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SEMILINEAR ELLIPTIC PROBLEMS
IN UNBOUNDED DOMAINS

Abstract. We investigate the existence of positive solutions and their con-
tinuous dependence on functional parameters for a semilinear Dirichlet prob-
lem. We discuss the case when the domain is unbounded and the nonlinearity
is smooth and convex on a certain interval only.

1. Introduction. In this paper we are dealing with the following bound-
ary value problem for second order PDE of elliptic type:

{ —Ax(y) = Fy(y,z(y)) for ae. y € 2,

1.1
(1) x e Wy (92,R),

for {2 being an unbounded domain in R"™ with boundary 9{2 and F, denoting
the derivative of F' with respect to x. We are looking for a nonnegative and
nontrivial weak solution x € W&’Q(Q,R) of this problem such that Az(-)
belongs to L?(2,R).

There are numerous papers concerning similar equations for a bounded
domain {2 (see, among others, [1|-5]). In the vast existing literature we can
also find results on radial solutions for our problem in an exterior domain
(see [9], [10], [17] [19]). More precisely, [17] was devoted to both radial and
nonradial cases for an exterior domain with sublinear nonlinearities. In the
first part of [17], the authors presented the results for the radial case. Then
they obtained sub- and supersolutions of (1.1) as radial solutions of a problem
associated to (1.1). Finally, they derived the existence of positive nonradial
solutions for (1.1) using the sub- and supersolution methods based on the
theory due to Noussair (|[11]) for {2 being the exterior of a ball.
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Here we do not impose any symmetry condition on {2, and we cover
both sub- and superlinear cases. Similar boundary value problems on un-
bounded domains have been discussed e.g. in [11]-[14]. In [12|-{14] (for sys-
tems of equations) the authors investigated a semilinear elliptic problem of
the form

= f
(12) { Lu = M(y,u) forye 2,

u(y) =0 for y € 012,

where L is a uniformly elliptic operator in {2, n > 2, A > 0 and {2 is a smooth
unbounded domain in R™. They obtained the existence and nonexistence
results for (1.2) provided that, among other things, f is locally Lipschitz
continuous on (2U042) x [0,00) and f(z,t) < 0 for all z € {2 and sufficiently
large t. Here we consider the case when the nonlinearity is increasing and
smooth with respect to the second variable on a certain interval I only. So
there is no information concerning its behavior and smoothness outside I.

2. The existence results. We propose an approach based on the fol-
lowing assumptions:

() {2 is an unbounded domain in R™ with a locally Lipschitz boundary
012.

(G1)  There exist M, My € WH2(2, R)NL*>®(£2,R) such that 0 < My(y) <
M(y) for ae. y € 2, Moloo, Mlog > 0, AMy(-) € L*(2,R) N
L>(£2,R) and for each bounded set ' C (2,

(2.1) —F.(y,M(y)) > AMy(y) a.e.in (2.

(G2) F(y,-) € C(I) and is convex in I for a.e. y € 2, F(-,x) is mea-
surable in £2 for all € I, where I is a certain neighborhood of
I :=[0,a], with a := esssup,c M (y).

(G3)  F.(y,-) is nonnegative in I for a.e. y € 2, F.(-,a) € L*(2,R) N

L>(2,R);
(G4) [ Fuly,0)dy #0, | | F(y,0)dy| < oc.
2 2

Let us define

X :={ze€ W&’Q(Q,R) 10 <z(y) < M(y) a.e. on {2
and Az(-) € L*(2,R)}.

We will prove the existence of solutions to (1.1) in X and their properties in
two steps. First we shall construct a sequence of solutions of the correspond-
ing problems in bounded domains. Then a solution of (1.1) will be obtained
as the limit of this sequence (precisely, of a subsequence). Let us consider
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the sequence of bounded sets
Qo ={y=(y1,...,yn) € 2:|y;| <mforeachi=1,...,n}, meN.

There exists an my € N such that 2, # 0 for all m € Ny := {m € N :
m > mg}. For each m € Ny, we will use the Schauder fixed point theorem
to prove the existence of a solution x,, € X,, of the problem

(2.9) { —A:c(yl)zz Fy(y,z(y)) for ae.y € 2,
x € Wy (2m,R),
with
Xm={x¢€ WOLQ(Qm,]R) 10 <z(y) < M(y) ae. on (2,
and Az(y) € L*(2,,R)}.
Thus, we fix m € Ny and consider a map T}, defined in X, as follows:
Tnx(y) = S Gm(y, 2)Fy(z,2(2))dz  for & € X,
O2m
where G, is the Green’s function corresponding to the linear homogeneous
problem associated with (2.2), and
F,(z,0) for x <0 and z € {2,
ﬁx(z,x) =1 Fy(z,z) for 0 <z <aandz€ 2,
Fy(z,a) for x> aand z € 2,
where a was given in (G2). By the above assumptions T, is well defined on
L?(£2,,,R) and is continuous and compact.
It is clear that our problem is equivalent to the existence of a fixed point

of T,, in X,,. So we have to show that T,, maps X,, into X,,. To this end
we prove the following lemma:

LEMMA 2.1. For each m € Ny and each xo € X,, there exists T € X,,
such that

—AT(y) = Fo(y,zo(y)) for a.e. y € 2,
z € Wy (2m, R).
Proof. Since My|q,, € Xm we get X, # 0. Let us fix 29 € X,, and
investigate the existence of solution for the linear problem

—Ax(y) = Fy(y,zo(y)) for a.e. y € 2,
{xewﬁ%@mRy

From assumptions (G1)—(G3) we can derive that

(2.4) 0 < Fa(y,2o(y)) < Faly, M(y)) < —AMo(y)

a.e. in 2, and F,(-,z0(+)) € L*(2m, R). It is well known that problem (2.3)
has a unique solution T € W01’2(_Qm, R) N W22(2m, R) (see e.g. [5, Th. 8.9]).

loc

(2.3)
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Our task is now to show that T € X,,,. To this end we can observe that, by
(G3), AT < 0 a.e. in (2,,. Applying the weak maximum principle (see e.g.
[5, Th. 8.1]) we infer that T > 0 a.e. in {2,,,. On the other hand, taking into
account, (2.4), we obtain

—AZ(y) = Fu(y,z0(y)) < —AMo(y)
a.e. in {2,,, so that

A@(y) - My(y)) > 0.

Moreover we know that T — My < 0 in 9f2,,. Finally, using again the weak
maximum principle, we find that T < My a.e. in §2,,, and further 0 <7 < M
a.e.in §2,. Thus T € X,,. n

By the above lemma, for each m € Ny, the continuous and compact op-
erator 1,, maps the convex set X, C LQ(Qm, R) into itself. Now Schauder’s
fixed point theorem gives the existence of a fixed point z,, € X,, of T},.
Thus we have proved the following result.

THEOREM 2.2. If hypotheses () and (G1)—(G4) are satisfied then for
each m € Ny, there exists a solution x,, € X, for (2.2).

Now we define the sequence {Z,, }men, as follows: for each m € Np,

(1) xm(y) fory € 2,
Tm(y) =
7o for y € 2\ 2,

where z,,, is a solution for (2.2). Its existence follows from Theorem 2.2. Our
task is to prove that the weak limit of a certain subsequence of {Zp, }men,
is a solution for (1.1). A similar approach was also used e.g. by Noussair,
and Noussair and Swanson (see [11] [13]). However, we shall consider a quite
different class of elliptic problems.

Now we formulate our main result:

THEOREM 2.3. Assume hypotheses () and (G1) (G4). Then there ex-
1sts a solution xg € X of the problem

—Az(y) = Fu(y,2(y)) for a.e.y € 02,
x e W2 (2,R).

Proof. For each m € Ny, Theorem 2.2 yields the existence of x,, € X,,
such that

(2.5)

(2.6) { — Az (y) = Fu(y,xzm(y)) for ae. y € 2,

Tm € Wy (2m, R).
By the definitions of X, and Z,,, we have

(2.7) 0<ZTnm(y) <M(y) ae. in (2.
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Moreover using (2.6), the monotonicity of I>z— F.(y,z) and the fact
that F.(-, M(-)) € L?(£2,R), we can derive that for each m € N,

28) |IVEw()Pdy = | (VEZw(y), VEm(y)) dy
I

S Fo(y, T (y)) T (y) dy < [S(Fz(va(y))Qdy} 1/QH(M(?J))Zdy}

0 2

Q

1/2

Taking into account (2.8) we derive that the sequence {VZ,}men, is
bounded in L2(§2,R"), so (up to a subsequence) {VZm}en, tends weakly
in L2(£2,R") to a certain v € L?(£2,R"). Thus we obtain the existence of
T € W01’2(Q,]R) such that v = V& in L2(£2,R") and further (up to a sub-
sequence again) {ZTm(y)},,en, tends to T1(y) a.e. in 2, s0 T1(y) < M(y) a.e
in {2.

Now we claim that
ATy, —p1 (weakly) in L2(2,R).
Indeed, from (G2) and the definition of Z,, one obtains the estimate
| AT (y)| < Fi(y, Tm(y)) < Fu(y, M(y)) a.e. on (2,

for each m € Ny. Therefore {AZ,, }men, is bounded in L?(2,R), and con-
sequently, passing to a subsequence if necessary, it tends weakly to a certain
element p; in L2(£2,R). So for any h € C(£2,R),

} (VZ1(y), VA(y)) dy = im V (VZn(y), Vh(y)) dy
2 2

= — lim | AT (y)h(y) dy = — | p1(v)N(y) dy,

m—oo
N

which means that AZ;(y) = pi(y) for a.e. y € 2. On the other hand, by
(2.6), we obtain, for h € C(R",

R),
(29) | -Az(y)h(y)dy = lim | —AZ,(y)h(y) dy
2

m— 00
9]

= lim_ S ~ AT (h(y)dy = lim | Fo(y,Zn(y))h(y) dy

:Aiinoo[gpx 0.2 dy = | Foly, 20 (y)h(y) dy|
[0 O\,
S
)

Fu(y Tm())h(y) dy — | Faly, 0)h(y) dy].
2\,

= lim[

m—00
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Taking into account (G2)—(G3), the Lebesgue dominated convergence the-
orem leads to

(210)  lim | Fo(y, Tm()h(y) dy = | Foly, Ta(y)h(y) dy.
2 n

Moreover, by the continuity of the integral as a function of a set, and the
fact that | Jo2  $2,, = 2 and 2, C 2,41 C 2 for all m € Ny, we have

n=ng

(2.11) Jim | Fu(y,00h(y)dy = 0.

N\
Combining (2.9) with (2.10) and (2.11) we obtain
| =2z ()h(y) dy = | Foly, 71 (y)) h(y) dy.
9] 9}
Since h € C°(R™,R) was arbitrary we infer that T; € X satisfies (2.5). =

3. Applications

EXAMPLE 1. Let us consider (1.1) with 2 = {y = (y1,y2) € R?:1/10 <
y1 < 1/2 and y2 < 6}, and
25 36 1 1
F(y,z) = ﬁ1r1|;1c—|—5|—ﬁln|6—:v|—;1c—|— <Zx4—|—:r:>y—4
for y € 2 and all x € R\ {—5,6}. Then the problem

@) (e(y)) +1
AW = ) e 15 T ()
x e Wy (2,R),

(3.1) for a.e. y € 12,

has at least one positive solution xg such that xo(y) < M a.e. on 2.

Proof. Our task is to find 0 < My < M a.e. on {2 such that (2.1) holds.
Let us consider
1 Y1 1
Mo(y1,y2) = = +
08 =5 T+ 1720 T Gyt
and M (y1,y2) = 1.1Mg(y1,y2). It is easy to check that My € WH2(2,R) N
L>®(2,R), AMy(-) € L?>(£2,R) N L*°(£2,R) and

—Fy(y, M(y)) > AMp(y) a.e. in 2,

where

x? n 3 +1
(6 —x)(x+5) (y2)*~
Since 0 < M(y1,y2) < 3.5 on 2 and F(y,-) is smooth and convex, e.g. in
(—1,4), assumptions (G2)—(G4) are satisfied. Thus, by Theorem 2.3 there
exists a nonnegative, nontrivial and bounded solution of (3.1). =

Fy(y,r) =



Semilinear elliptic problems in unbounded domains 351

Of course our results can also be applied to sublinear problems.

EXAMPLE 2. The sublinear elliptic BVP

(W) _ oo
32) 4 Y = TG ey T VW T e e @
z € W (2,R),

with {2 given as in Example 1, has at least one positive solution.

Proof. One can easily check that for My and M from Example 1, as-
sumption (G1) is satisfied. Moreover

16 25 2 Y1
Fly,x)=—x— —1Inld— —1 5+ = 1)3/2
(y, o) T3 n|4d—z|+ 5 n|z+ |+3(x—|— ) )"
is continuously differentiable and convex in z, e.g. in I= (f%, 3%) Finally,

(G2)—(G4) hold. Thus Theorem 2.3 gives the existence of a nonnegative,
nontrivial and bounded solution of (3.2). =

4. Continuous dependence on parameters. Continuous dependence
of solutions for elliptic problems has been widely discussed by S. Walczak
since the 1990’s (see e.g. |6]-[8], [20]-[22]). It was also studied in [15] (for
bounded 2) and in [16] (for an exterior domain).

This section is devoted to the following PDE:

{ —Az(y) = Fo(y, 2(y)) +uly) for ae. y € 2,

4.1
(41 x e W, ?(2,R),

with functional parameters u from a certain subset U of L?(£2,R.). We
introduce the following assumption:

(G1u) there exists My € WH2(2,R)NL>®(£2,R) such that for each u € U
there exist M,, Mo, € W12(£2,R) N L®(£2,R) such that

0< Mou(y) < Mu(y) < MO(y)
for a.e. y € 2, and AMy, () € L?(£2,R) N L>®°(£2,R) and for each
bounded set 2 C 2,
(4'2) _Fx(ya Mu(y)) > AMOu(y)
a.e. in £2', Mylaa, Moulo > 0.
We shall consider the case when (£2), (G2)—(G4) hold for M = M a.e.
in {2.
THEOREM 4.1. Assume hypotheses (2), (G1lu) and (G2)-(G4). Sup-

pose that {um }men C U tends weakly to 0 in L?(£2,R.). For each m € N,
denote by Ty, € Xy, a solution of (4.1) corresponding to u,,, namely

(4.3) —Arp(y)) = Fe(y, vm(y)) + um(y)
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for a.e. y € 2, with
Xy = {2 € Wy (2,R) : 0 < 2(y) < My, (y) a.c. on £2
and Az € L*(2,R)}.

Then {m}men (up to a subsequence) tends weakly to zg in W(}’Q(Q,R),
where xg € X 1s a solution of the equation

(4.4) —Ax(y) = Fy(y,z(y)) for a.e. y € (2.
Proof. We start with the observation that (G1lu), the properties of F
and (4.3) yield

4.5) | |Van(y \Zdy—ﬂ(—ﬂxm(y)wm(y))dy
0

2
= SFI(y,:rm(y dy + Sum dy
k0] (04
< [[(Pa(o Mty } [g } Y V) Moly) dy
0 (%

for each m € Np. Combining (4.5) with the weak convergence of {um, }men
to 0 in L2(2,Ry) we infer that {Vz,,;}men is bounded in L?(£2,R), and
consequently, it is (up to a subsequence) weakly convergent in L?(§2,R) to
a certain v € L?(§2,R). This yields the existence of xg € W&’Q(Q,R) such
that v = Vg in L?(£2,R"). We can also derive that some subsequence of
{Zm }men (still denoted by {x,}men) tends to zg a.e. on (2, which implies
that z¢g < My a.e. in (2.

Our task is to show that zg is a solution for (4.4). To see this, we use again
(4.3), monotonicity of F,(y,-) and the fact that u,, — 0 in L?(£2,R,), and
obtain the boundedness of { Az, }men in L2(£2,R). So (up to a subsequence)
{ Az }men is weakly convergent to p in L?(£2,R). Analysis similar to that
in the proof of Theorem 2.3 shows that p = Axg a.e. on (2. Taking into
account (4.3) and the weak convergence of {u,(-)}men to 0 in L2(2,R,),
and employing the scheme used in the proof of (2.9), we get, for any h €
C(2,R),

(46) | —Axo(y)h(y)dy = lim | —Az(y)h(y) dy

m— 00
2

= lim_ V (Fo(y, 2m(y) + um(y)h(y) dy = | Fuly, 20(y))1(y) dy.
2
Since h € CZ°(£2,R) was arbitrary we conclude that xg € X satisfies (4.4).
Summarizing we have proved that the sequence {z,}men of solutions
corresponding to the sequence {un,}men of parameters tends weakly in
W&’Q(Q,R) (up to a subsequence) to z¢ provided that u,,(-) — 0in L2(2,R)
as m — 00. m
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