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ProTr KAcpPrzYK (Warszawa)

FREE BOUNDARY PROBLEM FOR THE EQUATIONS OF
MAGNETOHYDRODYNAMIC INCOMPRESSIBLE
VISCOUS FLUID

Abstract. The existence of a global motion of magnetohydrodynamic
fluid in a domain bounded by a free surface and under the external electro-
dynamic field is proved. The motion is such that the velocity and magnetic
field are small in the H3-space.

1. Introduction. In this paper we prove the existence of global solutions
to the equations describing the motion of a magnetohydrodynamic incom-
pressible viscous fluid in a domain £2; C R? bounded by a free surface S;.
In the domain D; C R3 which is exterior to {2, we have a gas under con-
stant pressure pg. Moreover in D; we have an electromagnetic field which is
generated by some currents which are located on a fixed boundary B of Djy.

In the domain (2; the motion is described by the following problem:

o

vt—l—v-Vv—divT(v,p)—ulﬁI-Vﬁ—f-mV%:f in T,
dive =0, in (NZT,
(1.1) ,ulllft = —rotll? in fZT,
rotf—ir’:al(l%—i-ulvxﬁl) in 7T,
div(ulf—ll) =0 in 7,

where 27 = Uo<t<r 26 x {t}, v =v(z,1) is the velocity of fluid, p = p(x, 1)
1 1
is the pressure, H = H(x,t) is the magnetic field, f = f(z,t) is the external
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force field per unit mass, 1 is the constant magnetic permeability, o; is the

1 1
constant electric conductivity, £ = E(z,t) is the electric field, and

(1.2) T(v,p) = {v(02;vj + O;vi) — pdij}
is the stress tensor, where v is the viscosity of the fluid. Moreover,
(1.3) D(v) = {v(0,0j + O;vi) }

is the dilatation tensor.

In the domain D; in which there is a dielectric (gas) we assume that there
is no fluid motion inside (v = 0). Therefore we have the electromagnetic field
only, described by the following system:

,U,Q.;It = —1r0tE2 in ]_N)T,
(1.4) rotlif = JQEQ' in INDT,
div(ugﬁ) =0 in DT,
where DT = Uo<t<r Dt x {t}.
On S; = 942, N ID; we assume the following transmission and boundary

conditions:
1

1 1 H2 ~,
T(va)n = <_pOI — MlH ® H + u171>n on ST,

1 1 1 2 -
—H=—H on ST,
(1.5) o1 02
1 2 ~
E-1h=FE-1,, a=1,2, on ST,
b oT
n=——- on S*,
Vol

where ST = Uo<t<p St x {t}, n is the unit outward vector to £2; and normal
to Sy, T, @ = 1,2, is the tangent vector to S¢, and ¢(z,t) = 0 describes S;
at least locally.

Next we assume the boundary conditions on B:

(1.6) IST =H, on B,
E=F, on B.
Finally, we assume the initial conditions

tli=0 = 2, Sili=o =S, Dilt=0 = D,
(1.7) V|t=0 = vo, I;T|t:0 = 11{0, in £2,

2 2
Hl|—o = Hy, in D.
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Now we make some comments on the literature concerning free bound-
ary problems for the nonstationary incompressible Navier—Stokes system.
Local existence of solutions in the case without surface tension was proved
in Holder and Sobolev anisotropic spaces by V. A. Solonnikov in [4, 5]. To
prove the existence of solutions of corresponding linear problems in Holder
and in Sobolev spaces the potential theory techniques were used (see [6, 7],
respectively). In [4] V. A. Solonnikov showed the existence of global motions
of a viscous incompressible fluid bounded by a free surface. The proof was
based on the Korn inequality. To prove the existence of solutions in the case of
surface tension V. A. Solonnikov used the anisotropic Sobolev—Slobodetskit
spaces WQI’Z/ ? with noninteger positive [. In all papers by Solonnikov, La-
grangian coordinates are used.

To prove existence of solutions to the above problem we introduce the
Lagrangian coordinates & € (2. They are the initial data for the Cauchy
problem
(1.8) Z—x =v(x,t), x|=0=¢& € 2.

t
Therefore z,(&,t) = £ + Sf) (&, 7) dT, where
(&, 1) = v(zu(, 1), 1).

To introduce the Lagrangian coordinates in D; we extend v onto D;. Let us
denote the extended function by v’. Then we define £ € D to be the Cauchy
data to the problem
d
(1.9) & W(x,t), almo=¢E€D.
dt
Therefore x,/(&,t) = £+ Sg v (&, 7)dr, where (&, t) = V(2 (&, t),t). Then
by (11)57
= {$ € ]R3 L= xv(ﬁ,t), 5 € 9}7
Sy ={xeR¥: 2 =ua,1), €S
Since S; is determined at least locally by the equation ¢(z,t) = 0, S is
described by ¢(zy(&,t),t)|t=0 = 0. Moreover, we have

_ Vad(, 1)
My = n(xy(&,1),t) = ——F—"+ :
|Vx¢)(x,t)| m:xv(g,t)
To simplify considerations we introduce the following notation:
HUHZ,Q: HUHHI(Q)a Qe {Q,S,D,H,B}, OSZ EZ,
[ullypg@r = lullL,orwr@) Q€{2,5D,II, B},
p,gel,00, 0<keZ,
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where Q' = Q x (0, 1),
|u’p7Q = ”U’HLP(Q)a Q € {Q,S,D,H,B}, pE [1700]
2. Weak solutions. Weak solutions to problem (1.1)—(1.7) are formu-
lated in Lagrangian coordinates.

DEFINITION 2.1. A weak solution of problem (1.1)—(1.7) is a pair of func-
tions v, H which satisfy the integral identities

T
1)  §§(-7-7 +Du(@) - Do()) dé dt
080 )
T 772
H(ulH V5wV, _>d§dt
09

T T 1 1 HZ
=\ |7 pd +H< —pol — M1H®H+u1—1)ﬁ B des dt— | To-3(0) de,
0 0s 2

T
(2.2) S S <—/¢I7-Et — v - VoH - + %rotvﬁ-rotv E) dg dt
011

Ot,:ﬂ

- fm@ ><H) roty, ¢ d€ dt
02

T
1 o .
= —S V(v x B.) - dépdt — p | Ho - 9(0) de,
0 B I
where ¢, 1 are sufficiently regular and ¢(x,T) = ¢(z,T) = 0, 7, is the unit

outward vector normal to S or B.
1

In (2.1), (2.2) we use the notation A(¢,t) = A(xy(€,1),t), Hy = H,
2
Hp=H,oqn=o01,0p=02, 11 =02UD, ugo= 1, jyp = p2, v in (2.2) is
an extension onto I,

D,(v) = {I/(axika&?j + 8Ij£kv&€@')}, rot, v =V, X,

Vo = 39@&%“ div,7 =V, -7 = axika&ﬁi, 8&. = Vgi.
Let A be the Jacobi matrix of the transformation x = (&, t). Then det A =
exp(gé div,vdr) = 1.

Moreover
t

v, =0+ |0, i(6,7)dr and & =g
0
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Hence we get

t t
sup |z < 1+ sup | [De(&,7)|dr < 1+ | [[D]l3,0dr
gen Leny 0

t
VD13 0 dr < 1+ evE[[Tll3 22,00
0

<l+evt

Therefore sup,c g, |£2| < a(a), where a = vt ||[U]|32.2.0¢ and « is an increas-
ing positive function.

To prove the existence of a solution to the above problem we linearize
(2.1), (2.2) to the form

T
23) V[ (-7%; + Du(v) - Du(®)) dé dt
0

1

r E i "
-\ <M1H’ Vull' G — i V= -@) d dt =
0%

O e g

| 7 pagat
2

T 1 1 EQ
+ S S(_pOI—MH@Her7I>ﬁu-¢dfsdt— S%'@(O)d&
058 2

oty H - oty E) dé dt

Sy

T
) {5 (el B VLT T
011

OL,aﬂ

S,uluxH) roty, ¥ d€ dt
2

17 o o
= — |\ x E,) Ydepdt — p | Ho-9(0) de,
(o]

0B I7

1
where H' and u with divu = 0 are given functions.
Similarly to [1], [2] we prove

THEOREM 2.1. Assume that Tg € H?(£2); 7;(0), vtt( ) € La(82); fi fu €
Ly(0,T, Ly(£2)); f € Lo(0,T, H*(R2)); Hy € H*(IT); Hy(0) € H'(II); E. €
Loo(0, T, HY(B)); Est, Hitt € L2(0,T, Lo(B)); Hixt € Lo(0,T, H*(B)); H, €
L2(0,T, H3( ), S, B € H%/2. Then there exists T* > 0 such that for T < T*

there exists a solution to problem (1. 1)7(1 7) such that
T € Ly(0,T, H*(2)) N Loo (0, T, H(2));
Uy € Loo(0,T, H'(£2)) N Ly(0, T, H*(£2));
Tt € Loo(0,T, Lo(£2)) N Ly(0, T, H'(12));
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P € La(0,T, H*(2)); p; € Lo(0,T, H'(12));
H € Ly(0,T, H3(I)) N Loo (0, T, H' (IT));
H; € Loo(0,T, H'(IT)) N Lo (0, T, H*(IT));
Hy € Loo(0,T, Lo(I1)) N Lo(0, T, H' (IT)),
where (T*)7(p(0) + B) < b, b > 0 is a sufficiently small constant, v > 0 is a
constant and
(2.5) B = ||E*‘|3,2,2,Bt + HE*t”(Q),Q,Z,Bt + ”H*”?’,,Q,Z,Bt + \|I7*t||§,z,2,3t
| Hattll§ 20,50 + 1Fillg 22,80 + IFI3 22,50
(26)  ©(0)= > (100)[}. + |10;{HO)I m)-
i+k<2
Moreover, if ¢(0), B are sufficiently small then

27) 15l 0,0 + 10113 5,00 07 + 1813 20,07 + [Tell5 29,07
+ ||5tt||i272,_QT + ”ﬁ”g,zg,(ﬂ + ||I_7t||i2,2,QT + ||Ht||i27oo7UT
+ ||H||i2,oo,HT + Hﬁ”?ﬁ,zz,nT + ||Ht||§,2,2,HT + ||ﬁtt”i2,2,HT

< c(e(0) + ),
where P =P — py.

First, in Section 3, we derive a differential inequality (3.23) which enables
a step by step extension of the local solution of (1.1)—(1.7) from [0,7] to
[0,00). In Section 4 we establish Korn type inequalities which are necessary
to prove inequality (3.23). In Section 5 we prove the following

MAIN THEOREM. Assume that f = {,vode = {,v0 - gide =0, i =
1,2,3, where @;, i = 1,2,3, are defined in Lemma 4.1, H, € H3(B), H,, €
H%(B), Hyy € HY(B), S;, B € H2, (v(0),p/(0), H(0)) € N(0), p(0) < &,
where 1 is sufficiently small. Assume also that a(t) < e ™, where p > 1/2

is sufficiently large and «(t) is defined in Lemma 5.2. Then there ezists a
global solution of (1.1)~(1.7) such that (v(t),p'(t),H(t)) € M(t), t € R4,
where N'(0) and M(t) are defined in Section 5.

In Lemmas 3.1-3.12 we need
LEMMA 2.1. For a solution of problem (1.1)—(1.7) we have
1 0 < al@)(1HlIE o, + 1HIIZ 0 l10]3,0,)

1HIFo < (@ HF g, i=1,23,

Pl e < a(@vlfg,  i=1,23,
1H 3.0 < a(@)1Hl3 o, + IHI5 o,l1005 0, + 1H113 0, 10115 .,
19113 0, < a@)llloel3 g, + 101152 101132,
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1Hull,0 < a(@)[|HellF o, + 101130, (1H:l o, + 1 HI3,0,)
el o 1 H 13 0, + 1H13.0,1002,0,;
[0eel[5,02 < (@)[[veelld, 2, + I10113,2, (Nlvel 3, + 013,.2,) + 0113, 2,];
1Hulli o < a(@)[| HeellT o, + 101130, (1HS 0, + 1 HI5 0,)
+ I HE o, 030, + 1H3,0,[0]2.2,);
[0l < (@)[[veellf o, + [10113,0, (Nlvel]3,0, + 015.02,) + 101152,
where a = \/t 17]|3,2,2,0t and « is an increasing positive function.
Proof. Differentiating_ﬁ({,t) = H(z(,t),t) with respect to ¢t and £ we
get Hy = Hyv+ Hy and He = Hyxe. Then
[Hill o < el Ha(a(& 1), )v(z(€, 1), 1) |1 o + ala) | Hell T 0,)
< e[| Ho(2(&, 1), )T ollv(z(&, 1), )]13,0 + ()| HellE )

t
< ey (t§ 10l 0, d7) (1HIB 0,013 0, + 11 ).
0

Hence the first inequality is proved. Similarly we can show the other inequal-
ities. m

In Lemmas 3.7, 3.8, 3.10 and 3.11 we need

LEMMA 2.2. For a solution of problem (1.1)—(1.7) we have

t
28) Il e = ev(t§IvlE e dr) Ulvel? o, — 013 2,10l 0),
0

where v is a positive function.

Proof. From T; = v,v 4 vy we get §,07d¢ = (v dé + 2§, v - vpv dE
+ SQ(UIU)Q d¢ and from Ve = Vg T¢ + VpaVTE + vgz:g we get

[ 9% de = | (vioe)? dé +2 | (vrame)bde + | 0% de,
2 (9] N 0

where b = vy, vz + vize. Hence we obtain (2.8). m
Similarly we obtain an inequality for
010 1HI 0 i=1,2,3; [Pl30; [Tl3.0: 1PT e 1HS 0

In Lemmas 3.10, 3.11 we use inequalities (3.16), (3.19), (3.20) in local
coordinates z, connected with {£} (see [1]).
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3. Differential inequality. Assume that the existence of a sufficiently
smooth local solution of problem (1.1)—(1.7) has been proved and
1
2 1 1 H2 =7
(*) Hp=0 onB; T(vp)n= <—M1H®H+M1 71>n on S,

where p' =p—po, f =0, {,v0dz =0, {,v0- idr =0, and ¢;, i = 1,2,3,
are defined in Lemma 4.1.

In this section we obtain a special differential inequality which enables
us to prove the existence of a global solution.

REMARK 3.1. Integrating (1.1); over {2; we get

1
1 2

! H
% | vde— | divT(v,p') de+p | (—div(H®H)+VTI> dr = | fda.
'Qt Qt .Qt Qt

Then from (%) we get

d Lo H?
E(S)’Ud(ﬂ‘"é <M1H®H—M17I>nd$5’t
t t

1 1 ﬁ2
24

Integrating the last equality by parts we get

S vdr = Svgdx:O.
2 02

REMARK 3.2. Let ¢;, i = 1,2,3, be defined in Lemma 4.1. Multiplying
(1.1)1 by ¢4, i = 1,2, 3, and integrating over {2, we get
d
pr S v p;dr — S div(T (v, p') ;) da
.Qt Qt
1
. 1 1 [-[2
+ 11 S (—le(H@Hcpi) —}-V? g0i> dr = S f-pidx.
.Qt »Qt

Then from (%) we get

Lo

d 1 ! H
7 S vp; dr + S <M1H®H—u171)w-ndm5t
24 St

o

1 1 H
+ S (—div(H@H)-gpi—FV?-gpi) dzg, = 0.
24
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Integrating the last equality by parts we get
vapidzzgvowpid:ﬁzo, 1=1,2,3.
(oh (9}
LEMMA 3.1. For a sufficiently smooth solution (v,p’, H) of (1.1)—(1.7),
we have
(3.1) iMW [0l 0, < ellHE
° dt O,Qt I,Qt — I,Qt'
Proof. Multiplying (1.1); by v and integrating over (2, we get

1 1 1
(3.2) 3 S op? dx + S v-Vv-vdr + S D?(v) dz — S H - -VHuvdx
.Qt .Qt -Qt -Qt

2 L L2
+ 1 S VTfudaH—ulS <H®H—7I>vndx5t =0.
24 St
Using
d o
Sv-vtdaz: %Svdx—xv'Vvvdx
.Qt Qt Qt

DO | =

and Lemma 4.1 we get (3.1).

LEMMA 3.2. For a sufficiently smooth solution (v,p’, H) of (1.1)-(1.7),
we have

d 1 1
(3.3) £MMM+MM@SﬂMHMMhyWEHMWﬁm
+([vl% e, + I1H[T )% = Xi.

Proof. Differentiating (1.1); with respect to ¢, multiplying by v; and
integrating over (2 we get

1
(3.4) —S(vt)fdx—i—Svt‘Vv-vtdx—i—Sv-Vvt'vtdw

2
Qt Qt Qt
2 1 1 1 2
+ | D) do — iy {(H - VH)wrdz + i | (VH?)0r da
Qt Qt Qt
2
1 1
+MSKH®H—EJ)4WM&ZQ
Sy t
Using
1d ( ,
S Ut"Uttd$:§E S vy dr — S v - Voo do
.Qt Qt Qt

and Lemma 4.2 we get (3.3).
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LEMMA 3.3. For a sufficiently smooth solution (v,p’, H) of (1.1)—(1.7),
we have

d
(3.5) %HvttHam + lowelli g, < clllvallF.ollvl3.0, + lvellf o,

L L2 Lo
+ ([ Hee|l5,0, 1 H1 2, + [1Hll1 0,
+ ([[oell3 g, + 0030, (V113 o, +1)

Lo L2 2
+ [[Hell1 0, + 1H|IT,0,)°] = Xa.

Proof. Differentiating (1.1); twice with respect to ¢, multiplying by v,
integrating over {2, and using the equality

d

S Vet * Uttt der = = — S ('Utt)2 dr — S Ut - Vvttv dx
2 dt

2 24 2

and Lemma 4.3, we get (3.5).

LEMMA 3.4. For a sufficiently smooth solution (v,p’, H) of (1.1)—(1.7),
we have

d
(3.6) VG z, + WHIE 7, < ellH I, 011,

Proof. Multiplying (1.1)3 4 by H and integrating over II;, and using the
equality

SH-thx:%% S H? dg — g H - VHvdz,

Ht Ht Ht
we get (3.6).
LEMMA 3.5. For a sufficiently smooth solution (v,p’, H) of (1.1)—(1.7),
we have

d
B7)  ZHllG o, + 1H i, < A 00, + el | H T 17,

Proof. Differentiating (1.1)3 4 with respect to ¢, multiplying by H;, inte-
grating over II; and using the equality
1d
S Ht . Httd$ = = — S (Ht)2dfll — S Ht . VHt’UdIL‘,
2 dt
g 11 11
we get (3.7).
LEMMA 3.6. For a sufficiently smooth solution (v,p’, H) of (1.1)-(1.7),
we have

d
(3.8) @HHttH(Q),Ht I Hullf g, < clHall 10T, + ol R g 1H1E )
+ ol | Hellf 1, = Xs.
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Proof. Differentiating (1.1)3 4 twice with respect to ¢, multiplying by Hy,
integrating over II; and using the equality

1d
S Hyy - Hyyy doe = 5 % S (Htt)2 dx — S Hy - VHyv dz,
II; I, I,

we get (3.8).

LEMMA 3.7. For a sufficiently smooth solution (v,p’, H) of (1.1)—(1.7),
we have

d d
(3.9)  Zlleild o, + Zleld o, + 013 0, + 17150,
t 1 1
< e[y (t§110lB o, dr ) 1HIE o, I3 0
0

+e(llvllz o + 0150 + 013 2 0IF 0, + X1| = Xa.

Proof. Similarly to [1] we prove the inequality

1 1
(3.10) |73 + 7150 < ala) (IIHHg,nHHH?,,Q +li o

1

EN H? 2
—I—H(—M1H®H+M171>ﬁv

+w%@.

3/2,8

Then from
EIIUH%,@ < c(|vll3,0, +ellodll3,0, + 1013, 101F o)
and (3.3) we get (3.9).

LEMMA 3.8. For a sufficiently smooth solution (v,p’, H) of (1.1)-(1.7),
we have

d d d
(3.12) aHUtH%,nt + EﬂvttHg,m + EH'UtHg,Qt + [lvell3.0, + 1D 0

t
1
< e[y (10180, @) (1ol g, (1018 + 1 1B, + 111 )
0

Lo L2 Lo L2
+ [[Hell1 0, 1 H 12,0, + | Hell2,0, [ HI1,0,)

+e(llvelli o, + lvell3 @) + lvell3 0, 10l1T o, + X1 + Xz|.
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Proof. Similarly to [1] we prove the inequality
(3.12)  [[Bell3.0 + P10

1
< a(a) {||m\%79<||ﬂu§,g I + 1T )

1 1 1 1
+ I HB ol HIS. 0 + | HilE ol HIE o + 50l

1
R
+ H [(—/MH@H — 1 7[)@,}
t

ITER SHCE | Hmuag} .

2

1/2,8

Then from

d
a””tHint < Hvt\lim + EHUttHiQt + HUt”%,ntHUHint
and (3.3), (3.5) we get (3.11).

LEMMA 3.9. For a sufficiently smooth solution (v,p’, H) of (1.1)—(1.7),
we have

d d
(3.13) E””Hint + £||UtH(2),9t + HUH%,Q
t
1
< C[v<t o0, dT) 1 0
0

+e(loell? g, + 1013,0,) + 10]13,0,110]15,0, + Xl] -
Proof. Similarly to [1] we prove the inequality
2 =4 —0 2 2
(3.14) |v]lz,0 < a(a) |:||HH1,Q + 1216, H 12,0 + [V,

1

RIS H? 2
+ H <—M1H®H+M1 7])@,

i Hvuag} .
1/2,8

Then from

d

vl < cllvlie +elvlia + lvlEe viEq)
and (3.3), we get (3.13).

LEMMA 3.10. For a sufficiently smooth solution (v,p’, H) of (1.1)-(1.7),
we have

d d d d
(315) LI g, + Il + ol g, + 510080, + 13l
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~+

< ey (t§ 101 o, 7 ) 1 HE 1013 7, + IH 1 1,
0

~(19l13,z, + loel3 gz, + 1v3,12,)
+ 1013z, N gz, + N3 ol3 7, + 10013, + lvellF )
U3, 11, til1, 11, 2,17, |1V |12, 1T, Ull2, 11, Uell1, 1,
+a® | H[S 7, + X5+ Xa] = X5
Proof. From the inequalities (see [1])

d -~ N
%HHtTHaQ + ”Ht||§ﬁ
a(@I Helly 5 + 11015 5UIHIZ 5+ 1 HelF 5
+Tel; o + 1HI5 519115 5117115 5 + 1)

(3.16) _ P
+Tll3 o + 1H 5 51715 5,
d ~ ~ ~
ZIHAG 5 < el Hell} o+ [ Hul? 5),
d
ST, < el Hulldm, + 1Hull? i, + 1S, 01 )
we get

d
(3.17) EHHtH%,Ht + (| Hell3 1z,
t

< (¢ 510130, @) U1l 1, + 1, 003 i,
0

+ N3, (10113 17, + N0ell3,r, + 102, m,) + 10113, (1 1F 1,
N3 12, 10113 7, + 1013 1z, + Woell3 z,) + 10l3 7, + @® | H 3 ]
Using (3.8), (3.9), we get (3.15).

LEMMA 3.11. For a sufficiently smooth solution (v,p’, H) of (1.1)—(1.7),
we have

d d d d
(318)  ZIHI 4 2 Hulld i+l g+ 101 o, I

t
<oy <t§ ||vrr§,97d7> I, 01, + 1B, 0l
0

VIR o, + X+ X5) = X
Proof From the inequalities (see [1])
(3.19) HH I3 5+ IHI; 5 < cx @IS 5lIB115 5+ 1215 5 + I1H7 5
+ 1 5 Jra2||HH ol
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d  ~ ~ TSN 1~ ~
SN2 o+ IEIR < a2 @UANR GBI o + 112

FIEIR 5+ IHI2 G012 5+ 12 ),

(3.20) d -
ZIHAR 5 < (el HI? o+ I ).
d ~ ~ N
|2 o < (el B2 o + 12 ),
we get

t
(3:21)  HI3.m, < ev(t 100 o, dr ) 13,013, + I013.1m,
0

HH N 7, 1005 7, + 1 HlI3 7, + 1113 7, 11013, 1,]-
Then from the inequality
d
T H 2, < el HI3m, + 1H m, + 15,1011 1,
and (3.9), (3.15) we get (3.18).

LEMMA 3.12. For a sufficiently smooth solution (v,p’, H) of (1.1)—(1.7),
we have

d d d
(3:22)  ZIHI g, + S HIE 1, + Il + 2l

=l
dt
4ol g + N 1, + BB, < Xo.
Proof. From the inequality
%HHHim <HIR m, + el Hell? i, + 1H13 2, 10113,
and from (3.18) we get (3.22).

2
Now let H = H, on B; then from Lemmas 3.1-3.12 we get

LEMMA 3.13. For a sufficiently smooth solution (v,p’, H) of (1.1)-(1.7),
we have

t
(333) To+o<c](+(t] ol 0, dr) +1)op(1 + ) + IHIB5
0

I Ha g + 1 Hall3 5 (1 + [ Hatll3 5) + HH*ttH%,B}
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where 7y is an increasing positive function, t € [0,T] and

o(t)= > (10iv]R o, + 10 H 7 1,).
i+k<2

o(t) = > (100}, + 10LHIZ 1,) + ID'113,0, + 19113 0,
i+k<3
i<2

(3.24)

4. Korn inequality

LEMMA 4.1. Let £; C R3 be a bounded domain. Let (v,p) be a solution
of (1.1)1, (1.1)2, (1.5)1 and f = {,vodx = {,vo - pidx = 0, where ¢; is
defined by (4.4), i =1,2,3, and

(4.1) Eq, (vr) = | (02,05t + 0, vi)? da < o0.
24

Then there exists a constant ¢ such that

(4.2) ol13 o, < (B, (ve) + I|v]|T0,)-

Proof. Introduce a function u by

3
(4.3) u=> bipi(x)+ v,
i=1

where
wi=(r—7T) X e
1

(4.4) T = 7( S x1 dz, S xo dx, S x;z,dx),
| t’ Qt Qt Qt

e; = (041,042, 033), 1=1,2,3.
Define b = (b1, b, b3) by

1
(4.5) b= ——\ rotuv dx.
2[42] ét

Since rot ¢; = 2¢; i = 1,2, 3, equations (4.3) and (4.4) imply
(4.6) S rotu dz = 0.
24
From (4.4) we have szt pider=20,i=1,2,3, so
(4.7) S udx = S vedr, and also Eg,(p;) =0, i=1,2,3,
2 (oh

hence

(4.8) Eq, (u) = Egp, (vt).
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By Theorem 1 of [6] we have
(49) 83;j’wi = 51']9183%5]'1, 1=1,2,3, w=rotu, Sij = &Eiuj + &Ejui,
so by (4.6) and Lemma 2.4 of [3] it follows that

3
(4.10) [rotullf,o, < ¢ Y 151150, = cEa,(u) = cEq, (vr).
ij=1
Employing the identity
1 1
amjui = 5 (8,;Juz + amzuj) + 5 (&tjuz — 81,“])
and (4.10) we have
(4.11) IVullf.o, < e(Eq, () + [lrot ull§ o,) < cEg, (u) = cEg, (v).
Using (4.3) we obtain
(4.12) IVuellg o, < c(Eq,(ve) + [b]).
Integrating (1.1); over 2; we get
(4.13) S vpdr = — S v-Voudz
.Qt Qt

and multiplying (1.1); by ¢;, i = 1,2, 3, and integrating over {2, from (4.3)
we get systems of equations

3
(4.14) Zbi S i pjde = S u-pjdr+ S v-Vu-pide, j=1,2,3.
i=1 (% 24 2

Since det I" # 0, where I = {I};}, I}; = Sﬂt @i - pjdr, we can calculate b
from (4.14), so

(4.15) b1 < e(llullg o, + I0ll1,0,)-
Now by the Poincaré inequality and (4.8), (4.12) we obtain
1 2 2
(4.16) ullf.o, < 2|lu— —— S udx —I—QH uda:
’ 2] 0,92 |Qt 0,92

2 >
0,02

1
< c<||w|r%,9t ; HW [ v de
t o}

< (B, (u) + 0]t )

= c(Eg, (ve) + Ilvl1 -

From (4.3) we get

(4.17) loell6, 0, < e(llullg,o, + bF)-
Then from (4.12), (4.15), (4.16) and (4.17) we get (4.2).
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LEMMA 4.2. Let 2, C R3 be a bounded domain. Let (v,p') be a solution
of (1.1)1, (1.1)2, (1.5)1 and f = {,vodz = {,v0 - idz,i=1,2,3, and

(4.18) Eq,(vu) = | (0,050 + 0, vine)*da < 00
2
Then there exists a constant ¢ such that

(419)  lvell o, < clBey(ve) + llvellf @01 o, + lv]l2.0, (10117 o + 1)].

Proof. Let u = Z?:l bipi(x) + vy, where ; are described by (4.4). The
rest of the argument is as in Lemma 4.1.

5. Global existence. To prove the global existence we introduce the
spaces
h

o(r)dr < oo},

N(t) ={(v,p, H) : ¢(t) <

8

M) = {(0,0 H) 2 (1) +

O ey

where ¢(t), ¢(t) are defined by (3.24). From Theorem 2.1 we get

LEMMA 5.1. Assume that (v(0),p'(0), H(0)) € N(0) and »(0) < e1.
Then (v(t),p'(t),H(t)) € M(t) for t < T, where T is the time of local
existence and

T T
(5.1) @)+ §o(r)dr < cer + e (IBG 5 + |1 ButllF 5
0 0
+ I HA3  + [ Hatl3 p + | HawelI5 ) dt
= 6(61 + ﬁ)

Proof. From the inequalities
19113, < e(ellTell3 00,0 + c(@)ITll32.2,00 + [T(0)]5.0),
IH3, 1 < clelHill3 5010 + cEINH3 0,70 + IHO)3,1),
and Theorem 2.1 we get (5.1).

LEMMA 5.2. Assume that there exists a local solution of (1.1)—(1.7) in
M(t), 0 <t < T, with initial data in N'(0) sufficiently small and
(5.2) o) = Hd3p + |Hillp + 1Hall3 51+ | Hiell3 p) + [ Hetel] 5
< e Ht

i

for 0 <t <T, where p > 1/2. Then

(5.3 o(0) < (904 — ).
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Proof. From (3.23) and (5.2) we get
t
(5.4) dtcp + 6 <e(v(t] 0B 0, dr) + 1) dp(1l + @) + ce .
0

From Lemma 5.1 we have ¢(y(t SE HUH%QT dr) + 1)gp(1 + ¢) < 3¢ if 3 and
e are sufficiently small. Then from (5 4) we get

d
—put
(5.5) Zot s Ly < cent

We have ¢ < ¢. Then from (5.5),
d 1
—ut
(5.6) pTAd + - go ce M.
From (5.6) we get (5.3).

LEMMA 5.3. Let the assumptions of Lemma 5.2 be satisfied and ¢(0)
e1. Then o(T) < g1 where T > 0 is the time of local existence.

Proof. If T and p > 0 are sufficiently large, then from (5.3) we get

p(T) <e T2 («p(O) +2 _61/2) < ¢(0).

Now we consider problem (1.1)—(1.7) for t € [kT, (k 4+ 1)T]. Then similarly
to (3.23) we obtain the inequality

d t
(65.7) zo+o <c[(v(—kT) | 0l g,dr) +1) b0l + ) + |H3 5
kT

T g + [ Hal3 (1 + [ Hall3 ) + 1 HaeelIF 5|

where t € [KT, (k+ 1)T].
Let ¢(kT) < ¢(0). Then from (5.7) similarly to (5.3) we get, for ¢ €
KT, (k +1)T7],
(1/2—p)kT—1/2 —t)2
e e
58) ¢(t) < c——— + @(kT)eF T2 < c—
(55 9(0) < T D) < e
Therefore if T, > 0 are sufficiently large we get ¢((k + 1)T") < ¢(0). We
also obtain the inequalities

+ (p(o)e(kT—t)/Q'

t

(5.9) [ odr < 2C e L oo(kT) for t € [kT, (k+ 1)T).
kT H
Hence
(k+1)T (k+1)T
(5.10) Vol at< | gdt<-— ; € MR 4 20 (KT)

kT kT
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and
; 2c
(5.11) | e(r)dr < e M L 20p(kT) for t € (KT, (k + 1)T).
KT p—1/2
Then inequalities (5.9) and (5.11) imply
(k+1)T (k+1)T 12
(5.12) ’ i vdt’ < ch/Q( i, dt)
kT kT
1/2 2c kT 12
<cT ——e ¥ 2p(kT .
<o e a0

Proof of Main Theorem. The theorem is proved step by step using local
existence in a fixed time interval. Under the assumptions that

(5.13) (v(0),p'(0), H(0)) € N(0)

Theorem 2.1 and Lemma 5.1 yield local existence of solutions of (1.1)—(1.7).
By (5.13) and Lemma 5.1 the local solution belongs to M(t), t < T.
For small 1 and 3 the existence time T is correspondingly large, so we can
assume it is a fixed positive number. To prove the last result we needed the
Korn inequalities (see Section 4) and imbedding theorems. The constants in
those theorems depend on (2, the shape of S; and Sg HvH% 0, d7, so generally
they are functions of ¢.
But in view of (5.1) with sufficiently small €1, 5 we obtain

¢
(5.14) HvdT‘ <cler +B), te[o,T].

0
Hence from the relation

t
(5.15) v=E+ v r),m)dr, (€S t<T,
0

for sufficiently small €1, 3 and fixed T, the shape of S;, t < T, does not change
too much, so the constants from the imbedding theorems can be chosen
independent of time. Now we wish to extend the solution to the interval
[T,2T]. Using Lemma 5.3 and (5.8)—(5.12) we can prove the existence of a
local solution in M(t), T <t < 2T. To prove

(5.16) p(2T) < &1
we need inequality (5.7), where the constants depend on the constants from

the imbedding theorems and Korn inequalities for ¢t € [T, 2T]. Therefore

we have to show that the shape of S; and Sg ||UH§QT dr, t < 2T, do not
change more than for ¢ < T. Assume that there exists a local solution in
the interval [0, k7). Then in view of Lemma 5.2 and (5.8)—(5.12) we have,
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for ¢t € [0, kT,
¢ k-1 (+1)T

(5.17) ( vdT( < Hv||29 dr<ety | |vllee dt
0 =0 T

k-1 (+DT k-1 (+1T

gclez( 5 o010, ) <c1T1/22( 3 p(t) dt )

1/2

< 61T1/2 Z \/“[ — 1/2 T w(iT)] 1/2
1/2
< s i—/m [(M - 11/2)1/2 (1 + ﬁ) + @1/2(0)} =7
From (5.8),
p((i+1)T) < — 1/26 VT2 o) e T2, i =0,1,.. . k-1,
we have

e T/2 c e’

©(0) ¢
T) <
.EO@Z —1_67T/2+M_1/2 1_67T/2+,u—1/21—e*T/2

c e—nT/? 1

—T/2
< 0 '
STt S e (MO o)
Therefore,

—+

k—1 (i+1)T 1 (+1)T
(5.18) §||vu3g dT<Z vl .. dT<Z S ¢ dt
T 7=
k—1 c
<2 — e MT 4 o T )
g(u o (iT)

c 1 1
< 1_c-T/2 (;+<P(0)+ (1= 1/2)(1—eT/2)>'

We have to underline the importance of the fact that the quantity SE vdT is

sufficiently small for all t. We have dist{S;, So} < | ngdﬂ < I, where [ is
defined in (5.17), so for small I the domains {2, and (2 are close to each other,
hence all the imbedding theorems applied and results for elliptic problems
(3.10), (3.12), (3.14) are valid for all §24, ¢ > 0.

Taking k£ = 2, &1 sufficiently small and p sufficiently large we see that
Sf) v(xz(&,t),t)dt is small for any t € [0,27], so (5.17) and (5.18) imply that
the shape of S; and Sg HUH?,)QT dr change no more than in [0, 7], and then the
differential inequality (3.23) can also be shown for this interval with the same
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constants. Hence in view of Lemma 5.1 the solution of (1.1)—(1.7) belongs to
M(t), t € [T,2T]. Next Lemmas 5.1-5.3 and (5.8)—(5.12) imply (5.17).

Repeating the above considerations for the intervals [kT,(k + 1)T1,
k > 2, we prove the existence for all t € R.
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