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WEIGHTING, LIKELTHOOD RATIO ORDER
AND LIFE DISTRIBUTIONS

Abstract. We use weighted distributions with a weight function being a
ratio of two densities to obtain some results of interest concerning life and
residual life distributions. Our theorems are corollaries from results of Jain
et al. (1989) and Bartoszewicz and Skolimowska (2006).

1. Preliminaries. Let X and Y be two random variables, F' and G
their respective probability distribution functions, and f and g their density
functions, if they exist. Denote by F' = 1 — F the tail (or survival func-
tion) of F, by F~!(u) = inf{z : F(z) > u}, u € (0,1), the quantile (or
reversed) function and by F~1(0) and F~1(1) the lower and upper bounds
of the support of F' respectively, and analogously for G. We identify the
distribution functions F’ and G with the respective probability distributions
and denote their supports by Sg, Sg respectively. We use increasing in place
of nondecreasing and decreasing in place nonincreasing.

1.1. Classes of life distributions. A distribution F' is said to be IFR
(resp. DFR) [increasing (resp. decreasing) failure rate] if log F is concave
(resp. convex) on Sr which is an interval. A distribution F' with Sr = [a, b],
—00 < a < b < o0, is said to be IRFR (increasing reversed failure rate)
if log F' is convex on Sp. A distribution F' is said to be DRFR (decreasing
reversed failure rate) if log F' is concave on Sp. It is well known that each
DFR distribution is DRFR and each IRFR distribution is IFR.

A distribution F' with F(0) = 0 and Sp being an interval is said to
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be IFRA (resp. DFRA) [increasing (resp. decreasing) failure rate average] if
—log F'(z)/x is increasing (or decreasing) on Sp, or equivalently: F*(x) <

(>) F(azx) for every a € (0,1) and = € Sp.
A distribution F' with S = [0, 00) is said to be

e NBU (resp. NWU) [new better (resp. worse) than used| if F(z +1y) <
(>) F(z)F(y) for all z,y,r +y € S;

e DMRL (resp. IMRL) [decreasing (resp. increasing) mean residual life]
if E[X —t| X > t] is decreasing (resp. increasing) in ¢ > 0;

e NBUE (resp. NWUE) [new better (resp. worse) than used in exrpec-
tation] if ° F(z)dx < (=) E(X)F(t), t > 0, provided that E(X)

exists.

It is well known that
IFR c IFRA ¢ NBU and DFR c DFRA ¢ NWU
and

IFR ¢ DMRL ¢ NBUE and DFR C IMRL C NWUE.

1.2. Stochastic orders. We will deal with some stochastic orders. We
recall their definitions and some properties for completeness. Similarly to
Shaked and Shanthikumar (1994) we use notation involving random vari-
ables. However, stochastic orders are relations between probability distribu-
tions.

We say that:

o X is smaller than'Y in the likelihood ratio order (X <, Y)if g(z)/f(z)
is increasing;

e X is smaller than'Y in the hazard rate order (X <y, Y) if G(z)/F(x)
is increasing or rp(x) > rg(x) for every z if F' and G are absolutely
continuous, where rg(x) = f(x)/F(z) is the hazard rate function of F
(and analogously for r¢);

e X is smaller than Y in the reversed hazard rate order (X < Y) if
G(z)/F(x) is increasing or 7p(z) < 7g(z) for every x if F' and G are
absolutely continuous, where 7p(z) = f(x)/F(x) is the reversed hazard
rate function of F' (and analogously for 7g);

o X is stochastically smaller than'Y (X <& Y) if F((x) > G(x) for every
x, or equivalently, if F'(z) < G(z) for every z.

It is also well known that
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Let X and Y be positive random variables with finite expectations. De-
note by

LX(p):ﬁSFl(u)du, 0<p<1,
0

the Lorenz curve of X and set Lx = 1 — Lx (and analogously for Y). It is
well known that Lx is a distribution function and is convex (and hence also
star-shaped) on (0, 1).

For properties of classes of life distributions and stochastic orders we
refer to Barlow and Proschan (1975), Shaked and Shanthikumar (1994) and
Miiller and Stoyan (2002).

1.3. The equilibrium renewal distribution. Let X be a nonnegative ran-
dom variable and 0 < E(X) < oo. A distribution function

F.(x) —S%dt, t>0,
0

is called the equilibrium renewal distribution associated with F (see Cox,
1962). Tt is evident that its density is of the form f.(x) = F(z)/E(X),
x > 0. Denote by X, a random variable with distribution F,. Similarly we
define G, g. and Y.

The following lemma is well known; see e.g. Shaked and Shanthikumar
(1994) and Miiller and Stoyan (2002).

LEMMA 1. Let X be a nonnegative random variable and 0 < E(X) < oo.
Then:

(a) F is IFR (resp. DFR) e Xe < X (resp. X <y Xe);
(b) F is DMRL (resp. IMRL) < X, <p, X (resp. X <p; X¢);
(c) F is NBUE (resp. NWUE) & X, <g X (resp. X <g Xe).

1.4. Weighted distributions. Let w : R — R™ be a function for which
0 < Elw(X)] < oco. Then

R 1 x F(x) B
Fy(x) = W_goow(u) dF(u):W §) wF™(2) dz

is a distribution function, called a weighted distribution associated with F'.
If a density f of F' exists, then

- i)
P = )]

is a density of ﬁw.
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We refer to Patil and Rao (1977, 1978) and to Rao (1985) for a survey of
statistical applications of weighting, especially to the analysis of data relat-
ing to human populations and ecology. Mahfoud and Patil (1982) developed
a theory of weighted distributions. Jain et al. (1989) and Nanda and Jain
(1999) studied relations of weighted distributions with classes of life distri-
butions. Navarro et al. (2001) developed characterizations through reliability
measures from weighted distributions. Bartoszewicz and Skolimowska (2006)
obtained some results about preservation of classes of life distributions and
stochastic orders under weighting.

Jain et al. (1989) have proved the following theorem.

THEOREM 1. If the weight function w is increasing and concave (resp.
decreasing and convex) and F is IFR (resp. DFR), then F,, is also IFR
(resp. DFR).

Using a representation of weighted distributions by the Lorenz curve Bar-
toszewicz and Skolimowska (2006) have proved the following two theorems.

THEOREM 2. Let w be a monotone left continuous function.

(a) Ifw(x) is increasing and w(x)rp(z) is decreasing, then F, is DFR.
(b) If w(x) is decreasing and w(z)rp(z) is increasing. then F, is IFR.
(¢) Ifw(zx) is increasing and w(z)Fr(x) is decreasing, then F, is DRFR.
(d) If w(x) is decreasing and w(x)7p(x) is increasing, then F\w is IRFR.
) If w(z)rp(z) is decreasing, then F,, is DRFR.
) If w(x)Fp(z) is increasing, then F, is IFR.

(e
(f
THEOREM 3. Let F' be absolutely continuous with F(0) = 0 and Sp be

an interval.

(a) If F is IFRA (resp. NBU) and w(z)F(z) is increasing, then F,, is
IFRA (resp. NBU).
(b) Let w be decreasing left continuous. If F is DFRA (resp. NWU) and
w(x)/Ly(x)(F(x)) is decreasing, then F, is DFRA (resp. NWU).

In this note some results following from these three theorems are dis-
cussed.

2. Results

2.1. Weighting by monotone likelihood ratio. Let X and Y be random
variables with absolutely continuous distributions F' and G with densities f
and g respectively and such that Sg C Sp. Let F be fixed. Then it is obvious
that the distribution G may be represented as the weighted distribution
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induced by F with the weight function w(z) = g(x)/f(x). We have obviously

Elw(X)] = | %f(:r)dx: | g(z)de=1.

It is easy to notice that the Lorenz curves of U = w(X) are of the form

Ly(p) = G(F~(p), pe0.1],
if w is left continuous increasing, and
(1) Ly(p)=1-G(F ' (1-p), pel01],
if w is left continuous decreasing.

Immediately from Theorem 1 and the definition of the likelihood ratio
order we have the following result.

THEOREM 4.

(a) If Fis IFR, X <, Y and g(x)/f(z) is concave on Sg then G is also
IFR.

(b) If F is DFR,Y <y X and g(z)/f(x) is convex on Sg then G is also
DFR.

Theorem 4 may be applied as a useful criterion for verifying the IFR/DFR
property. Consider the following example.

ExXAMPLE 1. It is well known that the gamma distribution with density

fap) =T 0,p>0
riPp)= —FJ77 > T > , P > 9
I'(p)

is DFR for 0 < p < 1 and IFR for p > 1. Barlow and Proschan (1975) proved
this fact directly, writing 1/rp as an integral. It is well known that the fam-
ily of gamma distributions, indexed by the shape parameter p € (0, 00), is
ordered with respect to the likelihood ratio order. Then immediately from
Theorem 4, by comparison with the exponential distribution, the DFR prop-
erty follows for p € (0,1], and IFR for p € [1,2) and then by induction for
p€lkp,(k+1)p), k=2,....

Similarly, putting w(z) = g(z)/f(z) in Theorem 2(a)—(d) we obtain the
following useful results.

THEOREM 5. Let g(z)/f(x) be a left continuous function.

() If X <u ¥ (resp. Y <pp X) and g(x)/F(z) (resp. f(2)/C() is
decreasing, then F' and G are both DFR.

(b) If X < Y (resp. Y <y, X) and f(x)/G(x) (resp. g(x)/F(x)) is
increasing, then F and G are both IFR.

(¢) If X <p Y (resp. Y <y, X) and g(z)/F(z) (resp. f(x)/G(z)) is
decreasing, then I and G are both DRFR.
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(@) If X < Y (resp. ¥ < X) and f(2)/G(x) (resp. g(x)/F(x)) is
increasing, then F and G are both IRFR.

In this particular statement of Theorem 2, we omit parts (e) and (f),
since their new versions are weaker than parts (a) and (d) of Theorem 5,
respectively.

Putting now w(xz) = g(x)/f(x) in Theorem 3 and using (1) we easily
obtain results for IFRA, DFRA, NBU and NWU distributions.

THEOREM 6. Let F' and G be absolutely continuous with supports being
intervals, F'(0) = G(0) =0 and g(z)/ f(x) left continuous.

(a) If F is IFRA (resp. NBU) and g(x)/rr(x) is increasing, then X <)
Y and G is also IFRA (resp. NBU).

(b) If Fis DFRA (resp. NWU) and f(z)/rq(x) is increasing, then' Y <j,
X and G is also DFRA (resp. NWU).

REMARK 1. It is easy to notice that Theorem 5 may be proved directly,
without using weighting and Theorem 2, and without the continuity assump-
tion on g(z)/f(x). For example we prove Theorem 5(a).

Let X <;, Y. We have

fx) _ flz) g(z)

rp(zr) = =+ = =
F(z)  9(z) F(z)
and so rp is decreasing as the product of two positive decreasing func-

tions. Since the likelihood ratio order implies the hazard rate order, the
ratio G(x)/F(z) is increasing and hence

is decreasing. Other cases may be proved in a similar way.

REMARK 2. Notice that the assumptions of Theorem 5 imply that the
distributions F' and G are of the same type. For example, if w(z) = g(z)/f(x)
is increasing and w(x)rp(z) = g(z)/ F(zr) = [g(z)G(x)]/[G(z)F(z)] =
rq(x)[G(z)/F(x)] is decreasing, then both F' and G must evidently be DFR.

This is a consequence of the fact that the likelihood ratio order implies the
hazard rate and reversed hazard rate orders.

2.2. Results obtained without weighting assumptions. The possibility of
proving Theorem 5 without the use of weighting implies a simple observation
that, the assumptions of this theorem may be weakened by replacing the
likelihood ratio order by the hazard rate order in (a) and (b), and the reversed
hazard rate order in (c) and (d). However, in these cases only one distribution
has the required property in the assertions. We may formulate the following
theorem.
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THEOREM 7.

(a) If X <pp Y (resp. Y <p X) and g(x)/F(z) is decreasing (resp.
increasing), then G is DFR (resp. IFR).

() If X < Y (resp. Y <y, X) and f(x)/G(x) is increasing (resp.
decreasing), then F' is IFR (resp. DFR).

(¢) If X < Y (resp. Y <, X) and g(z)/F(z) is decreasing (resp.
increasing), then G is DRFR (resp. IRFR).

(d) If X <, Y (resp. Y <;p X) and f(x)/G(x) is increasing (resp.
decreasing), then F' is IRFR (resp. DRFR).

There is also another way to prove Theorem 5(a), (b) as well as to extend
Theorem 7, by using relations between the equilibrium renewal distribution
and classes of life distributions. Moreover, we can obtain results for NBUE
and NWUE classes. In these cases the continuity of g(x)/ f(z) is not required,
but finiteness of the expectations of X and Y is needed. We will not formulate
these new versions of Theorem 5(a), (b), which would be weaker and the
proof would be similar to that of the next theorem.

Combining Theorem 7 and Lemma 1(b), we obtain new versions of The-

orems 7(a) and 7(b).

THEOREM 7’. Let X andY be nonnegative random variables with abso-
lutely continuous distributions and 0 < E(X) < oo and 0 < E(Y) < 0.

(a) If X <pp Y (resp. Y <u X) and g(x)/F(z) is decreasing (resp.
increasing), then F is IMRL (resp. DMRL) and G is DFR (resp.
IFR).

(b) If X < Y (resp. Y <y, X) and f(z)/G(x) is increasing (resp. de-
creasing), then F' is IFR (resp. DFR) and G is DMRL (resp. IMRL).

Proof. (a) Let g(x)/F(z) be decreasing. This is equivalent to Y <}, X,, since
F(x)/E(X) is the density of the equilibrium distribution associated with
F'. The likelihood order implies the hazard one, so we have X <j; Y and
Y <pr Xe. Hence X <y, X, and from Lemma 1(b), F' is IMRL. Moreover,
G is DFR since its failure rate is decreasing as the product of two positive
decreasing functions: r¢(z) = [g(z)/F(2)][F(z)/G(x)].

The case when Y <}, X and g(z)/F(x) is increasing and part (b) can
be proved in a similar manner.

Lemma 1(c) implies the following theorem.

THEOREM 8. Let X and Y be nonnegative random variables with abso-
lutely continuous distribution and 0 < E(X) < oo and 0 < E(Y') < oc.

(a) If X <4 Y (resp. Y <4 X) and g(z)/F(x) is decreasing (resp.
increasing), then F is NWUE (resp. NBUE).
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(b) If X <4 Y (resp. Y <y X) and f(z)/G(x) is increasing (resp.
decreasing), then G is NBUE (resp. NWUE).
2.3. Residual life distribution. Let us consider the residual life X; of a
life random variable X, where ¢ > 0 is fixed. It is well known that

F(x+1t)— F(t)

Fi(x)=P( Xy <zx)= = , x>0,1>0,

the survival function is

— F(z+t

Fow) = ZE+) oo,

F(t)
and a density of X; is of the form
t
fe(x) = L£+ ), z>0,t>0,

F(t)
provided that the density f exists. Therefore in the absolutely continuous

case we may represent the distribution F; as the weighted distribution in-
duced by F' with density

1 f(x+1)
fr(z) = o) @) f(@)
and weight function
wy(z) = 1 fle+y)
F(t) f(x)

Notice that monotonicity of w; means that log f is convex if w; is in-
creasing, and concave if w; is decreasing. It is well known (see Barlow and
Proschan, 1975) that if log f is convex, then F'is DFR, and if log f is concave,
then F'is IFR, i.e. convexity or concavity of log f are stronger properties than
DFR and IFR respectively. It is known that if F'is IFR (resp. DFR), then F;
is also IFR (resp. DFR); see e.g. Miiller and Stoyan (2002). From Theorems
2(d) and 2(e) we obtain the following results:

THEOREM 9.

(a) If logf is concave and f(x +t)/F(x) is increasing in x for every
t > 0, then F; is IRFR.

(b) If log f is concave and f(x + t)/F(x) is decreasing in x for every
t > 0, then F; is DRFR.
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