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SHARP UPPER BOUNDS FOR THE BEST PREDICTOR

OF FUTURE MEAN OF SOME ORDER STATISTICS

Abstract. We provide sharp upper bounds for the mean of the future
order statistics based on observed r order statistics. These bounds are ex-
pressed in terms of various scale units. We also determine the probability
distributions for which the bounds are attained.

1. Introduction. Suppose that n components are put on test and that
their lifetimes X1, . . . , Xn are independent identically distributed (iid) ran-
dom variables (r.v.’s) with a common distribution function (cdf) F , proba-
bility density function (pdf) f , quantile function F−1 defined by

F−1(x) = sup{y : F (y) ≤ x}, 0 < x < 1,

and finite mean µ =
T1
0 F−1(x) dx.

Of the n items put on test, suppose r failure times are observed and the
remaining n− r failure times are not observed. Let X = (X1:n ≤ X2:n ≤ · · ·
· · · ≤ Xr:n), 1 ≤ r ≤ n − 1, be the first observed failure times from F .
In a sample-prediction problem, prediction of order statistics or a function
of order statistics is of interest. One might be interested in predicting the
average strength of survivors having observed the first r failure times. The
behavior of the future mean of the remaining failure times will help in setting
up warranty for the items sent out to the market.

Generally, it is of interest to predict the mean of some future failure
times which is defined by

Tj,k,n =
1

k − j + 1

k
∑

s=j

Xs:n, 1 ≤ r < j ≤ k ≤ n.
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In the context of reliability theory, Xs:n represents the life length of
an (n − s + 1)-out-of-n system made up of n identical components with
independent life lengths. When s = n, it is better known as the parallel
system. For more discussion on this subject, see Barlow and Proschan (1981).

Since F is continuous, the conditional distribution of Xs:n given X is just
the distribution of the Xs:n given Xr:n, r < s ≤ n. This is the well known
Markov property of the order statistics (see, for example, Arnold et al.,
1992, p. 24). The best unbiased predictor (BUP) of Tj,k,n, E(Tj,k,n |X), is
nothing but E(Tj,k,n |Xr:n).

The expectation of the ith order statistic Xi:n (1 ≤ i ≤ n) is given by

E(Xi:n) =
1\
0

F−1(x)fi:n(x) dx,

where

fi:n(x) = n

(

n − 1

i − 1

)

xi−1(1 − x)n−i, 0 ≤ x ≤ 1,

is the pdf of the ith order statistic from the standard uniform iid sample of
size n (cf., e.g., Arnold et al., 1992). The respective cdf Fi:n can be written
as

Fi:n(x) =
n
∑

k=i

(

n

k

)

xk(1 − x)n−k, 0 ≤ x ≤ 1.(1.1)

In fact, the distribution of Xs:n given Xr:n = w is like the unconditional
distribution of Xs−r:n−r from the truncated distribution of Y given Y > w,
that is,

G|w(y) =
F (y) − F (w)

1 − F (w)
, −∞ < w < y < ∞.

Now we have

EF (Xs:n |Xr:n = w) = EG|w
(Xs−r:n−r) =

1\
0

G−1
|w (u)fs−r:n−r(u) du.

Our purpose in this paper is to provide sharp upper bounds of the mean
of Tj,k:n given Xr:n = F−1(ξ) for 0 < ξ < 1 for distributions having finite
pth moments, 1 ≤ p ≤ ∞. The pth moments of absolute deviations from the
quantile are defined as follows:

σp
p(ξ) = EF |X1 − F−1(ξ)|p, 1 ≤ p < ∞,

σ∞(ξ) = ess sup |X1 − F−1(ξ)| = sup
x∈(0,1)

|F−1(x) − F−1(ξ)|
(1.2)

= max{F−1(1−) − F−1(ξ), F−1(ξ) − F−1(0)}.
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The conditional expectation of Xs:n given Xr:n = F−1(ξ) can be written
as follows:

EF (Xs:n |Xr:n = F−1(ξ)) =
1\
0

F−1(ξ + x(1 − ξ))fs−r:n−r(x) dx

=
1

1 − ξ

1\
ξ

F−1(v)fs−r:n−r

(

v − ξ

1 − ξ

)

dv.

Therefore

(1.3) EF (Tj,k:n − F−1(ξ) |Xr:n = F−1(ξ))

=
1\
0

[F−1(x) − F−1(ξ)]ϕj,k:n(x) dx,

where

ϕj,k:n(x) =
1

k − j + 1

k
∑

s=j

fs−r:n−r

(

x − ξ

1 − ξ

)

I[ξ,1)(x)

1 − ξ
,(1.4)

with IA(x) = 1 if x ∈ A, and 0 otherwise. Let us consider the function

fj,k:n(x) =
1

k − j + 1

k
∑

s=j

fs−r:n−r(x), 0 ≤ x ≤ 1.

The anti-derivative of fj,k:n(x) is denoted by Fj,k:n(x), which can be written
as

Fj,k:n(x) =
1

k − j + 1

k
∑

s=j

Fs−r:n−r(x), 0 ≤ x ≤ 1.

The anti-derivative of ϕj,k:n(x) can be written as

Φj,k:n(x) =
1

k − j + 1

k
∑

s=j

Fs−r:n−r

(

x − ξ

1 − ξ

)

I[ξ,1](x).(1.5)

Distribution-free bounds on order and record statistics can be found in
Raqab (1997), Raqab and Rychlik (2002), Rychlik (2001), Danielak and
Rychlik (2003). Recently Raqab (2005) established bounds for the mean
of the total time on test using type II censored samples. Klimczak and
Rychlik (2005) provided optimal bounds for the increments of order and
record statistics under the condition that the values of future order statistics
and records are known.

The aim of this paper is to present sharp moment bounds for the expecta-
tions of the future order statistics on the basis of observing r order statistics.
These sharp bounds are obtained by combining the principle of Moriguti
monotone approximations (Moriguti, 1953) with Hölder’s inequality.
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2. Auxiliary results. Let us first present some auxiliary results that
are helpful in establishing sharp upper bounds on E(Tj,k:n |Xr:n = F−1(ξ)).

Lemma 2.1. Let g be the right derivative of the greatest convex function

G(x) =
Tx
a g(u) du, not greater than the integral G(x) =

Tx
a g(u) du of g. For

every nondecreasing function w on [a, b] for which both integrals in (2.1) are

finite, we have
b\
a

w(u)g(u) du ≤
b\
a

w(u)g(u) du.(2.1)

Equality holds in (2.1) iff w is constant on every open interval where G > G.

Lemma 2.1 follows from Moriguti (1953, Theorem 1). The function g(x) is
called the projection of g(x) onto the convex cone of nondecreasing functions
in L2([a, b], dx) (cf. Rychlik, 2001, pp. 12–16).

The lemma below known as the variability diminishing property (VDP)
of densities of order statistics was presented in Gajek and Rychlik (1998).

Lemma 2.2. The number of zeros of a linear combination of Bernstein

polynomials
∑m

k=0 akfk:m in (0, 1) does not exceed the number of sign changes

of the sequence a0, a1, . . . , am. The first and the last sign of
∑m

k=0 akfk:m

are identical with the signs of the first and the last nonzero elements of

a0, a1, . . . , am, respectively.

Lemma 2.3. If r + 1 < j < k = n then ϕj,k:n(ξ) = 0,

lim
xր1−

ϕj,k:n(x) =
n − r

(n − j + 1)(1 − ξ)
> 0

and ϕj,k:n is increasing. If r + 1 = j < k < n, then ϕj,k:n is decreasing with

ϕj,k:n(ξ) =
n − r

(k − r)(1 − ξ)

and limxց1− ϕj,k:n(x) = 0. If r + 1 < j < k < n then ϕj,k:n is first increas-

ing , and then decreasing with ϕj,k:n(ξ) = 0, and limxց1− ϕj,k:n(x) = 0, and

it has a unique maximum at x0 = ξ + θ(1 − ξ), where

θ =
1

1 + τ1/(k−j+1)
with τ =

(n−r−2
k−r−1

)

(n−r−2
j−r−2

) .

Proof. The derivative of fi:n can be written as

f ′
i:n(x) = n(n − 1)[Bi−2:n−2(x) − Bi−1:n−2(x)],

where Bj:m(x) =
(m

j

)

xj(1 − x)m−j , j = 0, 1, . . . , m, m = 0, 1, . . . , are the
Bernstein polynomials. We adopt the convention that Bl,m = 0 if l > m or
l < 0.



Future means of some order statistics 297

Straightforward algebra leads to the following representation:

ϕ′
j,k:n(x) =

(n − r)(n − r + 1)

(k − j + 1)(1 − ξ)2

{

Bj−r−2:n−r−2

(

x − ξ

1 − ξ

)

− Bk−r−1:n−r−2

(

x − ξ

1 − ξ

)}

I[ξ,1)(x).

If k = n, ϕj,k:n(x) is positive and its derivative is also positive. That is,
ϕj,k:n is increasing from 0 at x = ξ to ϕj,n:n(1) = (n− r)/((n− j +1)(1− ξ))
> 0. If j = r + 1, then ϕ′

r+1,k:n(x) is negative. So ϕr+1,k:n(x) is decreasing
from ϕr+1,k:n(ξ) = (n − r)/((k − r)(1 − ξ)) > 0 to ϕr+1,k:n(1) = 0. If
r+1 < j < k < n, then by VDP, ϕ′

j,k:n(x) is first positive and then negative
(+ −, for short). Therefore each ϕj,k:n(x) is increasing-decreasing and it has
a maximum at x0.

It is clear that for j = k, Tj,k:n = Xk:n and the problem is of finding
optimal evaluation for the mean of a future order statistic (cf. Moriguti, 1953
and Rychlik, 2001). For j = r + 1 and k = n, Tj,k:n =

∑n
s=r+1 Xs:n/(n − r),

which is the mean of all unobserved failure times. In this case,

EF (Tr+1,n:n |Xr:n = F−1(ξ)) =
1

n − r

n
∑

s=r+1

EG|F−1(ξ)(Xs−r:n−r),

where G|w is the truncated distribution of Y given Y > F−1(ξ). This implies
that

EF (Tr+1,n:n |Xr:n = F−1(ξ)) = EG|F−1(ξ)(X1) = m(F−1(ξ)),

where m(̺) = EF (X |X > ̺) is the expectation of X under the condition
that it exceeds the level ̺.

Lemma 2.4. For given r + 1 ≤ j < k ≤ n, the derivative of the greatest

convex minorant of Φj,k:n(x) is

(2.2) ϕj,k:n(x) =











(1 − ξ)−1I[ξ,1](x) if r + 1 = j < k < n,

ϕj,k:n(x) if r + 1 < j < k = n,

ϕk,j:n(min{ξ(1−α∗)+α∗, x}) if r + 1 < j < k < n,

where α∗ is the solution to

1 − Fj,k:n(α∗) = (1 − α∗)fj,k:n(α∗).(2.3)

Proof. The function F−1(x) − F−1(ξ), 0 < x < 1, is an element of the
convex cone of nondecreasing functions and changes sign at x = ξ. We need
to determine the projection ϕj,k:n of ϕj,k:n(x) onto the family of nonde-

creasing functions in L2([0, 1], dx). It is enough to show that ϕj,k:n(x) is

the derivative of the greatest convex minorant Φj,k:n(x) of the anti-deriva-
tive Φj,k:n.
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For r + 1 < j < k < n, Φj,k:n(ξ) = 0, Φj,k:n(1) = 1, and Φj,k:n(x) is
increasing convex on [ξ, ξ + θ(1− ξ)], increasing concave on [ξ + θ(1− ξ), 1]
and constant on [0, ξ]. Thus its greatest convex minorant is linear in [α, 1]
for some α ∈ [ξ, ξ + (1 − ξ)θ]. That is,

Φj,k:n(x) =











0 if 0 ≤ x < ξ,

Φj,k:n(x) if ξ ≤ x < α,

ϕj,k:n(α)(x − 1) + 1 if α ≤ x ≤ 1,

(2.4)

where α is the solution to

1 − Φj,k:n(α) = ϕj,k:n(α)(1 − α).(2.5)

Setting α∗ = (α − ξ)/(1 − ξ) turns (2.5) into (2.3).

For r +1 = j < k < n, the anti-derivative Φj,k:n(x) is concave increasing
with Φj,k:n(ξ) = 0, Φj,k:n(1) = 1. Therefore the greatest convex minorant is
linear in [ξ, 1] with slope (1− ξ)−1. If r + 1 < j < k = n, Φj,n:n(x) is convex
increasing with Φj,n:n(ξ) = 0, Φj,n:n(1) = 1 and then Φj,n:n(x) = Φj,n:n(x).

Summing up, the derivative of Φj,k:n(x), r + 1 ≤ j < k ≤ n, is described
in (2.2).

3. The main results. Here we use the preceding auxiliary results to
evaluate optimal sharp upper bounds for EF (Tj,k:n |Xr:n = F−1(ξ)), r + 1
≤ j < k ≤ n, in terms of different scale units generated by various central
absolute moments about the quantile function. Applying Moriguti’s inequal-
ity and Hölder’s inequality to (1.3), we obtain

EF (Tj,k:n − F−1(ξ) |Xr:n = F−1(ξ))

(3.1) ≤
1\
0

[F−1(x) − F−1(ξ)]ϕj,k:n(x) dx

(3.2) ≤ ‖ϕj,k:n‖qσp(ξ),

where

‖g‖p =
(

1\
0

|g(x)|p dx
)1/p

,

defines the pth norm of g ∈ Lp([0, 1], dx) and ‖g‖q is defined analogously for
the conjugate exponent q = p/(p−1). First we consider the case 1 < p < ∞.

Theorem 3.1. Let X1:n, X2:n, . . . , Xn:n be order statistics from n iid

random variables with continuous cdf F , σp
p(ξ) < ∞, and 1 < p < ∞. Let

α∗ be defined by (2.3). Then

EF (Tj,k:n − F−1(ξ) |Xr:n = F−1(ξ))

σp(ξ)
≤ Bq(j, k, n),
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where

Bq(j, k, n) =















(1 − ξ)−1/p if r + 1 = j < k < n,

(1 − ξ)−1/p‖fj,n:n‖q if r + 1 < j < k = n,

(1 − ξ)−1/(p−1)[D(α∗)]1/q if r + 1 < j < k < n,

(3.3)

with

D(z) =
(

z\
0

f q
j,k:n(x) dx + (1 − z)f q

j,k:n(z)
)

.

For r + 1 = j < k < n, the bound in (3.3) is attained in the limit by the

two-point distribution

P (X = F−1(ξ)) = ξ,

P (X = F−1(ξ) + σp(ξ)(1 − ξ)−1/p) = 1 − ξ,
(3.4)

and for r + 1 < j < k < n, the bound is attained in the limit by continuous

cdf’s converging to F of the following form:

(3.5) F (x) =











































0 if (x − F−1(ξ))/σp(ξ) < 0,

ξ + (1 − ξ)f−1
j,k:n

(

(1 − ξ)Bq(j, k, n)

[

x − F−1(ξ)

σp(ξ)

]p/q)

if 0 ≤ (x − F−1(ξ))/σp(ξ) < ν,

1 if (x − F−1(ξ))/σp(ξ) ≥ ν,

where

ν =

[

fj,k:n(α∗)

(1 − ξ)Bq(j, k, n)

]q/p

,

and α∗ = 1 for k = n.

Proof. For r + 1 < j < k < n, the norm ‖ϕj,k:n‖
q
q can be written as

‖ϕj,k:n‖
q
q =

α\
ξ

[ϕj,k:n(x)]q dx + (1 − α)ϕq
j,k:n(α).

Now

(3.6)
α\
ξ

[ϕj,k:n(x)]q dx

=

ξ(1−α∗)+α∗\
ξ

ϕq
j,k:n(x) dx + (1 − α∗)(1 − ξ)[ϕj,k:n(α∗ + ξ(1 − α∗))]q
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= (1 − ξ)−1/(p−1)
α∗\
0

[fj,k:n(x)]q dx + (1 − α∗)(1 − ξ)−1/(p−1)f q
j,k:n(α∗)

= (1 − ξ)−1/(p−1)
[

α∗\
0

[fj,k:n(x)]q dx + (1 − α∗)f q
j,k:n(α∗)

]

.

If r + 1 = j < k < n, the bound becomes

Bq(r + 1, k, n) = ‖ϕr+1,k:n‖q =

( 1\
ξ

1

(1 − ξ)q
dx

)1/q

= (1 − ξ)−1/p.(3.7)

If r + 1 < j < k = n, the bound can be written as

Bq(j, k, n) = ‖ϕj,n:n‖q = (1 − ξ)−1/p
(

1\
0

[fj,n:n(x)]q dx
)1/q

(3.8)

= (1 − ξ)−1/p‖fj,n:n‖q.

From (3.6), (3.7) and (3.8), we immediately obtain the bound in (3.3).

The bound is attained if F−1(x) = const on (ξ, 1] for j = r+1. It follows
that the bound is attained by the two-point distribution as defined in (3.4).
For r + 1 < j < k < n, the equality in (3.1) holds if F−1(x) = const on
[ξ(1 − α∗) + α∗, 1] (see Lemma 2.1). Equality (3.2) holds if

F−1(x) − F−1(ξ) = λ(ϕj,k:n(x))q/p, 0 < x < 1,

for some λ ≥ 0. Condition EF |X1 − F−1(ξ)|p = σp
p(ξ) forces

λ =
σp(ξ)

B
q/p
q (j, k, n)

,

and then

F−1(x) − F−1(ξ)

σp(ξ)
=

[

ϕj,k:n(x)

Bq(j, k, n)

]1/(p−1)

.(3.9)

The quantile function in (3.9) is a nondecreasing function, constant on
the interval {x : ϕj,k:n(x) 6= ϕj,k:n(x)}, which is necessary and sufficient for
Moriguti’s equality. Substituting (2.3) into (3.9) and simplifying the result-
ing expression, we establish the distribution (3.5) for which the bound is
attained. For j = n, ϕj,n:n = ϕj,n:n, the distribution function for which the
bound is attained is the same as the one in (3.5) except on the extended
support interval [ξ, 1]. That is, the cdf F (x) is obtained by setting α∗ = 1
in (3.5).

The distribution function in (3.5) has two atoms of measures ξ and
ξ + (1 − ξ)α∗ at the left and right ends of the support intervals, respectively.
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Using the fact that

fi:m(x)fj:n(x) =
n
(i+j−2

i−1

)(m+n−i−j
m−i

)

(m+n−1
m

) fi+j−1:m+n−1(x),

we can show the following corollary.

Corollary 3.1. Let X1:n, X2:n, . . . , Xn:n be order statistics from n iid

random variables with continuous cdf F , EX1 = µ and σ2
2 = Var(X1) < ∞.

Then for r + 1 < j < k < n,

EF (Tj,k:n − F−1(ξ) |Xr:n = F−1(ξ))

σ2(ξ)
≤ B2(j, k, n),(3.10)

where

(3.11) B2
2(j, k, n) =

n − r

(k− j + 1)2
(2n−2r−1

n−r

) [(1−α∗)f2
j,k:n(α∗) + Sj,k,n(α∗)],

with

Sj,k,n(x) =
k
∑

i=j

(

2s − 2r − 2

s − r − 1

)(

2n − 2s

n − s

)

F2s−2r−1:2n−2r−1(x)

+2
k
∑

i=j+1

i−1
∑

l=j

(

i+ l−2r−2

i − r − 1

)(

2n− i− l

n − i

)

Fi+l−2r−1:2n−2r−1(x).

The distribution function F (x) attaining the bound is of the form

(3.12) F (x) =



































0 if (x − F−1(ξ))/σ2(ξ) < 0,

ξ + (1 − ξ)f−1
j,k:n

(

(1 − ξ)B2(j, k, n)

(

x − F−1(ξ)

σ2(ξ)

))

if 0 ≤ (x − F−1(ξ))/σ2(ξ) < ν,

1 if x ≥ ν.

Now we study the extreme cases p = 1 and p = ∞.

Theorem 3.2. Let X1:n, X2:n, . . . , Xn:n be order statistics from n iid

r.v.’s, with continuous cdf F , and σ1(ξ) < ∞. With α∗ defined in (2.4), we

have

EF (Tj,k:n − F−1(ξ) |Xr:n = F−1(ξ))

σ1(ξ)
≤ B∞(j, k, n),

where

B∞(j, k, n) =























(1 − ξ)−1 if r+1 = j < k < n,

n − r

(n − j + 1)(1 − ξ)
if r+1 < j < k = n,

(1 − ξ)−1fj,k:n(α∗) if r+1 < j < k < n.

(3.13)



302 M. Z. Raqab

For r + 1 = j < k < n, the bound is attained in the limit by continuous

distribution functions converging to the two-point distribution

P (X = F−1(ξ)) = ξ(3.14)

= 1 − P

(

X = F−1(ξ) +
σ1(ξ)

1 − ξ

)

.

If r + 1 < j < k = n, the bound is attained in the limit by the sequence of

two-point distributions

P (X = F−1(ξ)) = ǫr = 1 − P

(

X = F−1(ξ) +
σ1(ξ)

1 − ǫr

)

,(3.15)

where the sequence ǫr ∈ (ξ, 1), r = 1, 2, . . . , converges to 1. If r + 1 < j <
k < n the bound is attained by

P (X = F−1(ξ)) = ξ + α∗(1 − ξ),

P

(

X = F−1(ξ) +
σ1(ξ)

(1 − ξ)(1 − α∗)

)

= (1 − ξ)(1 − α∗).
(3.16)

Proof. Here we have

(3.17) EF (Tj,k:n − F−1(ξ) |Xr:n = F−1(ξ))

≤
1\
0

[F−1(x) − F−1(ξ)]ϕj,k:n(x) dx

≤ sup
0≤x≤1

ϕj,k:n(x)σ1(ξ) = ϕj,k:n(1)σ1(ξ).

From (2.2) and (3.17), we immediately obtain (3.13). The second equality
holds if

F−1(x) = F−1(ξ)

a.e. except for a subset of {x : ϕj,k:n(x) = ϕj,k:n(1)}. Therefore F−1(x) =

F−1(ξ) a.e. except on the sets (ξ, 1], {0} and (ξ+α∗(1−ξ), 1], for j = r+1 <
k < n, r + 1 < j < k = n and r + 1 < j < k < n, respectively.

In the first and third cases, the conditions for equality in the first in-
equality of (3.17) impose that

F−1(x) = const ≥ F−1(ξ)

on

x ∈ (ξ, 1] and (ξ + α∗(1 − ξ), 1],

respectively. This implies that the bounds are attained by two-point distri-
butions with respective probabilities 1−ξ and (1−ξ)(1−α∗). The probability
distributions are as in (3.15) and (3.16).
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If r + 1 < j < k = n, the inequality becomes an equality if F−1(x) =
F−1(ξ), 0 < x < 1. That is, X is a degenerate r.v. with σ1(ξ) = 0. However,
for k = n, the bound is attained in the limit by the sequence of two-point
distributions in (3.15).

Theorem 3.3. Let X1:n, X2:n, . . . , Xn:n be order statistics from n iid

r.v.’s, with continuous cdf F . If X1 is bounded almost surely , then for

r + 1 ≤ j < k ≤ n, we have

EF (Tj,k:n − F−1(ξ) |Xr:n = F−1(ξ))

σ∞(ξ)
≤ B1(j, k, n) = 1.

The bound is attained in the limit by continuous distribution functions con-

verging weakly to the following two-point distribution:

P (F−1(ξ) − σ∞ ≤ X ≤ F−1(ξ)) = ξ,

P (X = F−1(ξ) + σ∞(ξ)) = 1 − ξ.
(3.18)

Proof. Arguments similar to those in Theorem 3.2 yield

EF (Tj,k:n − F−1(ξ) |Xr:n = F−1(ξ)) ≤
1\
0

[F−1(x) − F−1(ξ)] ϕj,k:n(x) dx

≤ sup
0≤x≤1

|F−1(x) − F−1(ξ)|
1\
0

ϕj,k:n(x) dx = Φj,k:n(1)σ∞(ξ) = σ∞(ξ).

The above equalities hold if

F−1(x) − F−1(ξ) = σ∞(ξ) on {x : ϕj,k:n(x) 6= 0},

and

|F−1(x) − F−1(ξ)| ≤ σ∞(ξ) on {x : ϕj,k:n(x) = 0}.

almost surely. Here

{x : ϕj,k:n(x) 6= 0} = [ξ, 1), {x : ϕj,k:n(x) = 0} = [0, ξ).

This implies that

F−1(ξ) − σ∞ ≤ F−1(x) ≤ F−1(ξ), 0 ≤ x < ξ,

F−1(x) = F−1(ξ) + σ∞, ξ ≤ x < 1.

As a consequence, the bound is attained in the limit by the distribution
described in (3.18).
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