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SEMILINEAR ELLIPTIC PROBLEMSIN UNBOUNDED DOMAINS

Abstra
t. We investigate the existen
e of positive solutions and their 
on-tinuous dependen
e on fun
tional parameters for a semilinear Diri
hlet prob-lem. We dis
uss the 
ase when the domain is unbounded and the nonlinearityis smooth and 
onvex on a 
ertain interval only.1. Introdu
tion. In this paper we are dealing with the following bound-ary value problem for se
ond order PDE of ellipti
 type:(1.1) {
−∆x(y) = Fx(y, x(y)) for a.e. y ∈ Ω,

x ∈ W 1,2
0 (Ω, R),for Ω being an unbounded domain in R

n with boundary ∂Ω and Fx denotingthe derivative of F with respe
t to x. We are looking for a nonnegative andnontrivial weak solution x ∈ W 1,2
0 (Ω, R) of this problem su
h that ∆x(·)belongs to L2(Ω, R).There are numerous papers 
on
erning similar equations for a boundeddomain Ω (see, among others, [1℄�[5℄). In the vast existing literature we 
analso �nd results on radial solutions for our problem in an exterior domain(see [9℄, [10℄, [17℄�[19℄). More pre
isely, [17℄ was devoted to both radial andnonradial 
ases for an exterior domain with sublinear nonlinearities. In the�rst part of [17℄, the authors presented the results for the radial 
ase. Thenthey obtained sub- and supersolutions of (1.1) as radial solutions of a problemasso
iated to (1.1). Finally, they derived the existen
e of positive nonradialsolutions for (1.1) using the sub- and supersolution methods based on thetheory due to Noussair ([11℄) for Ω being the exterior of a ball.2000 Mathemati
s Subje
t Classi�
ation: 35J60, 35B30, 35B35.Key words and phrases: ellipti
 Diri
hlet problem, weak solution, maximum prin
iple,�xed point, dependen
e of solutions on parameters.[345℄



346 A. OrpelHere we do not impose any symmetry 
ondition on Ω, and we 
overboth sub- and superlinear 
ases. Similar boundary value problems on un-bounded domains have been dis
ussed e.g. in [11℄�[14℄. In [12℄�[14℄ (for sys-tems of equations) the authors investigated a semilinear ellipti
 problem ofthe form(1.2) {
Lu = λf(y, u) for y ∈ Ω,

u(y) = 0 for y ∈ ∂Ω,where L is a uniformly ellipti
 operator in Ω, n > 2, λ > 0 and Ω is a smoothunbounded domain in R
n. They obtained the existen
e and nonexisten
eresults for (1.2) provided that, among other things, f is lo
ally Lips
hitz
ontinuous on (Ω∪∂Ω)× [0,∞) and f(x, t) < 0 for all x ∈ Ω and su�
ientlylarge t. Here we 
onsider the 
ase when the nonlinearity is in
reasing andsmooth with respe
t to the se
ond variable on a 
ertain interval Ĩ only. Sothere is no information 
on
erning its behavior and smoothness outside Ĩ.2. The existen
e results. We propose an approa
h based on the fol-lowing assumptions:(Ω) Ω is an unbounded domain in R

n with a lo
ally Lips
hitz boundary
∂Ω.(G1) There exist M, M0 ∈ W 1,2(Ω, R)∩L∞(Ω, R) su
h that 0 < M0(y) <
M(y) for a.e. y ∈ Ω, M0|∂Ω, M |∂Ω ≥ 0, ∆M0(·) ∈ L2(Ω, R) ∩
L∞(Ω, R) and for ea
h bounded set Ω′ ⊂ Ω,(2.1) −Fx(y, M(y)) ≥ ∆M0(y) a.e. in Ω′.(G2) F (y, ·) ∈ C1(Ĩ) and is 
onvex in Ĩ for a.e. y ∈ Ω, F (·, x) is mea-surable in Ω for all x ∈ Ĩ, where Ĩ is a 
ertain neighborhood of
I := [0, a], with a := ess supy∈Ω M(y).(G3) Fx(y, ·) is nonnegative in I for a.e. y ∈ Ω, Fx(·, a) ∈ L2(Ω, R) ∩
L∞(Ω, R);(G4) \
Ω

Fx(y, 0) dy 6= 0,
∣∣∣
\
Ω

F (y, 0) dy
∣∣∣ < ∞.Let us de�ne

X := {x ∈ W 1,2
0 (Ω, R) : 0 ≤ x(y) ≤ M(y) a.e. on Ωand ∆x(·) ∈ L2(Ω, R)}.We will prove the existen
e of solutions to (1.1) in X and their properties intwo steps. First we shall 
onstru
t a sequen
e of solutions of the 
orrespond-ing problems in bounded domains. Then a solution of (1.1) will be obtainedas the limit of this sequen
e (pre
isely, of a subsequen
e). Let us 
onsider
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e of bounded sets
Ωm := {y = (y1, . . . , yn) ∈ Ω : |yi| < m for ea
h i = 1, . . . , n}, m ∈ N.There exists an m0 ∈ N su
h that Ωm 6= ∅ for all m ∈ N0 := {m ∈ N :

m ≥ m0}. For ea
h m ∈ N0, we will use the S
hauder �xed point theoremto prove the existen
e of a solution xm ∈ Xm of the problem(2.2) {
−∆x(y) = Fx(y, x(y)) for a.e. y ∈ Ωm,

x ∈ W 1,2
0 (Ωm, R),with

Xm = {x ∈ W 1,2
0 (Ωm, R) : 0 ≤ x(y) ≤ M(y) a.e. on Ωmand ∆x(y) ∈ L2(Ωm, R)}.Thus, we �x m ∈ N0 and 
onsider a map Tm de�ned in Xm as follows:

Tmx(y) =
\

Ωm

Gm(y, z)F̃x(z, x(z)) dz for x ∈ Xm,where Gm is the Green's fun
tion 
orresponding to the linear homogeneousproblem asso
iated with (2.2), and
F̃x(z, x) :=





Fx(z, 0) for x < 0 and z ∈ Ωm,

Fx(z, x) for 0 ≤ x ≤ a and z ∈ Ωm,

Fx(z, a) for x > a and z ∈ Ωm,where a was given in (G2). By the above assumptions Tm is well de�ned on
L2(Ωm, R) and is 
ontinuous and 
ompa
t.It is 
lear that our problem is equivalent to the existen
e of a �xed pointof Tm in Xm. So we have to show that Tm maps Xm into Xm. To this endwe prove the following lemma:Lemma 2.1. For ea
h m ∈ N0 and ea
h x0 ∈ Xm there exists x ∈ Xmsu
h that {

−∆x(y) = Fx(y, x0(y)) for a.e. y ∈ Ωm,

x ∈ W 1,2
0 (Ωm, R).Proof. Sin
e M0|Ωm
∈ Xm we get Xm 6= ∅. Let us �x x0 ∈ Xm andinvestigate the existen
e of solution for the linear problem(2.3) {

−∆x(y) = Fx(y, x0(y)) for a.e. y ∈ Ωm,

x ∈ W 1,2
0 (Ωm, R).From assumptions (G1)�(G3) we 
an derive that(2.4) 0 ≤ Fx(y, x0(y)) ≤ Fx(y, M(y)) ≤ −∆M0(y)a.e. in Ωm and Fx(·, x0(·)) ∈ L2(Ωm, R). It is well known that problem (2.3)has a unique solution x ∈ W 1,2

0 (Ωm, R)∩W 2,2
loc

(Ωm, R) (see e.g. [5, Th. 8.9℄).



348 A. OrpelOur task is now to show that x ∈ Xm. To this end we 
an observe that, by(G3), ∆x ≤ 0 a.e. in Ωm. Applying the weak maximum prin
iple (see e.g.[5, Th. 8.1℄) we infer that x ≥ 0 a.e. in Ωm. On the other hand, taking intoa

ount (2.4), we obtain
−∆x(y) = Fx(y, x0(y)) ≤ −∆M0(y)a.e. in Ωm, so that

∆(x(y) − M0(y)) ≥ 0.Moreover we know that x − M0 ≤ 0 in ∂Ωm. Finally, using again the weakmaximum prin
iple, we �nd that x ≤ M0 a.e. in Ωm and further 0 ≤ x ≤ Ma.e. in Ωm. Thus x ∈ Xm.By the above lemma, for ea
h m ∈ N0, the 
ontinuous and 
ompa
t op-erator Tm maps the 
onvex set Xm ⊂ L2(Ωm, R) into itself. Now S
hauder's�xed point theorem gives the existen
e of a �xed point xm ∈ Xm of Tm.Thus we have proved the following result.Theorem 2.2. If hypotheses (Ω) and (G1)�(G4) are satis�ed then forea
h m ∈ N0, there exists a solution xm ∈ Xm for (2.2).Now we de�ne the sequen
e {xm}m∈N0
as follows: for ea
h m ∈ N0,

xm(y) =

{
xm(y) for y ∈ Ωm,0 for y ∈ Ω \ Ωm,where xm is a solution for (2.2). Its existen
e follows from Theorem 2.2. Ourtask is to prove that the weak limit of a 
ertain subsequen
e of {xm}m∈N0is a solution for (1.1). A similar approa
h was also used e.g. by Noussair,and Noussair and Swanson (see [11℄�[13℄). However, we shall 
onsider a quitedi�erent 
lass of ellipti
 problems.Now we formulate our main result:Theorem 2.3. Assume hypotheses (Ω) and (G1)�(G4). Then there ex-ists a solution x0 ∈ X of the problem(2.5) {

−∆x(y) = Fx(y, x(y)) for a.e. y ∈ Ω,

x ∈ W 1,2
0 (Ω, R).Proof. For ea
h m ∈ N0, Theorem 2.2 yields the existen
e of xm ∈ Xmsu
h that(2.6) {

−∆xm(y) = Fx(y, xm(y)) for a.e. y ∈ Ωm,

xm ∈ W 1,2
0 (Ωm, R).By the de�nitions of Xm and xm we have(2.7) 0 ≤ xm(y) ≤ M(y) a.e. in Ω.
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 problems in unbounded domains 349Moreover using (2.6), the monotoni
ity of Ĩ ∋ x 7→ Fx(y, x) and the fa
tthat Fx(·, M(·)) ∈ L2(Ω, R), we 
an derive that for ea
h m ∈ N0,
(2.8)

\
Ω

|∇xm(y)|2 dy =
\

Ωm

〈∇xm(y),∇xm(y)〉 dy

=
\

Ωm

Fx(y, xm(y))xm(y) dy ≤
[\
Ω

(Fx(y, M(y))2 dy
]1/2[\

Ω

(M(y))2 dy
]1/2

.

Taking into a

ount (2.8) we derive that the sequen
e {∇xm}m∈N0
isbounded in L2(Ω, Rn), so (up to a subsequen
e) {∇xm}m∈N0

tends weaklyin L2(Ω, Rn) to a 
ertain v ∈ L2(Ω, Rn). Thus we obtain the existen
e of
x1 ∈ W 1,2

0 (Ω, R) su
h that v = ∇x1 in L2(Ω, Rn) and further (up to a sub-sequen
e again) {xm(y)}m∈N0
tends to x1(y) a.e. in Ω, so x1(y) ≤ M(y) a.e.in Ω.Now we 
laim that

∆xm ⇀ p1 (weakly) in L2(Ω, R).Indeed, from (G2) and the de�nition of xm one obtains the estimate
|∆xm(y)| ≤ Fx(y, xm(y)) ≤ Fx(y, M(y)) a.e. on Ω,for ea
h m ∈ N0. Therefore {∆xm}m∈N0

is bounded in L2(Ω, R), and 
on-sequently, passing to a subsequen
e if ne
essary, it tends weakly to a 
ertainelement p1 in L2(Ω, R). So for any h ∈ C∞
c (Ω, R),\

Ω

〈∇x1(y),∇h(y)〉 dy = lim
m→∞

\
Ω

〈∇xm(y),∇h(y)〉 dy

= − lim
m→∞

\
Ω

∆xm(y)h(y) dy = −
\
Ω

p1(y)h(y) dy,

whi
h means that ∆x1(y) = p1(y) for a.e. y ∈ Ω. On the other hand, by(2.6), we obtain, for h ∈ C∞
c (Rn, R),

(2.9)
\
Ω

−∆x1(y)h(y) dy = lim
m→∞

\
Ω

−∆xm(y)h(y) dy

= lim
m→∞

\
Ωm

−∆xm(y)h(y) dy = lim
m→∞

\
Ωm

Fx(y, xm(y))h(y) dy

= lim
m→∞

[ \
Ω

Fx(y, xm(y))h(y) dy −
\

Ω\Ωm

Fx(y, xm(y))h(y) dy
]

= lim
m→∞

[ \
Ω

Fx(y, xm(y))h(y) dy −
\

Ω\Ωm

Fx(y, 0)h(y) dy
]
.



350 A. OrpelTaking into a

ount (G2)�(G3), the Lebesgue dominated 
onvergen
e the-orem leads to(2.10) lim
m→∞

\
Ω

Fx(y, xm(y))h(y) dy =
\
Ω

Fx(y, x1(y))h(y) dy.Moreover, by the 
ontinuity of the integral as a fun
tion of a set, and thefa
t that ⋃∞
n=n0

Ωm = Ω and Ωm ⊂ Ωm+1 ⊂ Ω for all m ∈ N0, we have(2.11) lim
m→∞

\
Ω\Ωm

Fx(y, 0)h(y) dy = 0.

Combining (2.9) with (2.10) and (2.11) we obtain\
Ω

−∆x1(y)h(y) dy =
\
Ω

Fx(y, x1(y))h(y) dy.Sin
e h ∈ C∞
c (Rn, R) was arbitrary we infer that x1 ∈ X satis�es (2.5).3. Appli
ationsExample 1. Let us 
onsider (1.1) with Ω = {y = (y1, y2) ∈ R

2 : 1/10 <
y1 < 1/2 and y2 < 6}, and

F (y, x) =
25

11
ln |x + 5| −

36

11
ln |6 − x| − x +

(
1

4
x4 + x

)
1

y4for y ∈ Ω and all x ∈ R \ {−5, 6}. Then the problem
(3.1) 




−∆x(y) =
(x(y))2

(6 − x(y))(x(y) + 5)
+

(x(y))3 + 1

(y2)4
for a.e. y ∈ Ω,

x ∈ W 1,2
0 (Ω, R),has at least one positive solution x0 su
h that x0(y) ≤ M a.e. on Ω.Proof. Our task is to �nd 0 < M0 ≤ M a.e. on Ω su
h that (2.1) holds.Let us 
onsider

M0(y1, y2) =
1

2

[
y1

(y1)4 + 1/20
+

1

(y2)4

]

and M(y1, y2) = 1.1M0(y1, y2). It is easy to 
he
k that M0 ∈ W 1,2(Ω, R) ∩
L∞(Ω, R), ∆M0(·) ∈ L2(Ω, R) ∩ L∞(Ω, R) and

−Fx(y, M(y)) ≥ ∆M0(y) a.e. in Ω,where
Fx(y, x) =

x2

(6 − x)(x + 5)
+

x3 + 1

(y2)4
.Sin
e 0 ≤ M(y1, y2) ≤ 3.5 on Ω and F (y, ·) is smooth and 
onvex, e.g. in

(−1, 4), assumptions (G2)�(G4) are satis�ed. Thus, by Theorem 2.3 thereexists a nonnegative, nontrivial and bounded solution of (3.1).
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 problems in unbounded domains 351Of 
ourse our results 
an also be applied to sublinear problems.Example 2. The sublinear ellipti
 BVP
(3.2) 




−∆x(y) =
(x(y))2

(4 − x(y))(5 + x(y))
+

√
x(y) + 1

y1

(y2)6
a.e. in Ω,

x ∈ W 1,2
0 (Ω, R),with Ω given as in Example 1, has at least one positive solution.Proof. One 
an easily 
he
k that for M0 and M from Example 1, as-sumption (G1) is satis�ed. Moreover

F (y, x) = −x −
16

9
ln |4 − x| +

25

9
ln |x + 5| +

2

3
(x + 1)3/2 y1

(y2)6is 
ontinuously di�erentiable and 
onvex in x, e.g. in Ĩ =
(
−1

2
, 31

2

). Finally,(G2)�(G4) hold. Thus Theorem 2.3 gives the existen
e of a nonnegative,nontrivial and bounded solution of (3.2).4. Continuous dependen
e on parameters. Continuous dependen
eof solutions for ellipti
 problems has been widely dis
ussed by S. Wal
zaksin
e the 1990's (see e.g. [6℄�[8℄, [20℄�[22℄). It was also studied in [15℄ (forbounded Ω) and in [16℄ (for an exterior domain).This se
tion is devoted to the following PDE:(4.1) {
−∆x(y) = Fx(y, x(y)) + u(y) for a.e. y ∈ Ω,

x ∈ W 1,2
0 (Ω, R),with fun
tional parameters u from a 
ertain subset U of L2(Ω, R+). Weintrodu
e the following assumption:(G1u) there exists M0 ∈ W 1,2(Ω, R)∩L∞(Ω, R) su
h that for ea
h u ∈ Uthere exist Mu, M0u ∈ W 1,2(Ω, R) ∩ L∞(Ω, R) su
h that

0 < M0u(y) < Mu(y) ≤ M0(y)for a.e. y ∈ Ω, and ∆M0u(·) ∈ L2(Ω, R) ∩ L∞(Ω, R) and for ea
hbounded set Ω′ ⊂ Ω,(4.2) −Fx(y, Mu(y)) ≥ ∆M0u(y)a.e. in Ω′, Mu|∂Ω, M0u|∂Ω ≥ 0.We shall 
onsider the 
ase when (Ω), (G2)�(G4) hold for M = M0 a.e.in Ω.Theorem 4.1. Assume hypotheses (Ω), (G1u) and (G2)�(G4). Sup-pose that {um}m∈N ⊂ U tends weakly to 0 in L2(Ω, R+). For ea
h m ∈ N,denote by xm ∈ Xum
a solution of (4.1) 
orresponding to um, namely(4.3) −∆xm(y)) = Fx(y, xm(y)) + um(y)



352 A. Orpelfor a.e. y ∈ Ω, with
Xum

= {x ∈ W 1,2
0 (Ω, R) : 0 ≤ x(y) ≤ Mum

(y) a.e. on Ωand ∆x ∈ L2(Ω, R)}.Then {xm}m∈N (up to a subsequen
e) tends weakly to x0 in W 1,2
0 (Ω, R),where x0 ∈ X0 is a solution of the equation(4.4) −∆x(y) = Fx(y, x(y)) for a.e. y ∈ Ω.Proof. We start with the observation that (G1u), the properties of Fxand (4.3) yield

(4.5)
\
Ω

|∇xm(y)|2 dy =
\
Ω

(−∆xm(y)xm(y)) dy

=
\
Ω

Fx(y, xm(y))xm(y) dy +
\
Ω

um(y)xm(y) dy

≤
[\
Ω

(Fx(y, M0(y)))2 dy
]1/2[\

Ω

(M0(y))2 dy
]1/2

+
\
Ω

um(y)M0(y) dyfor ea
h m ∈ N0. Combining (4.5) with the weak 
onvergen
e of {um}m∈Nto 0 in L2(Ω, R+) we infer that {∇xm}m∈N is bounded in L2(Ω, R), and
onsequently, it is (up to a subsequen
e) weakly 
onvergent in L2(Ω, R) toa 
ertain v ∈ L2(Ω, R). This yields the existen
e of x0 ∈ W 1,2
0 (Ω, R) su
hthat v = ∇x0 in L2(Ω, Rn). We 
an also derive that some subsequen
e of

{xm}m∈N (still denoted by {xm}m∈N) tends to x0 a.e. on Ω, whi
h impliesthat x0 ≤ M0 a.e. in Ω.Our task is to show that x0 is a solution for (4.4). To see this, we use again(4.3), monotoni
ity of Fx(y, ·) and the fa
t that um ⇀ 0 in L2(Ω, R+), andobtain the boundedness of {∆xm}m∈N in L2(Ω, R). So (up to a subsequen
e)
{∆xm}m∈N is weakly 
onvergent to p in L2(Ω, R). Analysis similar to thatin the proof of Theorem 2.3 shows that p = ∆x0 a.e. on Ω. Taking intoa

ount (4.3) and the weak 
onvergen
e of {um(·)}m∈N to 0 in L2(Ω, R+),and employing the s
heme used in the proof of (2.9), we get, for any h ∈
C∞

c (Ω, R),
(4.6)

\
Ω

−∆x0(y)h(y) dy = lim
m→∞

\
Ω

−∆xm(y)h(y) dy

= lim
m→∞

\
Ω

(Fx(y, xm(y)) + um(y))h(y) dy =
\
Ω

Fx(y, x0(y))h(y) dy.Sin
e h ∈ C∞
c (Ω, R) was arbitrary we 
on
lude that x0 ∈ X satis�es (4.4).Summarizing we have proved that the sequen
e {xm}m∈N of solutions
orresponding to the sequen
e {um}m∈N of parameters tends weakly in

W 1,2
0 (Ω,R) (up to a subsequen
e) to x0 provided that um(·) ⇀ 0 in L2(Ω,R+)as m → ∞.
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