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A WEAKER AFFINE COVARIANT

NEWTON–MYSOVSKIKH THEOREM FOR

SOLVING EQUATIONS

Abstract. The Newton–Mysovskikh theorem provides sufficient condi-
tions for the semilocal convergence of Newton’s method to a locally unique
solution of an equation in a Banach space setting. It turns out that under
weaker hypotheses and a more precise error analysis than before, weaker
sufficient conditions can be obtained for the local as well as semilocal con-
vergence of Newton’s method. Error bounds on the distances involved as well
as a larger radius of convergence are obtained. Some numerical examples are
also provided.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the equation

F (x) = 0,(1)

where F is continuously Fréchet differentiable on a closed convex subset D
of a Banach space X with values in a Banach space Y .

The most popular method for approximating x∗ is undoubtedly Newton’s
method

xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0) (x0 ∈ D),(2)

where F ′(x) ∈ L(X, Y ) (x ∈ D) denotes the Fréchet derivative of the oper-
ator F [2], [5], [6]. The semilocal and local convergence of this method has
been examined under various conditions by many authors [1]–[4]. A survey
of such results can be found in [2] and the references there.

In particular we are motivated by the affine covariant Newton–Mysov-
skikh theorem (ACNMT) (see also Theorem 1 below) [5], [6] which basically
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states that if the initial guess x0 is close enough to the solution x∗ then
Newton’s method (2) converges quadratically to x∗. The basic condition is
given by

(3) ‖F ′(z)−1[F ′(y) − F ′(x)](y − x)‖ ≤ w‖y − x‖2 for all x, y, z ∈ D.

Here we have noticed (see Theorem 1) that condition (3) is not used at
full strength to prove convergence of method (2). Indeed, a much weaker
hypothesis (see (6)) can replace (3) in the proof of the theorem. This obser-
vation has the following advantages (semilocal case):

(a) the applicability of (ACNMT) is extended;
(b) finer error bounds on the distances ‖xn+1 − xn‖, ‖xn − x∗‖ (n ≥ 0);
(c) a more precise information on the location of the solution x∗;
(d) the Lipschitz constant is at least as small and easier to compute.

Local case:

(a) a larger radius of convergence;
(b) finer error bounds on the distances ‖xn − x∗‖ (n ≥ 0).

The above advantages are obtained under not only weaker hypotheses
but under less or the same computational cost.

Some numerical examples are also provided for both the semilocal and
local case where our results apply while other ones [5], [6] fail.

We can show the following weaker semilocal convergence version of the
affine covariant Newton–Mysovskikh theorem (ACNMT):

Theorem 1. Let F : D ⊆ X → Y be a Fréchet continuously differen-

tiable operator , and let x0 ∈ D be an initial guess. Assume further that

F ′(x)−1 ∈ L(Y, X) (x ∈ D),(4)

‖F ′(x0)
−1F (x0)‖ ≤ η,(5)

‖F ′(y)−1[F ′(x + t(y − x)) − F ′(x)](y − x)‖ ≤ w1‖y − x‖2t(6)

for all x, y ∈ D, t ∈ [0, 1],

2h1 = w1‖F ′(x0)
−1F (x0)‖ ≤ w1η < 2,(7)

U(x0, r1) ⊆ D,(8)

where

U(x0, r1) = {x ∈ X | ‖x − x0‖ ≤ r1},(9)

r1 =
‖F ′(x0)

−1F (x0)‖
1 − h1/2

.(10)

Then the sequence {xn} (n ≥ 0) generated by Newton’s method (2) is well

defined , remains in U(x0, r1) for all n ≥ 0, and there exists a unique x∗ ∈
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U(x0, r1) such that F (x∗) = 0 and xn → x∗ as n → ∞ with

‖xn+1 − xn‖ ≤ 1

2
w1‖xn − xn−1‖2,(11)

‖xn+1 − x∗‖ ≤ εn‖xn − xn−1‖2 for all n ≥ 1,(12)

where

εn =
1

2
w1

[

1 +
∞

∑

j=1

(

h2n

1

)2j
]

≤ 1

2

w1

1 − h2n

1

.(13)

Proof. Using (3) and (6) we obtain in turn

(14) xk+1 − xk

= − F ′(xk)
−1[F (xk) − F (xk−1) − F ′(xk−1)(xk − xk−1)]

= − F ′(xk)
−1

1\
0

[F ′(xk−1 + t(xk − xk−1)) − F ′(xk−1)](xk − xk−1) dt

and

(15) ‖xk+1 − xk‖

≤
∥

∥

∥
F ′(xk)

−1

1\
0

[F ′(xk−1 + t(xk − xk−1)) − F ′(xk−1)](xk − xk−1) dt
∥

∥

∥

≤ 1

2
w1‖xk − xk−1‖2,

which shows (11).

We now prove {xn} is a Cauchy sequence in U(x0, r1). By induction on
k we will show

‖xk+1 − xk‖ ≤ 2

w1

h2k

1 , k ∈ N0.(16)

For k = 0, we have by (2), (5) and (7),

‖x1 − x0‖ = ‖F ′(x0)
−1F (x0)‖ ≤ η ≤ 2

w1

h1.

Assuming (16) to be true for some k ∈ N, we get

(17) ‖xk+2 − xk+1‖ ≤ 1

2
w1‖xk+1 − xk‖2 ≤ 1

2
w1

(

2

w1

h2k

1

)2

=
2

w1

h2k+1

1 .

It follows from (16) that xk+1 ∈ U(x0, r1):

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖(18)

≤ 2

w1

(h2k

1 + · · · + h1) =
2

w1

h1

∞
∑

j=0

h2j
−1

1
= r1.
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Similarly it can be shown that

‖xm+k − xm‖ → 0 as m → ∞.(19)

That is, {xn} is a Cauchy sequence in U(x0, r1) and as such it converges to
some x∗ ∈ U(x0, r1) (since U(x0, r1) is a closed set).

Hence, we get

xk+1 − xk = −F ′(xk)
−1F (xk)

k→∞−→ −F ′(x∗)−1F (x∗) = 0

and thus F (x∗) = 0. Then we get in turn:

‖xk − x∗‖ = lim
k<m→∞

‖xk − xm‖(20)

≤ lim
k<m→∞

[‖xm − xm−1‖ + · · · + ‖xk+1 − xk‖]

≤ 2

w1

lim
m→∞

m
∑

i=k+1

hi−1

1
=

2hk

w1

lim
m→∞

m
∑

i=k+1

hi−1−k
1

.

We also have

hk
1 ≤ (w1/2)2‖xk−1 − xk−2‖2 = (hk−1

1
)2,(21)

whence

hk+m
1

≤ (hk
1)

2m

, k ∈ N0.(22)

That is,

‖xk − x∗‖ ≤ 1

2
w1‖xk−1 − xk−2‖2[1 + (hk)2 + · · ·](23)

≤ 1

2
w1

[

1 +
∞

∑

j=1

(hk
1)

2j
]

‖xk−1 − xk−2‖2,

which shows (12).
Finally, to show uniqueness, let y∗ ∈ U(x0, r1) be a solution of equa-

tion (1). Then for all t ∈ [0, 1] we have

x∗ + t(y∗ − x∗) − x0 = (1 − t)(x∗ − x0) + t(y∗ − x0)

and

‖x∗ + t(y∗ − x∗) − x0‖ ≤ (1 − t)‖x∗ − x0‖ + t‖y∗ − x0‖
≤ (1 − t)r1 + tr1 = r1.

That is,

x∗ + t(y∗ − x∗) ∈ U(x0, r1) (t ∈ [0, 1]).(24)

Using the identity

0 = F (y∗) − F (x∗) =

1\
0

F ′(x∗ + t(y∗ − x∗))(y∗ − x∗) dt(25)

= M(y∗ − x∗),
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where

M =

1\
0

F ′(x∗ + t(y∗ − x∗)) dt,

and hypothesis (4) we deduce that for xt = x∗+t(y∗−x∗) the linear operator
M is invertible. Hence, we conclude x∗ = y∗. That completes the proof of
Theorem 1.

Remark 2. Clearly condition (3) implies (6) but not vice versa. That
is, (6) is a weaker condition than (3). Note that

w1 ≤ w(26)

holds in general and w/w1 can be arbitrarily large [1].

The classical affine covariant Newton–Mysovskikh theorem has been
shown using (3), h, r instead of (6), h1 and r1 respectively, where

2h = w‖F ′(x0)
−1F (x0)‖ ≤ wη < 2(27)

and

r =
‖F ′(x0)

−1F (x0)‖
1 − h/2

.(28)

Note that

2h < 2 ⇒ 2h1 < 2(29)

but not vice versa unless w1 = w. If strict inequality holds in (26) then

r1 < r(30)

and our error estimates (11)–(13) are finer than the corresponding ones in
[5], [6] obtained by replacing w1 by w in (11)–(13). Note that all the above
advantages are obtained under less computational cost since in practice the
computation of w requires that of w1.

Remark 3. Although the computation of the constant w1 in (6) is in
practice easier than the computation of w in (3) one may want to replace
(6) by the pair of conditions

‖F ′(x0)
−1[F ′(x + t(y − x)) − F ′(x)](y − x)‖ ≤ w2‖y − x‖2t(31)

and

‖F ′(x0)
−1[F ′(x) − F ′(x0)]‖ ≤ w0‖x − x0‖(32)

for all x, y ∈ D, t ∈ [0, 1].

Using (31) and (32) we showed in [1], [2] that Newton’s sequence con-
verges to a unique solution x∗ of equation (1) in U(x0, 2η/(2 − δ)) provided
that

h2 = (δw0 + w2)η ≤ 1, δ ∈ [0, 1].(33)
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Clearly these results will be weaker provided

w2

1 − w0‖z − x0‖
< w, z ∈ U

(

x0,
2η

2 − δ

)

,(34)

since

(35) ‖F ′(z)−1[F ′(y) − F ′(x)](y − x)‖
≤ ‖F ′(z)−1F ′(x0)‖ ‖F ′(x0)

−1[F ′(y) − F ′(x)](y − x)‖

≤ w2‖y − x‖2

1 − w0‖z − x0‖
by the Banach lemma on invertible operators [5] and the estimate

‖F ′(z)−1F ′(x0)‖ ≤ 1

1 − w0‖z − x0‖
.(36)

Condition (34) certainly holds if

‖x − x0‖ <
1

w0

[

1 − w2

w

]

or
2η

2 − δ
<

1

w0

[

1 − w2

w

]

,(37)

which can happen for sufficiently small η and since w2/w can be arbitrarily
small [1], [2].

We provide an example where (7) and (33) hold but (27) fails.

Example 4. Let X = Y = R, D = [a, 2 − a], a ∈ [0, 1/2), x0 = 1 and
define a function F on D by

F (x) = x3 − a.(38)

Using (3), (5), (6), (31) and (32) we obtain

(39) w =
2(2 − a)

a2
, η =

1

3
(1 − a), w0 = 3 − a, w1 =

2

a2
, w2 = 2(2 − a).

Condition (27) does not hold since

2h =
2

3a2
(1 − a)(2 − a) ≥ 2 for all a ∈ [0, 1/2).(40)

That is, there is no guarantee that Newton’s method starting at x0 converges
to x∗. However, condition (7) holds, since

2h1 =
2

3a2
(1 − a) < 2 for all a ∈

(
√

13 − 1

6
,
1

2

)

.(41)

Finally, say for δ = 1, condition (33) holds since

(42) h2 =
1

3
(1 − a)[2(2 − a) + 3 − a] ≤ 1 for all a ∈

[

5 −
√

13

3
,
1

2

)

.
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In order for us to cover the local convergence of Newton’s method un-
der Newton–Mysovskikh-type conditions, let x∗ be a simple solution of the
equation F (x) = 0. Assume that

(43) ‖F ′(x)−1[F ′(x∗ + t(x − x∗)) − F ′(x)](x − x∗)‖ ≤ v(1 − t)‖x − x∗‖2

for all x ∈ U(x∗, r∗), t ∈ [0, 1] where

r∗ =
2

v
(v 6= 0).(44)

Set also

r∗1 =
2

w
(w 6= 0).(45)

We can show the following local convergence theorem for Newton’s
method (2):

Theorem 5. Let F : D ⊆ X → Y be a Fréchet differentiable operator.

Assume that

F ′(x)−1 ∈ L(Y, X) (x ∈ D)

and there exists x∗ ∈ D such that F (x∗) = 0.

(a) If condition (43) holds and

U(x∗, r∗) ⊆ D(46)

then the sequence {xn} generated by Newton’s method (2) is well

defined, remains in U(x∗, r∗) for all n ≥ 0 and converges to x∗

provided that x0 ∈ U(x∗, r∗), with

‖xn+1 − x∗‖ ≤ v

2
‖xn − x∗‖2 (n ≥ 0).(47)

(b) If condition (3) holds and

U(x∗, r∗1) ⊆ D,(48)

then the sequence {xn} generated by Newton’s method (2) is well

defined, remains in U(x∗, r∗1) for all n ≥ 0 and converges to x∗

provided that x0 ∈ U(x∗, r∗1), with

‖xn+1 − x∗‖ ≤ w

2
‖xn − x∗‖2 (n ≥ 0).(49)

Proof. (a) Using (43), (44) and induction on k we get

‖xk+1 − x∗‖ ≤ v

2
‖xk − x∗‖2 < ‖xk − x∗‖ < r∗,(50)

which shows xk ∈ U(x∗, r∗) for all k and limk→∞ xk = x∗.
(b) Similarly using (3), (45) and induction on k we get

‖xk+1 − x∗‖ ≤ w

2
‖xk − x∗‖2 < ‖xk − x∗‖ < r∗.(51)

That completes the proof of Theorem 5.
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Let us further introduce the conditions:

‖F ′(x∗)−1[F ′(x∗ + t(x−x∗))−F ′(x)](x−x∗)‖ ≤ v1(1− t)‖x−x∗‖2(52)

and

‖F ′(x∗)−1[F ′(x) − F ′(x∗)]‖ ≤ v0‖x − x∗‖.(53)

Then since

‖F ′(x)−1z‖ ≤ ‖[F ′(x)−1F ′(x∗)]‖ ‖[F ′(x∗)−1z]‖,(54)

if we set

r∗2 =
2

2v0 + v1

(55)

then we can show [1], [2] Newton’s method converges to x∗ provided that
x0 ∈ U(x∗, r∗2) and

U(x∗, r∗2) ⊆ D.(56)

In general
v1 ≤ v ≤ w(57)

and v/v1, w/v1, w/v can be arbitrarily large [1], [2]. Therefore by (44) and
(45),

r∗1 ≤ r∗.

We can now provide an example where we compare the radii r∗, r∗1 and r∗2.

Example 6. Let X = Y = R, D = U(0, 1), x∗ = 0, and define the
function F on D by

F (x) = ex − 1.(58)

Using (3), (43), (52), (53) we obtain

w = e, v = e − 1, v0 = e − 1, v1 = e.(59)

By (44), (45), (55) and (59) we get

r∗1 = .735758882,

r∗ = 1.163953414,

r∗2 = .324947231.

We need to reset r∗ = 1 so that (46) holds.
It follows that since r∗1 < r∗, our approach provides a wider choice of

initial guesses x0 than in the local convergence results using the standard
condition (3).
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