Monte Carlo methods.3. Statisti
al analysis of demographi
 data. We examined the lifetables published by The Human Mortality Database (see [10℄) for the 
oun-tries providing 
onsistent datasets and su�
ient long history, i.e. Austria,Belgium, Bulgaria, Canada, Cze
h Republi
, Denmark, England & Wales,Finland, Fran
e, Hungary, Italy, Japan, Latvia, Lithuania, Netherlands, Nor-way, Spain, Sweden, Switzerland and the USA.3.1. Preliminaries. Using these life tables, the mortality intensity wasre
omputed from the qx's based on the assumption of the 
onstant mortal-ity intensity in fra
tional ages. All the data were subje
t to the followingpreliminary steps:1. All the data 
on
erning youth (24 or younger) were removed.2. All the data 
on
erning the elderly (76 or older) were removed dueto instabilities 
aused by the small size of the 
ohort (lx) and thepossibility of e�e
ts des
ribed in [13℄.3. Only 
ohorts 
urrently aged 25�75 were 
onsidered (most re
ent data).
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hasti
 mortality 614. Only the most re
ent 15 or 40 observations for ea
h 
ohort (year ofbirth) were of 
on
ern.5. If su�
iently long data were not available for a 
ohort, the 
ohort wasomitted.Finally, two datasets were obtained. The �rst one 
ontains the mortalityintensity of people 
urrently aged 39�75 (37 
ohorts) in 15 subsequent 
al-endar years. Hen
e it is a 15 × 37 matrix for ea
h 
ountry. Ea
h row is oneobservation and ea
h 
olumn is one 
ohort. We have labeled this the �shorthistory data� set.The other dataset (the �long history data�) 
onsists of 12 
ohorts observedin 40 subsequent 
alendar years. It 
on
erns people 
urrently aged 64�75. Itis a 40 × 12 matrix for ea
h 
ountry.3.2. Extra
ting the white noise. We will test if the re�ned data �ts thedis
retized SDE of the three models proposed in Se
tion 2.2. Note that theequations (9) and (11) are only Euler-type approximations of (2) and (3).This is due to the fa
t that we assume the transition probabilities to benormally distributed, whi
h is not exa
tly true. However, (9) and (11) 
anbe used as good approximations of the 
orresponding 
ontinuous models.For β = 0 the dis
retized version of (2), i.e.(9) µi+1 − µi = aµi + σ(Bi+1 − Bi)leads to the following:(10) xi = µi+1 − µi − aµi.For ea
h i, xi should be normally distributed with mean zero and varian
e
diag(Σ). We 
an now test if (xi) for i = t0, t0+1, . . . , T form a (multivariate)Gaussian white noise. To do this, we have to �rst estimate the parameter aby mat
hing the �rst moment of xi. Now, E(xi) = E(µi+1 − µi − aµi) = 0yields the following straightforward estimator:

a =

∑T−1
i=t0

(µi+1 − µi)
∑T−1

i=t0
µi

.Having a estimated, we further 
ompute (xi) and perform white-noise tests.For β = 0.5 we use a similar pro
edure. Hen
e we test if the dis
retizedversion of (3), i.e.(11) µi+1 − µi = aµi + σ
√

µi(Bi+1 − Bi),�ts the demographi
 data. In this model(12) xi =
µi+1 − µi − aµi√

µishould be normally distributed with mean zero and varian
e diag(Σ). Weestimate the parameter a by mat
hing the �rst moment of xi analogous



62 J. Iwanikto the previous example. Now, E(xi) = E(µi+1−µi−aµi√
µi

) = 0 leads to thefollowing estimator:
a =

T−1∑

i=t0

µi+1 − µi√
µi

/
T−1∑

i=t0

µi√
µi

.We further 
ompute (xi) and perform white-noise tests.If β = 1, the dis
retized version of (4) are tested against the demographi
data. The logarithm of the sequen
e (µi) is taken and di�erentiated. Thisway we get another sequen
e(13) xi = log µi+1 − log µithat should form a Gaussian white noise. We will test if this is indeed the
ase.3.3. Hypothesis testing for one-dimensional models. We will performone-dimensional analysis of (xi) de�ned in (10), (12) and (13). For ea
h
ountry and for ea
h 
ohort the null hypothesis is that the sequen
e (xi) isa one-dimensional Gaussian white noise.To test normality, we use the one-dimensional Shapiro�Wilk test. To testthe independen
e of ea
h sample, a Box�Ljung small sample test is performedfor the auto 
ovarian
e fun
tion with lag 1 (see [14℄). Espe
ially for the dataof length 15, the results of the Box�Ljung test 
an be used for orientationpurposes only be
ause this is an asymptoti
 test and it is re
ommended forlarge samples only. Therefore, an additional turning point test was done forea
h 
ohort.Assuming that the null hypothesis is true for ea
h 
ohort and that the testfor ea
h 
ohort is an independent experiment, the number of passing 
ohortsfor ea
h test should follow the binomial model with a 95% probability ofsu

ess and 5% probability of failure (probability of a type I error). Thenumber of trials equals the number of 
ohorts examined in ea
h 
ountry.For example if there were 12 
ohorts examined, the number of reje
ted testsshould not ex
eed 2 (with a 5% signi�
an
e level). If there were 37, thenumber of reje
ted tests should not ex
eed 4.For the short history data and β = 0 at least one test was not reje
tedfor a reasonably large set of 
ountries. However, only Lithuania passed bothindependen
e and normality tests. The number of 
ountries where the testswere not reje
ted may seem small, but note that our hypothesis is that all 37
ohorts follow the model. In the reje
ted 
ountries, only some of the 
ohortsdo not.We 
an see that the model for β = 0.5 
an be applied to the short historydata of Hungary, Latvia and Lithuania. This is a reasonably large set and itmakes this model the best of all three 
onsidered.
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 mortality 63We 
an see that the geometri
 Brownian model (β = 1) 
an be appliedto the Hungarian and Lithuanian short history data. This model is alsoappli
able for not all, but for most 
ohorts in the short history data for ea
h
ountry.For the long history data the model with β = 0 or β = 1 
annot beapplied to any 
ountry as a model for all generations. However, it still �ts afair fra
tion of generations in all these 
ountries.The model with β = 0.5 
an be �tted to all the 
ohorts in two 
ountries,Hungary and Latvia. In addition it still �ts half the generations in all other
ountries as well.The results may seem disappointing at �rst, but it is important to re-member that we were testing the hypothesis that all 37 or all 12 
ohortsexamined follow the three models. It is possible that in some 
ountries oneor two 
ohorts behave in a di�erent way. This will 
ause that the hypothesisis reje
ted but it does not mean that the models 
annot be used for some oreven most of the 
ohorts in those 
ountries.3.4. Hypothesis testing for multi-dimensional models. After a one-dimen-sional introdu
tion, it is time to test the proper multi-dimensional model. Wewant to 
he
k if the ve
tor sequen
e (xi) de�ned for our three models formsa multivariate Gaussian white noise. Most multivariate tests are designedfor samples of large sizes and low dimensions. In our 
ase dimension is thenumber of 
ohorts in ea
h 
ountry examined. Therefore, we will restri
t our37-dimensional and 12-dimensional data to three dimensions only. We willexamine the 
ohorts that are 
urrently 70, 71 and 72 years old. We willrestri
t ourselves to the long history data be
ause the multivariate tests forthe short data (of length 15) would not make mu
h sense.If xi = (x1
i , x

2
i , . . . , x

k
i ), the matrix auto 
ovarian
e fun
tion of the series

(xi) is de�ned by Γ (h) = (γij), where
γij(h) = E((xi

t − E(xi
t))(x

j
t−h − E(xj

t−h))).Two things have to be tested to de
ide if (xi) forms a white noise: inde-penden
e and normality. We will test the multivariate normality using themultivariate Shapiro�Wilk test (see e.g. [6℄, [19℄). For independen
e we willtest the null hypothesis that the auto 
ovarian
e fun
tion Γ (h) is zero for
h = 1, . . . , [n/4], where n is the size of the sample. To do so, the portman-teau χ2 
ross-
orrelation test is 
al
ulated (see [14, Ch. 4.4℄). Be
ause oflittle power of this test for small samples, [14℄ suggests an adjustment forshort data. So, additionally, the small-sample χ2 test is also 
al
ulated andits p-values are summarized.The Shapiro�Wilk test and the small-sample portmanteau χ2 test showthat the β = 0 model seems to �t Japan only. The β = 0.5 model, however,



64 J. Iwanikdoes a better job and 
an be applied to Belgium, Bulgaria, Cze
h Repub-li
, Italy, Japan and Switzerland. If β = 1, the model �ts Austria and theNetherlands.The p-values of the portmanteau test suggest that in some 
ases theresiduals do not form a white noise but do form some self-dependent se-quen
e, maybe an autoregressive time series. However, the results provethat all three models are worth 
onsidering. In general, for almost 50% ofthe 
ountries examined, at least one of the multivariate models 
onsidered�ts.3.5. Correlation between 
ohorts in multi-dimensional models. We will
ontinue with only those 
ountries where a model was su

essfully �tted.We will try to determine if a simple form of the 
orrelation matrix betweenthe in
rements of the Brownian motions driving two 
ohorts i and j 
anbe assumed. As already dis
ussed, we would expe
t this matrix to havenon-negative values only. We also expe
t that values 
losest to the matrix'sdiagonal are higher. In our three-dimensional 
ase we will test a simple hy-pothesis:
Cor(xi

t, x
j
t) =





1 for |i − j| = 0,

0.3 for |i − j| = 1,

0 for |i − j| = 2.

(14)
Asterisks in Table 1 denote those 
ountries where all three hypothesesfrom (14) hold. We 
an see that e.g. for β = 0.5, the hypotheses were a

eptedfor all the 
ountries ex
ept Italy and Japan.This result, together with the ones des
ribed in previous subse
tions, pro-vides a simple and transparent framework for modeling sto
hasti
 mortality.Randomness of 
ohorts is based on a multivariate Gaussian distribution andthere is also a simple form of the 
orrelation matrix between the 
ohorts.

Table 1. Three-dimensional model: 
orrelation tests
β = 0 β = 0.5 β = 1Austria * * *Belgium *Bulgaria * *Cze
h Rep. * *ItalyJapanNetherlands *Switzerland *
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ations. In this se
tion we will provide numeri
al examples ofhow the systemati
 mortality risk models 
an be applied in pra
ti
e.4.1. Evaluating Theorem 2.1. First, we review the expli
it formula for
p(t, T ) given by (2). We numeri
ally evaluate the formula based on parame-ters estimated from the 40-year-long Austrian data, the same as used in Se
-tion 3. The 
ohort of the 70-year-olds is used. Using the estimation methodgiven in the previous se
tion for β = 0, we 
ome up with a = 0.06637 and
σ = 0.00056.By Theorem 2.1, we use the formula p(t, T ) = eM(t,T )+N(t,T )µt , where
N(t, T ) =

1

a
(1−ea(T−t)), M(t, T ) =

σ2

4a3
(2a(T−t)−4ea(T−t)+e2a(T−t)+3)for T ∈ [t, t + 5]. Cal
ulation based on these simple equations is 
omparedwith the numbers obtained from 40 thousand Monte Carlo simulations. Thisis summarized in Figure 1.
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Fig. 1. The top diagram shows the exa
t probability of survival (the light line in the middleof the 
hart) and 10 possible realizations of the sto
hasti
 pro
ess (bla
k surroundingpoints). The bottom diagram shows the exa
t probability of survival obtained from theanalyti
al formula vs. the probability based on 40 thousand Monte Carlo simulations(bla
k dots). The identity line is also in
luded in the graph.Both graphs show that the formula given by the theorem is 
on�rmedby the Monte Carlo simulations. The �rst graph shows the exa
t probability



66 J. Iwanikof survival and 10 possible realizations of the sto
hasti
 pro
ess e−
TT
0

µs ds.The other plot shows the expe
ted value of this pro
ess obtained from thesimulations vs. the expe
ted value obtained from the analyti
al formula. Thesixty points (denoting the probabilities for di�erent T ) lay exa
tly on theline y = x, as expe
ted. The simpli
ity of the formula given by Theorem 2.1is obvious and it makes the expli
it formula advantageous over the time-
onsuming pro
ess of multiple Monte Carlo simulations.4.2. Pure endowment portfolio. Consider an insurer that at time 0 sold
3n pure endowment 
ontra
ts to people of age 70, 71 and 72. Assume that the
ontra
ts were equally distributed among the ages, i.e. ea
h of the three agegroups 
onsists of n people. Using the notation from the previous subse
tion,
m = (n, n, n). In addition, ea
h 
ontra
t is supposed to pay 1/n if thepoli
yholder is still alive at time T . We also assume that n is large, so thatonly the systemati
 risk is an issue for the insurer.The a
tuary responsible for the pure endowment produ
t will typi
allybe interested in estimating the value pym(0, T ) as de�ned in (7). Most prob-ably, he will also be interested in the 95% 
on�den
e interval for the value
E(m · e−

TT
0

µs ds | F0).We will model the mortality of this insurer's 
lients using the modelde�ned by (11), so here β = 0.5. The parameter a and varian
es for individual
ohorts will be estimated from the Austrian data, used in Se
tion 3. The 40-year-long dataset will be used for the estimation. We examine two separates
enarios and then 
ompare the results. First, we assume that the three
ohorts in question are des
ribed by three independent sto
hasti
 pro
esses.In the se
ond s
enario, we assume that the 
orrelation matrix is not anidentity matrix.Figure 2 presents the results of the analysis where the quantile lines were
al
ulated with the Monte Carlo methods based on 40 thousand simulationswith varian
e redu
tion te
hniques. Of 
ourse the value of p(0, T ) for T = 0is three and it falls with time. What is essential is that for T = 3 the expe
tedvalue of 
laims is 2.11 and the 95% 
on�den
e interval is (2.05, 2.17) so thelevel of un
ertainty is remarkable. A 
onservative a
tuary would typi
allywant to set an additional reserve to 
over the risk introdu
ed by the relativelywide 
on�den
e intervals.The 95% 
on�den
e interval gets even wider if the mortalities of the
ohorts are related. If we assume the 
orrelation matrix to have the form
(15) 


1 2/3 1/3

2/3 1 2/3

1/3 2/3 1


 ,

the interval be
omes (2.03, 2.20) so it is over 40% wider than in the un
or-
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Fig. 2. The solid line is p(0, T ) for T ∈ [0, 10]. The dashed lines are the 95% 
on�den
eintervals if the 
ohorts are independent, and the dependent 
ase is marked with dottedlinesrelated 
ase. Of 
ourse, the higher the 
orrelation of mortalities between the
ohorts, the larger the amount of the systemati
 mortality risk the 
ompanyfa
es. If the 
ohorts are strongly 
orrelated, the insurer 
annot diversify sys-temati
 risk by selling insuran
e to people of di�erent ages. Sin
e there aregood reasons to believe that the 
ohorts' mortalities are in fa
t 
orrelated(see Se
tion 3.5), we 
on
lude that the systemati
 risk embedded in the pureendowment insuran
e may be signi�
ant.4.3. Mortality options. In the sto
hasti
 mortality environment, bothmortality in
rease and de
rease 
an be dangerous for a 
ompany that has anunbalan
ed, large portfolio of life insuran
es. In the �rst situation (mortalityin
reases) the portfolio of life insuran
es with the bene�t payable at thetime of death will 
ause unexpe
ted losses. In the se
ond, the portfolio ofpure endowments will 
ause high losses. The problem with this �systemati
�mortality risk is that it 
annot be handled in the usual way�by in
reasingthe number of poli
ies sold.If T−tpt denotes a sto
hasti
 pro
ess
T−tpt = e−

TT
t

µu duthen the (a
tuarial) pri
e of the underlying T−tpt at time s ∈ [t, T ] based onthe equivalen
e rule under the physi
al probability measure P is
S(s) = e−r(T−s)EP (T−tpt | Fs) = e−r(T−s)

s−tptE
P (T−sps | Fs).(16)
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Fig. 3. Sample traje
tories of the underlying mortality instrument S(s) and the mortality
all option C(s) for T = 61 and b = 0.03The easiest way to prote
t against the systemati
 mortality risk is tobuy an European 
all option that pays (S(T ) − K)+ at time T . Figure 3shows sample traje
tories of both the underlying asset and the 
orrespondingtraje
tory of the option. In addition both diagrams show the 0.05 and 0.95quantile lines. The interest rate r was set to zero.In this example we will use a modi�
ation of the model de�ned in (4). Let
Yt be the geometri
 Brownian motion. De�ne a martingale Yt with expe
tedvalue one,(17) Yt =

Yt

E(Yt)
= Yte

−ta,and set µt = (A + BeCt)Yt. It is easy to 
he
k that µt satis�es the followingIto sto
hasti
 di�erential equation:
dµt =

(
µt

(
BCetC

A + BetC
− a

)
+ a

A + BetC

eta

)
dt + b

A + BetC

eta
dBt.Now, sin
e the dis
ounted pri
e of the underlying asset S(s) is an Ito pro
essand an Fs-martingale, there is no arbitrage on the market and there existsa unique repli
ation strategy for the derivatives. So the fair market pri
e ofthe options exists and the pri
e of the 
all option is

C(s) = e−r(T−s)EQ(S(T ) − K)+ = e−r(T−s)EP (S(T ) − K)+.To pri
e the mortality 
all option, we will 
on
entrate on the probabilitydistribution of (T−tpt −K)+ or simply the probability distribution of T−tpt:
P (T−tpt < x | Fs) = P

(
T−sps <

x

s−tpt

∣∣∣∣Fs

)

= P

(
e−

TT
s

µu du <
x

s−tpt

∣∣∣∣Fs

)
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= P

( T\
s

Yuµue−ua du > − ln
x

s−tpt

∣∣∣∣Fs

)

= P

( T\
s

Yu−sµue−(u−s)a du >
eus

Ys
ln

s−tpt

x

∣∣∣∣Fs

)

= P

(
A(s, T ) >

eus

Ys
ln

s−tpt

x

∣∣∣∣Fs

)
,where(18) A(s, T ) =

T−s\
0

Y ′
ue−uaµu+s duand Y ′

u is an independent 
opy of Yu. The problem is that su
h an integralusually has an unknown distribution (in parti
ular it is not log-normallydistributed). The methods used in this subse
tion to bypass this problemare similar to the methods used in the average Asian or weighted averageAsian option pri
ing. A 
omprehensive study of Asian options and the waysto pri
e them 
an be found, for example, in [16℄, [9℄.The Levy approximation was proposed in [12℄. It was originally designedfor pri
ing Asian average options. Here we will use a modi�
ation of thismethod that 
an be applied both to the weighted average options and to ourpurposes.The fundamental idea is to approximate the distribution of A(s, T ) givenin (18) with the log-normal distribution. Hen
e we assume that lnA(s, T ) isnormally distributed with mean α(s, T ) and varian
e β(s, T )2 and then usethese parameters in Proposition 4.2. This approximation was proved to bea

urate at least for the standard average options. Comparing the �rst twomoments of the log-normal distribution with the �rst two moments of thereal distribution of A(s, T ), we obtain
α(s, T ) = 2 lnE(A(s, T )) − lnE(A(s, T )2)

2
,

β(s, T )2 = lnE(A(s, T )2) − 2 lnE(A(s, T )).It remains to give the formulas for E(A(s, T )) and E(A(s, T )2) and thisis done in the followingLemma 4.1. For A(s, T ) de�ned in (18),
E(A(s, T )) =

T−s\
0

µu+s du,

E(A(s, T )2) =

T−s\
0

T−s\
0

µu+sµv+se
(u∧v)b2 dv du.
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all that
A(s, T ) =

T−s\
0

µu+se
−uaYu du.The equality for the �rst moment is apparent. As for the se
ond moment of

A(s, T ), if n < m, we have
E(YnYm) = E(Y 2

n )E(Ym/Yn) = E(Y 2
n )E(Ym−n) = e2na+nb2e(m−n)a

= e(n+m)a+nb2,otherwise
E(YnYm) = e(n+m)a+mb2.So

E(A(s, T )2) =

T−s\
0

T−s\
0

µu+sµv+se
−(u+v)aE(YuYv) dv du

=

T−s\
0

T−u\
0

µu+sµv+se
−(u+v)ae(u+v)a+ub2 dv du

+

T−s\
0

T−s\
0

µu+sµv+se
−(u+v)ae(u+v)a+vb2 dv du

=

T−s\
0

T−s\
0

µu+sµv+se
(u∧v)b2 dv du.

Now, we 
an formulateProposition 4.2. Assume that A(s, T ) is log-normally distributed. Thenthe pri
e at time s of a mortality 
all option issued at t and maturing at Twith strike pri
e K 
an be expressed by
e−r(T−s)EP ((T−tp

∗
t − K)+ | Fs)

=





e−r(T−s)
s−tp∗t\

K

Φ

(
ln

(
eas

Ys
ln s−tp∗t

u

)
− α(s)

β(s)

)
du if K < s−tp

∗
t ,

0 otherwise.Proof. If s−tp
∗
t ≤ K then the assertion is obvious. For K < s−tp

∗
t we have

EP ((T−tp
∗
t − K)+ | Fs) = EP ((s−tp

∗
t T−sp

∗
s − K)+ | Fs)

=

∞\
K

P

(
e−

TT
s

µ∗

v dv >
u

s−tp∗t

∣∣∣∣Fs

)
du
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=

s−tp∗t\
K

P

(
e−

TT
s

µ∗

v dv >
u

s−tp∗t

∣∣∣∣Fs

)
du

=

s−tp∗t\
K

P

(
A(s, T ) <

eas

Ys
ln

s−tp
∗
t

u

∣∣∣∣Fs

)
du

=

s−tp∗t\
K

P

(
lnA(s, T ) < ln

(
eas

Ys
ln

s−tp
∗
t

u

) ∣∣∣∣Fs

)
du

≈
s−tp∗t\

K

Φ

(
ln

(
eas

Ys
ln s−tp∗t

u

)
− α(s)

β(s)

)
du.Note that the pri
e of the mortality 
all option is always less than one.The a

ura
y of this approximation was 
he
ked against the result ob-tained with the Monte Carlo method for di�erent volatility parameters b.The parameters were estimated from the Polish mortality table for men forthe year 2003 (see [3℄), where A = −2.4366 · 10−5, B = 7.5436 · 10−5 and

C = 0.0794. Here a = 0. We pri
e the options at issue time, i.e. t = s, andthey mature at T = 61. For t = s the strike pri
e is K(t) = E(T−tpt) and
Yt = 1. The interest rate r is zero. The exa
t values and the ratio Levy price

exact priceare summarized in Table 2. Figure 4 shows the pri
e surfa
es and the 
om-parison between the exa
t Monte Carlo pri
e and the approximate one.Table 2. Exa
tness of the Levy-like approximation. m: Monte Carlo results, l: Levy-likeapproximation, r: ratio = l/m

t = 26 t = 36 t = 46 t = 56l m r l m r l m r l m r
b = 0.1 0.016 0.017 0.983 0.012 0.012 0.965 0.007 0.007 0.922 0.001 0.002 0.704
b = 0.4 0.043 0.037 1.144 0.039 0.035 1.114 0.025 0.025 1.026 0.005 0.007 0.730
b = 0.7 0.027 0.021 1.325 0.035 0.027 1.319 0.034 0.028 1.214 0.009 0.011 0.803
b = 1.1 0.010 0.007 1.393 0.018 0.012 1.433 0.027 0.019 1.398 0.013 0.140 0.932As 
an be expe
ted, the option pri
e falls with t and grows with b, at leastfor small b. Su
h properties are known from the traditional options on the�nan
ial market, pri
ed with the Bla
k�S
holes formula. The option pri
efalls again for b > 0.5, whi
h may be surprising. This is be
ause for large b thepri
e of a single underlying instrument falls and hen
e so does the derivative'spri
e. The approximation seems to be su�
iently exa
t in the 
riti
al regionswhere the option pri
e rea
hes its maximum. The approximation does not�t well for very large volatility (overestimates) and for very short time toexpiration (underestimates). However, in the latter 
ase, the exa
t pri
e ofthe option is 
lose to zero so the systemati
 risk 
an anyway be negle
ted.Moreover, even in those 
ases the Levy-like approximation 
an be used as a�rst order approximation for the mortality 
all option pri
e.
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Monte Carlo Levy-like
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e of the mortality 
all option for di�erent volatilities and issue times. Exa
t(Monte Carlo) results, Levy-like approximations and their 
omparison5. Con
lusion. We have proposed a few sto
hasti
 mortality modelsand proved them to �t the histori
al data relatively well. We have alsoshown how widely these models 
an be applied in life insuran
e. Mortalityderivatives are good examples: they 
an help fully prote
t against systemati
mortality risk. This way insurers 
an pri
e their produ
t not worrying aboutthe future mortality parameters and do business on the basis of determin-isti
 mortality models. Other appli
ations in
lude more reliable mortalityproje
tions and 
on�den
e intervals for future payments from a portfolio ofrisk in life insuran
e.
Referen
es[1℄ N. Bowers, U. Gerber, J. Hi
kman, D. Jones and C. Nesbit, A
tuarial Mathemati
s,The So
iety of A
tuaries, 1997.[2℄ D. Brigo and F. Mer
urio, Interest Rate Models: Theory and Pra
ti
e, Springer,Berlin, 2001.



Models for sto
hasti
 mortality 73[3℄ Central Statisti
al O�
e (Poland), Mortality tables 1995�2003, 2004, http://www.stat.gov.pl.[4℄ CMI Committee,Continuous Mortality Investigation Reports, Institute of A
tuaries,Fa
ulty of A
tuaries (CMI Bureau), 2004.[5℄ M. Dahl, Sto
hasti
 mortality in life insuran
e: market reserves and mortality-linkedinsuran
e 
ontra
ts, Insuran
e Math. E
onom. 35 (2004), 113�136.[6℄ C. Doma«ski, Properties and appli
ations of the Shapiro�Wilk multi-dimensionalnormality test, Cra
ow Univ. of E
onomi
s Re
tor's Le
tures 37, 1998 (in Polish).[7℄ L. Dothan, On the term stru
ture of interest rates, J. Finan
ial E
onom. 6 (1978),59�69.[8℄ I. Gikhman and A. Skorokhod, Introdu
tion to the Theory of Random Pro
esses,W. B. Saunders, Philadelphia, 1969.[9℄ J. Hull, Options, Futures and Other Derivatives, Prenti
e-Hall, Englewood Cli�s,NJ, 1989.[10℄ Human Mortality Database, University of California, Berkeley (USA), and MaxPlan
k Institute for Demographi
 Resear
h (Germany); www.mortality.org orwww.humanmortality.de (data downloaded on July 15, 2005).[11℄ R. Lee and L. Carter, Modelling and fore
asting the time series of US mortality,J. Amer. Statist. Asso
. 87 (1992), 659�671.[12℄ E. Levy, Pri
ing European average rate 
urren
y options, J. Internat. Money Fi-nan
e 11 (1992), 474�491.[13℄ M. Lindbergson, Mortality among the elderly in Sweden 1988�1997, S
andinavianA
tuarial J. 1 (2001), 79�94.[14℄ H. Lutkepohl, Introdu
tion to Multiple Time Series Analysis, Springer, Berlin, 1993.[15℄ M. Milevsky and S. Promislov, Mortality derivatives and the option to annuitise,Insuran
e Math. E
onom. 29 (2001), 299�318.[16℄ I. Nelken (ed.), The Handbook of Exoti
 Options, Irwin Professional Publ., 1996.[17℄ A. Renshaw and S. Haberman, Lee�Carter mortality fore
asting with age-spe
i�
enhan
ement, Insuran
e Math. E
onom. 33 (2003), 255�272.[18℄ �, �, On the fore
asting of mortality redu
tion fa
tors, ibid. 32 (2003), 379�401.[19℄ P. Royston, An extension of Shapiro and Wilk's W test for normality to largesamples, Appl. Statist. 31 (1982), 115�124.Institute of Mathemati
s and Computer S
ien
eWro
ªaw University of Te
hnologyWyspia«skiego 2750-370 Wro
ªaw, PolandE-mail: jan.iwanik�pwr.wro
.pl Re
eived on 25.1.2007;revised version on 6.2.2007 (1858)




