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WEIGHTING, LIKELIHOOD RATIO ORDERAND LIFE DISTRIBUTIONS

Abstra
t. We use weighted distributions with a weight fun
tion being aratio of two densities to obtain some results of interest 
on
erning life andresidual life distributions. Our theorems are 
orollaries from results of Jainet al. (1989) and Bartoszewi
z and Skolimowska (2006).1. Preliminaries. Let X and Y be two random variables, F and Gtheir respe
tive probability distribution fun
tions, and f and g their densityfun
tions, if they exist. Denote by F = 1 − F the tail (or survival fun
-tion) of F , by F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1), the quantile (orreversed) fun
tion and by F−1(0) and F−1(1) the lower and upper boundsof the support of F respe
tively, and analogously for G. We identify thedistribution fun
tions F and G with the respe
tive probability distributionsand denote their supports by SF , SG respe
tively. We use in
reasing in pla
eof nonde
reasing and de
reasing in pla
e nonin
reasing.1.1. Classes of life distributions. A distribution F is said to be IFR(resp. DFR) [in
reasing (resp. de
reasing) failure rate℄ if log F is 
on
ave(resp. 
onvex) on SF whi
h is an interval. A distribution F with SF = [a, b],
−∞ ≤ a < b < ∞, is said to be IRFR (in
reasing reversed failure rate)if log F is 
onvex on SF . A distribution F is said to be DRFR (de
reasingreversed failure rate) if log F is 
on
ave on SF . It is well known that ea
hDFR distribution is DRFR and ea
h IRFR distribution is IFR.A distribution F with F (0) = 0 and SF being an interval is said to2000 Mathemati
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zbe IFRA (resp. DFRA) [in
reasing (resp. de
reasing) failure rate average℄ if
− log F (x)/x is in
reasing (or de
reasing) on SF , or equivalently: Fα(x) ≤
(≥) F (αx) for every α ∈ (0, 1) and x ∈ SF .A distribution F with SF = [0,∞) is said to be

• NBU (resp. NWU) [new better (resp. worse) than used ℄ if F (x + y) ≤
(≥) F (x)F (y) for all x, y, x + y ∈ SF ;

• DMRL (resp. IMRL) [de
reasing (resp. in
reasing) mean residual life℄if E[X − t |X > t] is de
reasing (resp. in
reasing) in t > 0;
• NBUE (resp. NWUE) [new better (resp. worse) than used in expe
-tation℄ if T∞

t
F (x) dx ≤ (≥) E(X)F (t), t ≥ 0, provided that E(X)exists.It is well known that

IFR ⊂ IFRA ⊂ NBU and DFR ⊂ DFRA ⊂ NWUand
IFR ⊂ DMRL ⊂ NBUE and DFR ⊂ IMRL ⊂ NWUE.1.2. Sto
hasti
 orders. We will deal with some sto
hasti
 orders. Were
all their de�nitions and some properties for 
ompleteness. Similarly toShaked and Shanthikumar (1994) we use notation involving random vari-ables. However, sto
hasti
 orders are relations between probability distribu-tions.We say that:

• X is smaller than Y in the likelihood ratio order (X ≤lr Y ) if g(x)/f(x)is in
reasing;
• X is smaller than Y in the hazard rate order (X ≤hr Y ) if G(x)/F (x)is in
reasing or rF (x) ≥ rG(x) for every x if F and G are absolutely
ontinuous, where rF (x) = f(x)/F (x) is the hazard rate fun
tion of F(and analogously for rG);
• X is smaller than Y in the reversed hazard rate order (X ≤rh Y ) if

G(x)/F (x) is in
reasing or r̆F (x) ≤ r̆G(x) for every x if F and G areabsolutely 
ontinuous, where r̆F (x) = f(x)/F (x) is the reversed hazardrate fun
tion of F (and analogously for r̆G);
• X is sto
hasti
ally smaller than Y (X ≤st Y ) if F (x) ≥ G(x) for every

x, or equivalently, if F (x) ≤ G(x) for every x.It is also well known that
X ≤lr Y

��

+3 X ≤hr Y

��

X ≤rh Y +3 X ≤st Y



Life distributions 285Let X and Y be positive random variables with �nite expe
tations. De-note by
LX(p) =

1

E(X)

p\
0

F−1(u) du, 0 ≤ p ≤ 1,

the Lorenz 
urve of X and set LX = 1 − LX (and analogously for Y ). It iswell known that LX is a distribution fun
tion and is 
onvex (and hen
e alsostar-shaped) on (0, 1).For properties of 
lasses of life distributions and sto
hasti
 orders werefer to Barlow and Pros
han (1975), Shaked and Shanthikumar (1994) andMüller and Stoyan (2002).1.3. The equilibrium renewal distribution. Let X be a nonnegative ran-dom variable and 0 < E(X) < ∞. A distribution fun
tion
Fe(x) =

x\
0

F (t)

E(X)
dt, t ≥ 0,is 
alled the equilibrium renewal distribution asso
iated with F (see Cox,1962). It is evident that its density is of the form fe(x) = F (x)/E(X),

x ≥ 0. Denote by Xe a random variable with distribution Fe. Similarly wede�ne Ge, ge and Ye.The following lemma is well known; see e.g. Shaked and Shanthikumar(1994) and Müller and Stoyan (2002).Lemma 1. Let X be a nonnegative random variable and 0 < E(X) < ∞.Then:
(a) F is IFR (resp. DFR) ⇔ Xe ≤lr X (resp. X ≤lr Xe);

(b) F is DMRL (resp. IMRL) ⇔ Xe ≤hr X (resp. X ≤hr Xe);

(c) F is NBUE (resp. NWUE ) ⇔ Xe ≤st X (resp. X ≤st Xe).1.4. Weighted distributions. Let w : R → R
+ be a fun
tion for whi
h

0 < E[w(X)] < ∞. Then
F̂w(x) =

1

E[w(X)]

x\
−∞

w(u) dF (u) =
1

E[w(X)]

F (x)\
0

wF−1(z) dzis a distribution fun
tion, 
alled a weighted distribution asso
iated with F .If a density f of F exists, then̂
fw(x) =

w(x)f(x)

E[w(X)]is a density of F̂w.
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zWe refer to Patil and Rao (1977, 1978) and to Rao (1985) for a survey ofstatisti
al appli
ations of weighting, espe
ially to the analysis of data relat-ing to human populations and e
ology. Mahfoud and Patil (1982) developeda theory of weighted distributions. Jain et al. (1989) and Nanda and Jain(1999) studied relations of weighted distributions with 
lasses of life distri-butions. Navarro et al. (2001) developed 
hara
terizations through reliabilitymeasures from weighted distributions. Bartoszewi
z and Skolimowska (2006)obtained some results about preservation of 
lasses of life distributions andsto
hasti
 orders under weighting.Jain et al. (1989) have proved the following theorem.Theorem 1. If the weight fun
tion w is in
reasing and 
on
ave (resp.de
reasing and 
onvex ) and F is IFR (resp. DFR), then F̂w is also IFR(resp. DFR).Using a representation of weighted distributions by the Lorenz 
urve Bar-toszewi
z and Skolimowska (2006) have proved the following two theorems.Theorem 2. Let w be a monotone left 
ontinuous fun
tion.(a) If w(x) is in
reasing and w(x)rF (x) is de
reasing , then F̂w is DFR.(b) If w(x) is de
reasing and w(x)rF (x) is in
reasing , then F̂w is IFR.(
) If w(x) is in
reasing and w(x)r̆F (x) is de
reasing , then F̂w is DRFR.(d) If w(x) is de
reasing and w(x)r̆F (x) is in
reasing , then F̂w is IRFR.(e) If w(x)rF (x) is de
reasing , then F̂w is DRFR.(f) If w(x)r̆F (x) is in
reasing , then F̂w is IFR.Theorem 3. Let F be absolutely 
ontinuous with F (0) = 0 and SF bean interval.(a) If F is IFRA (resp. NBU ) and w(x)F (x) is in
reasing , then F̂w isIFRA (resp. NBU ).(b) Let w be de
reasing left 
ontinuous. If F is DFRA (resp. NWU ) and
w(x)/Lw(X)(F (x)) is de
reasing , then F̂w is DFRA (resp. NWU ).In this note some results following from these three theorems are dis-
ussed.2. Results2.1. Weighting by monotone likelihood ratio. Let X and Y be randomvariables with absolutely 
ontinuous distributions F and G with densities fand g respe
tively and su
h that SG ⊆ SF . Let F be �xed. Then it is obviousthat the distribution G may be represented as the weighted distribution
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ed by F with the weight fun
tion w(x) = g(x)/f(x). We have obviously
E[w(X)] =

∞\
−∞

g(x)

f(x)
f(x) dx =

∞\
−∞

g(x) dx = 1.It is easy to noti
e that the Lorenz 
urves of U = w(X) are of the form
LU (p) = G(F−1(p)), p ∈ [0, 1],if w is left 
ontinuous in
reasing, and(1) LU (p) = 1 − G(F−1(1 − p)), p ∈ [0, 1],if w is left 
ontinuous de
reasing.Immediately from Theorem 1 and the de�nition of the likelihood ratioorder we have the following result.Theorem 4.(a) If F is IFR, X ≤lr Y and g(x)/f(x) is 
on
ave on SF then G is alsoIFR.(b) If F is DFR, Y ≤lr X and g(x)/f(x) is 
onvex on SF then G is alsoDFR.Theorem 4 may be applied as a useful 
riterion for verifying the IFR/DFRproperty. Consider the following example.Example 1. It is well known that the gamma distribution with density

f(x; p) =
xp−1e−x

Γ (p)
, x > 0, p > 0,is DFR for 0 < p ≤ 1 and IFR for p ≥ 1. Barlow and Pros
han (1975) provedthis fa
t dire
tly, writing 1/rF as an integral. It is well known that the fam-ily of gamma distributions, indexed by the shape parameter p ∈ (0,∞), isordered with respe
t to the likelihood ratio order. Then immediately fromTheorem 4, by 
omparison with the exponential distribution, the DFR prop-erty follows for p ∈ (0, 1], and IFR for p ∈ [1, 2) and then by indu
tion for

p ∈ [kp, (k + 1)p), k = 2, . . . .Similarly, putting w(x) = g(x)/f(x) in Theorem 2(a)�(d) we obtain thefollowing useful results.Theorem 5. Let g(x)/f(x) be a left 
ontinuous fun
tion.(a) If X ≤lr Y (resp. Y ≤lr X) and g(x)/F (x) (resp. f(x)/G(x)) isde
reasing , then F and G are both DFR.(b) If X ≤lr Y (resp. Y ≤lr X) and f(x)/G(x) (resp. g(x)/F (x)) isin
reasing , then F and G are both IFR.(
) If X ≤lr Y (resp. Y ≤lr X) and g(x)/F (x) (resp. f(x)/G(x)) isde
reasing , then F and G are both DRFR.
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z(d) If X ≤lr Y (resp. Y ≤lr X) and f(x)/G(x) (resp. g(x)/F (x)) isin
reasing , then F and G are both IRFR.In this parti
ular statement of Theorem 2, we omit parts (e) and (f),sin
e their new versions are weaker than parts (a) and (d) of Theorem 5,respe
tively.Putting now w(x) = g(x)/f(x) in Theorem 3 and using (1) we easilyobtain results for IFRA, DFRA, NBU and NWU distributions.Theorem 6. Let F and G be absolutely 
ontinuous with supports beingintervals, F (0) = G(0) = 0 and g(x)/f(x) left 
ontinuous.(a) If F is IFRA (resp. NBU ) and g(x)/rF (x) is in
reasing , then X ≤lr

Y and G is also IFRA (resp. NBU ).(b) If F is DFRA (resp. NWU ) and f(x)/rG(x) is in
reasing , then Y ≤lr

X and G is also DFRA (resp. NWU ).Remark 1. It is easy to noti
e that Theorem 5 may be proved dire
tly,without using weighting and Theorem 2, and without the 
ontinuity assump-tion on g(x)/f(x). For example we prove Theorem 5(a).Let X ≤lr Y . We have
rF (x) =

f(x)

F (x)
=

f(x)

g(x)

g(x)

F (x)and so rF is de
reasing as the produ
t of two positive de
reasing fun
-tions. Sin
e the likelihood ratio order implies the hazard rate order, theratio G(x)/F (x) is in
reasing and hen
e
rG(x) =

g(x)

F (x)

F (x)

G(x)is de
reasing. Other 
ases may be proved in a similar way.Remark 2. Noti
e that the assumptions of Theorem 5 imply that thedistributions F and G are of the same type. For example, if w(x) = g(x)/f(x)is in
reasing and w(x)rF (x) = g(x) / F (x) = [g(x)G(x)] / [G(x)F (x)] =
rG(x)[G(x)/F (x)] is de
reasing, then both F and G must evidently be DFR.This is a 
onsequen
e of the fa
t that the likelihood ratio order implies thehazard rate and reversed hazard rate orders.2.2. Results obtained without weighting assumptions. The possibility ofproving Theorem 5 without the use of weighting implies a simple observationthat, the assumptions of this theorem may be weakened by repla
ing thelikelihood ratio order by the hazard rate order in (a) and (b), and the reversedhazard rate order in (
) and (d). However, in these 
ases only one distributionhas the required property in the assertions. We may formulate the followingtheorem.



Life distributions 289Theorem 7.(a) If X ≤hr Y (resp. Y ≤hr X) and g(x)/F (x) is de
reasing (resp.in
reasing), then G is DFR (resp. IFR).(b) If X ≤hr Y (resp. Y ≤hr X) and f(x)/G(x) is in
reasing (resp.de
reasing), then F is IFR (resp. DFR).(
) If X ≤rh Y (resp. Y ≤rh X) and g(x)/F (x) is de
reasing (resp.in
reasing), then G is DRFR (resp. IRFR).(d) If X ≤rh Y (resp. Y ≤rh X) and f(x)/G(x) is in
reasing (resp.de
reasing), then F is IRFR (resp. DRFR).There is also another way to prove Theorem 5(a), (b) as well as to extendTheorem 7, by using relations between the equilibrium renewal distributionand 
lasses of life distributions. Moreover, we 
an obtain results for NBUEand NWUE 
lasses. In these 
ases the 
ontinuity of g(x)/f(x) is not required,but �niteness of the expe
tations of X and Y is needed. We will not formulatethese new versions of Theorem 5(a), (b), whi
h would be weaker and theproof would be similar to that of the next theorem.Combining Theorem 7 and Lemma 1(b), we obtain new versions of The-orems 7(a) and 7(b).Theorem 7′. Let X and Y be nonnegative random variables with abso-lutely 
ontinuous distributions and 0 < E(X) < ∞ and 0 < E(Y ) < ∞.(a) If X ≤hr Y (resp. Y ≤hr X) and g(x)/F (x) is de
reasing (resp.in
reasing), then F is IMRL (resp. DMRL) and G is DFR (resp.IFR).(b) If X ≤hr Y (resp. Y ≤hr X) and f(x)/G(x) is in
reasing (resp. de-
reasing), then F is IFR (resp. DFR) and G is DMRL (resp. IMRL).Proof. (a) Let g(x)/F (x) be de
reasing. This is equivalent to Y ≤lr Xe, sin
e
F (x)/E(X) is the density of the equilibrium distribution asso
iated with
F . The likelihood order implies the hazard one, so we have X ≤hr Y and
Y ≤hr Xe. Hen
e X ≤hr Xe and from Lemma 1(b), F is IMRL. Moreover,
G is DFR sin
e its failure rate is de
reasing as the produ
t of two positivede
reasing fun
tions: rG(x) = [g(x)/F (x)][F (x)/G(x)].The 
ase when Y ≤hr X and g(x)/F (x) is in
reasing and part (b) 
anbe proved in a similar manner.Lemma 1(
) implies the following theorem.Theorem 8. Let X and Y be nonnegative random variables with abso-lutely 
ontinuous distribution and 0 < E(X) < ∞ and 0 < E(Y ) < ∞.(a) If X ≤st Y (resp. Y ≤st X) and g(x)/F (x) is de
reasing (resp.in
reasing), then F is NWUE (resp. NBUE ).
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z(b) If X ≤st Y (resp. Y ≤st X) and f(x)/G(x) is in
reasing (resp.de
reasing), then G is NBUE (resp. NWUE ).2.3. Residual life distribution. Let us 
onsider the residual life Xt of alife random variable X, where t > 0 is �xed. It is well known that
Ft(x) = P (Xt ≤ x) =

F (x + t) − F (t)

F (t)
, x > 0, t > 0,the survival fun
tion is

F t(x) =
F (x + t)

F (t)
, x > 0, t > 0,and a density of Xt is of the form

ft(x) =
f(x + t)

F (t)
, x > 0, t > 0,provided that the density f exists. Therefore in the absolutely 
ontinuous
ase we may represent the distribution Ft as the weighted distribution in-du
ed by F with density

ft(x) =
1

F (t)

f(x + t)

f(x)
f(x)and weight fun
tion

wt(x) =
1

F (t)

f(x + t)

f(x)
.Noti
e that monotoni
ity of wt means that log f is 
onvex if wt is in-
reasing, and 
on
ave if wt is de
reasing. It is well known (see Barlow andPros
han, 1975) that if log f is 
onvex, then F is DFR, and if log f is 
on
ave,then F is IFR, i.e. 
onvexity or 
on
avity of log f are stronger properties thanDFR and IFR respe
tively. It is known that if F is IFR (resp. DFR), then Ftis also IFR (resp. DFR); see e.g. Müller and Stoyan (2002). From Theorems2(d) and 2(e) we obtain the following results:Theorem 9.(a) If log f is 
on
ave and f(x + t)/F (x) is in
reasing in x for every

t > 0, then Ft is IRFR.(b) If log f is 
on
ave and f(x + t)/F (x) is de
reasing in x for every
t > 0, then Ft is DRFR.
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