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ASYMPTOTIC NORMALITY OF THE KERNEL ESTIMATE
FOR THE MARKOVIAN TRANSITION OPERATOR

Abstract. We build a kernel estimator of the Markovian transition op-
erator as an endomorphism on L1 for some discrete time continuous states
Markov processes which satisfy certain additional regularity conditions. The
main result deals with the asymptotic normality of the kernel estimator con-
structed.

1. Introduction. Let the real-valued random variables (Xn)n∈N be de-
fined on a probability space (Ω,A, P ) and suppose they constitute a strictly
stationary and homogeneous Markov process satisfying some additional re-
quirements. Let Fba denote the σ-field generated by the random variables
Xa, Xa+1, . . . , Xb. For any two σ-fields A,B ⊂ F put

φ(A,B) = sup{|P (B|A)− P (B)| : P (A) 6= 0, A ∈ A, B ∈ B}.
The mixing coefficient of the sequence {Xn, n ≥ 1} is defined as usual:

φ(n) = supk≥1 φ(Fk1 ,F∞k+n).
The sequence {Xn, n ≥ 1} is called φ-mixing or uniformly mixing if φ(n)→ 0.

Suppose the initial law ν and the one-step transition distribution have
probability density function f(·) and P (·, ·) respectively, relative to Lebesgue
measure µ.

We define the one-step transition operator H : L1(ν)→ L1(ν) by

(1)
g 7→ H(g) : (R,BR)→ (R,BR),

x 7→ Hg(x) = E(g(Xt+1) | Xt = x) =
+∞�

−∞
g(y)P (x, y) dy,

which is an idempotent operator on L1(ν).
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The one-step transition operator H has been studied by Györfi et al. [8].
The authors treated this functional parameter as an operator from autore-
gression, and obtained almost complete convergence under the Doeblin con-
dition. In this paper, we study this parameter as an endomorphism on L1.
For this we estimate the quantities P (x, y) nonparametrically by

(2) Pn(x, y) =
1
hn

∑n
i=1K

(
x−Xi
hn

)
K
(y−Xi+1

hn

)∑n
i=1K

(
x−Xi
hn

)
where 0 < hn → 0 as n → ∞ (see, e.g., Youndjé [19]). Then the natural
nonparametric estimator of the one-step transition operator H is

(3) ∀g ∈ L1(ν) Hn g(x) =
1
hn

∞�

−∞

∑n
i=1K

(
x−Xi
hn

)
K
(y−Xi+1

hn

)∑n
i=1K

(
x−Xi
hn

) g(y) dy.

Here K is a nonnegative function and (hn)n∈N is a nonnegative sequence
that converges to zero as n tends to infinity. For further use, let Khn(·) =
(1/hn)K(·/hn).

We note that if g is continuous andK is a Rosenblatt kernel, according to
the Bochner lemma, we have limhn→0Khn∗g = g (see Bosq and Lecoutre [3]).
So, for all fixed x with limhn→0(Khn ∗ g)(x) = g(x), we can build another
estimator of H defined by

(4) H̃ng(x) =
∑n

i=1Khn(x−Xi)g(Xi+1)∑n
i=1Khn(x−Xi)

.

The estimator H̃n was introduced by Collomb and Doukhan [4] and was
used in forecast (see Ferraty, Goïa and Vieu [6] for the most recent refer-
ences).

Historically, Roussas [15] was one of the first authors who tackled the
problem of estimation by using observation with Markovian character. He
established the convergence of the kernel estimate of the transition density
using the L2 norm. Other authors were interested in the functional estima-
tion Markovian process by treating the case of the stationary density of a
stationary Markov chain satisfying the G2 condition (see Rosenblatt [14]).
Under Doeblin’s condition, Gillert and Wartenberg [7] and Liebscher [11]
studied the asymptotic behaviour of the mean square error of kernel den-
sity estimate for the stationary density of a Markov chain. Recently, Lak-
saci and Yousfate [9] considered the Lp-convergence of the kernel estimate
of the transition operator density. Among the numerous papers concerning
the asymptotic normality and estimation for stationary mixing sequences,
we only mention Collomb and Doukhan [4], Yakowitz [18], Ango Nzé and
Rios [1], Bosq [2], Louani and Ouled-Said [10], Liebscher [12], and Delecroix
et al. [5].
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The goal of this paper is to establish the asymptotic normality of a kernel
estimator (3) of the one-step transition operator under the G1 condition. We
note that the main difficulty in this context is that the asymptotic normality
of the conditional density at all points is not enough to obtain the asymptotic
normality of our estimator. It is worth noting that a particular case (with
g(y) = I]−∞,z](y)) has been studied by Roussas [16]. The main feature of our
approach is to build an estimator and derive the asymptotic normality for
a class of parameters. Note that Hg(x) can be identified with some useful
statistics where g is known. For example, if g(y) = I]−∞,z](y), then Hg(x) is
identified with a one-step transition distribution function, and if g(y) = eity,
then Hg(x) represents the one-step transition characteristic function.

The paper is organized as follows. After establishing the notation and
listing the required assumptions in Section 2, we state our main results in
Section 3. In the last section we list some preliminary results needed to prove
the main result.

2. Notation and assumptions. We denote by ϕm(x1, . . . , xm) the
joint density of the random variables X1, . . . , Xm. We need the following
assumptions:

(H.1) The process (Xk)k∈N satisfies the G1 condition:

sup
‖g‖1≤1

‖Hgs‖1
‖g‖1

→ 0 as s→∞,

where Hgs(x) = E(g(Xt+s) | Xt = x).
(H.2) K is a p.d.f. defined on R such that:

(a) |x|K(x)→ 0 as |x| → ∞,
(b)

	
xK(x) dx = 0 and

	
x2K(x) dx <∞.

(H.3) hn is a sequence of real numbers such that nhn →∞ and nh5
n → 0

whenever n→∞.
(H.4) (a) f := ϕ1 is bounded,

(b) f(·) has a continuous and bounded second order derivative,
(c) ϕ2(·, ·) has continuous second order partial derivatives, de-

noted by ϕ′′2ij(·, ·), i, j = 1, 2, such that
�
ϕ′′2ij(x, y) dy ≤ C,

(d) |ϕ4(x1, x2, x3, x4)−ϕ2(x1, x2)ϕ2(x3, x4)| ≤ C for x1, x2, x3, x4

∈ R.
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3. Main results. For convenience we set

(5) ∀x ∈ R Gn(x) =
1
n

n∑
i=1

Khn(x−Xi)
�
Khn(y −Xi+1)g(y) dy,

and

∀x ∈ R fn(x) =
1
n

n∑
i=1

Khn(x−Xi).

It follows that Hng(x) = Gn(x)/fn(x).
To study asymptotic normality ofHng(x), we show thatGn(x)−E(Gn(x))

suitably normalized is asymptotically normally distributed and that fn(x)
(resp. E(Gn(x))/fn(x)) converges in probability to a constant.

Our main result is given in the following theorem:

Theorem 3.1. Let the assumptions (H.1)–(H.4) be satisfied. Then for
any x ∈ R, and g integrable with respect to Lebesgue measure,√

nhn(Hng(x)−Hg(x))→ N(0, σ(x)),

where
σ2(x) := Hg2(x)

�
K2(z) dz.

4. Some preliminary results. In this section, we present several in-
termediate results used for the proof of the main result.

Proposition 4.1. Let the assumptions (H.1), (H.2)(b), (H.3), and
(H.4)(d) be satisfied. Then for any x ∈ R and g integrable with respect to
Lebesgue measure,

(6) nhn VarGn(x))→ σ1(x) := Hg2(x)f(x)
�
K2(z) dz.

Proof. We put

Ki(x) = K

(
x−Xi

hn

)
.

By (5) we have

nhn VarGn(x) = nhnE[Gn(x)− EGn(x)]2 = I1n(x) +
1
nh3

n

I2n(x)

where
I1n(x) =

1
h3
n

Var
[
K1(x)

�
K2(y)g(y) dy

]
and

(7) I2n(x) =
∑

1≤i<j≤n
Cov

(
Ki(x)

�
Ki+1(y)g(y) dy,Kj(x)

�
Kj+1(y)g(y) dy

)
.
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a) By a suitable application of Bochner’s theorem and the dominated
convergence theorem we show

(8) I1n(x)→ f(x)Hg2(x)
�
K2(z) dz.

Indeed,

I1n(x)

=
1
h3
n

�
K2

(
x− x1

hn

)[ �
K

(
y − x2

hn

)
g(y) dy

]2

ϕ2(x1, x2) dx1 dx2

− hn
(

1
h2
n

�
K

(
x− x1

hn

)[ �
K

(
y − x2

hn

)
g(y) dy

]
ϕ2(x1, x2) dx1 dx2

)2

=
�
K2(z1)

[ �
K(z2)g(x2 + hnz2) dz2

]2
ϕ2(x− hnz1, x2) dz1 dx2

− hn
( �
K(z1)

[ �
K(z2)g(x2 + hnz2) dz2

]
ϕ2(x− hnz1, x2) dz1 dx2

)2
.

Now, the first term on the right hand side tends to f(x)Hg2(x)
	
K2(z) dz,

and the second term tends to zero.
b) Using hypothesis (H.4)(d), it follows that

(9)
∣∣∣Cov

[
Ki(x)

( �
Ki+1(y)g(y) dy

)
,Kj(x)

( �
Kj+1(y)g(y) dy

)]∣∣∣ ≤ Ch4
n.

Indeed,

Cov
[
Ki(x)

( �
Ki+1(y)g(y) dy

)
,Kj(x)

( �
Kj+1(y)g(y) dy

)]
=

�
K

(
x− x1

hn

)( �
K

(
y − x2

hn

)
g(y) dy

)
×K

(
x− x3

hn

)( �
K

(
y − x4

hn

)
g(y) dy

)
ϕ4(x1, x2, x3, x4) dx1 dx2 dx3 dx4

−
�
K

(
x− x1

hn

)( �
K

(
y − x2

hn

)
g(y) dy

)
ϕ2(x1, x2) dx1 dx2

×
�
K

(
x− x3

hn

)( �
K

(
y − x4

hn

)
g(y) dy

)
ϕ2(x3, x4) dx3 dx4

= h4
n

�
K(z1)

( �
K(x2)g(x2 + hnz2) dy

)
K(z3)

×
( �
K(z4)g(x4 + hnz4) dy

)
ϕ4(x− hnz1, x2, x− hnz3, x4)dz1 dx2 dz3 dx4

− h4
n

�
K(z1)

( �
K(z2)g(x2 + hnz2) dz2

)
K(z3)

×
( �
K(z4)g(x4 + hnz4) dz4

)
ϕ2(x− hnz1, x2)

× ϕ2(x− hnz3, x4) dz1 dx2 dz3 dx4
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= h4
n

� � [
K(z1)K(z3)

( �
K(z2)g(x2 + hnz2) dz2

)( �
K(z4)g(x4 + hnz4) dz4

)]
× ϕ4(x− hnz1, x2, x− hnz3, x4)
− ϕ2(x− hnz1, x2)ϕ2(x− hnz3, x4) dz1 dx2 dz3 dx4.

Since K and g are integrable functions, we have (9).
In the following, we use the technique developed by Masry [13]. Define

S1 = {(i, j) : 1 ≤ j − i ≤ mn}, S2 = {(i, j) : mn + 1 ≤ j − i ≤ n− 1},

where (mn)n is any sequence of positive integers such that mn → ∞ and
mnhn → 0. We can take mn = [1/h1−λ

n ], 0 < λ < 1, where [x] indicates the
integral part of x. Next, let J1,n(x) and J2,n(x) be the sums of the covariances
over S1 and S2, respectively. Then

J1,n(x) ≤ Ch4
nnmn.

To bound the sum over S2, we use a moment inequality for φ-mixing (see
Roussas and Ioannides [17, p. 64]) (since (Xk)k∈N satisfy the (H.1) condi-
tion):

Cov
[
K

(
x−Xi

hn

)( �
K

(
y −Xi+1

hn

)
g(y) dy

)
,

K

(
x−Xj

hn

)( �
K

(
y −Xj+1

hn

)
g(y) dy

)]
≤ 2φ1/2(j − i)

∥∥∥∥K(x−Xi

hn

)( �
K

(
y −Xi+1

hn

)
g(y) dy

)
− E

[
K

(
x−Xi

hn

)( �
K

(
y −Xi+1

hn

)
g(y) dy

)]∥∥∥∥
2

×
∥∥∥∥K(x−Xj

hn

)( �
K

(
y −Xj+1

hn

)
g(y) dy

)
− E

[
K

(
x−Xj

hn

)( �
K

(
y −Xj+1

hn

)
g(y) dy

)]∥∥∥∥
2

.

We define the norm ‖ · ‖2 by

‖X‖2 =
( �

Ω

|X|2 dP
)1/2

.

It is clear that∥∥∥∥K(x−Xj

hn

)( �
K

(
y −Xj+1

hn

)
g(y) dy

)
− E

[
K

(
x−Xj

hn

)( �
K

(
y −Xj+1

hn

)
g(y) dy

)]∥∥∥∥
2

= h3
nI1n ≤ h3

nC
′(x).
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Therefore∑
S2

Cov
[
K

(
x−Xi

hn

)( �
K

(
y −Xi+1

hn

)
g(y) dy

)
,

K

(
x−Xj

hn

)( �
K

(
y −Xj+1

hn

)
g(y) dy

)]
≤ N(x)h3

n

n−1∑
l=mn

φ1/2(l).

In this case, there exist s ∈ (0,∞) and ρ ∈ (0, 1) such that φ(l) ≤ sρl.
Finally,

1
nh3

n

∑
1≤i<j≤n

Cov
[
K

(
x−Xi

hn

)( �
K

(
y −Xi+1

hn

)
g(y) dy

)
,

K

(
x−Xj

hn

)( �
K

(
y −Xj+1

hn

)
g(y) dy

)]
≤ C(x)

[
mnhn +

1
n

n∑
l=mn

ρl
]
.

Then

(10)
1
nh3

n

I2n(x)→ 0.

Proposition 4.2. Under the assumptions of Proposition 4.1, for x ∈ R,

(11)
√
nhn(Gn(x)− EGn(x))→ N(0, σ1(x)).

Proof. We can write√
nhn(Gn(x)− EGn(x)) =

1√
n

n∑
i=1

Li(x)

where

Li(x) =
1√
h3
n

(
K

(
x−Xi

hn

)( �
K

(
y −Xi+1

hn

)
g(y) dy

)
− E

[
K

(
x−Xi

hn

)( �
K

(
y −Xi+1

hn

)
g(y) dy

)])
.

In order to establish this result, we use Doob’s technique: the sum∑n
i=1 Li(x) is split up into large (Mn) blocks and small (Nn) blocks where

Mn and Nn are positive integers tending to infinity and Mn + Nn ≤ n,
and kn is the largest integer for which kn(Mn + Nn) ≤ n (we can take
Mn = [nδ], Nn = [nδ

′
] and kn = [n/(Mn +Nn)] where 0 < δ′ < δ < 1). Set
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Sn(x) =
kn∑
j=0

Ynj(x) with Ynj(x) =
j(Mn+Nn)+Mn∑
i=j(Mn+Nn)+1

Li(x),

Tn(x) =
kn∑
j=0

Y ′nj(x) with Y ′nj(x) =
(j+1)(Mn+Nn)∑

i=j(Mn+Nn)+Mn+1

Li(x),

T ′n(x) =
n∑

j=(Mn+Nn)kn+1

Lj(x),

so that
n∑
i=1

Li(x) = Sn(x) + Tn(x) + T ′n(x).

We will show

Proposition 4.3. Under the assumptions of Proposition 4.2, for x ∈ R,

(12)
1
n

[E(T 2
n(x)) + E(T ′2n (x))]→ 0

and

(13)
1√
n
Sn(x)→ N(0, σ1(x)).

The following result is easily established:

Lemma 4.1. Under the assumptions of Proposition 4.3, for x ∈ R,
(a) VarLi(x) ≤ C(x),
(b) n−1

∑km
j=0 VarY ′nj(x)→ 0.

Proof. (a) Indeed,

Var(L1(x))

=
1
h3
n

[
E

(
K2

(
x−X1

hn

)[ �
K

(
y −X2

hn

)
g(y) dy

]2)]
− 1
h3
n

[
E

(
K

(
x−X1

hn

)[ �
K

(
y −X2

hn

)
g(y) dy

])]2

=
1
h3
n

�
K2

(
x− z1
hn

)( �
K

(
y − z2
hn

)
g(y) dy

)2

ϕ2(z1, z2) dz1 dz2

− 1
h3
n

( �
K

(
x− z1
hn

)( �
K

(
y − z2
hn

)
g(y) dy

)
ϕ2(z1, z2) dz1

)2
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=
�
K2(x1)

( �
K(x2)g(z2 + hnx2) dx2

)
ϕ2(x− hnx1, z2) dx1 dz2

− hn
[ �
K(x1)

(
1
hn

�
K(x2)g(x2hnz2) dy

)
ϕ2(x− hnx1, z2) dx1 dz2

]2

≤ C(x)

since hn → 0, and g is an integrable function.
(b) From (10),

(14)
1
n

∑
1≤i<j≤n

Cov(Li(x), Lj(x)) =
1
nh3

n

I2n(x)→ 0.

By (a),

1
n

kn∑
m=0

VarY ′nm(x) =
1
n

kn∑
m=0

(j+1)(Mn+Nn)∑
i=j(Mn+Nn)+Mn+1

VarLi(x)

+
2
n

kn∑
m=0

∑
j(Mn+Nn)+Mn+1≤i<j≤(j+1)(Mn+Nn)

Cov(Li(x), Lj(x))

≤ C
[
knNn

n
+

2
n

∑
1≤i<j≤n

Cov(Li(x), Lj(x))
]
→ 0.

The proof is then completed by means of (14).

Proof of Proposition 4.3. By Lemma 4.1,

n−1E(T 2
n(x)) = n−1

kn∑
j=0

VarY ′nj(x) + 2n−1
∑

0≤i<j≤kn

Cov(Y ′ni(x), Y
′
nj(x))

≤ n−1
kn∑
j=0

VarY ′nj(x) + 2n−1
∑

1≤i<j≤n
Cov(Li(x), Lj(x))→ 0.

Similarly

n−1E(T ′2n )(x)

= n−1
n∑

j=kn(Mn+Nn)+1

VarLj(x) + 2n−1
∑

1≤i<j≤kn

Cov(Li(x), Lj(x))

≤ Cn−1[n− kn(Nn +Mn)] + 2n−1
∑

1≤i<j≤n
Cov(Li(x), Lj(x))→ 0.

We use the definition of Nn and Mn to complete the proof of the conver-
gence (we note that L2-norm convergence implies convergence in probabil-
ity).
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To establish the last desired result, we proceed as follows. Let Ŵn1(x),
. . . , Ŵnkn(x) be independent r.v.’s with Ŵnj(x) distributed as (1/

√
n)Yn1(x).

Let Φn be the characteristic function of (1/
√
n)Yn1(x) so that the character-

istic function of
∑kn

j=1 Ŵnj(x) is

Φkn
n (t/

√
n) =

kn∏
j=1

E(eitYnj(x)/
√
n).

Now, by Theorem 5.3 of Roussas and Ioannides [17, p. 97], with ξj =
eitYnj(x)/

√
n ∈ Fsj

tj
|ξj | = 1, we get

∣∣∣E( kn∏
j=1

eitYnj(x)/
√
n
)
− Φkn

n (t/
√
n)
∣∣∣ ≤ C(kn − 1)Φ2(Mn)→ 0.

It remains to show that Φkn
n (t/

√
n) converges to the ch.f. of N(0, σ1(x)). To

this end, from (6),

s2n(x) =
kn∑
j=1

Var Ŵnj(x) = knn
−1σ2Yn1(x)

= knn
−1MnM

−1
n σ2Yn1(x)→ σ1(x).

To prove the asymptotic normality, we have to show that the Lindberg con-
dition is satisfied for the sequence

W̃nj(x) =
Ŵnj(x)
sn

(
E(W̃ni(x)) = 0,

kn∑
i=1

Var(W̃nj(x)) = 1
)
,

that is, for all ε > 0,

Ψn(ε) =
kn∑
j=1

�

|x|>ε

x2 dFnj(x)→ 0 as n→∞,

where Fnj is the distribution function of W̃nj . But

Ψn(ε) = knE(W̃ 2
n1(x)I{W̃n1(x)>ε}) = knE

[(
Ŵn1(x)
sn

)2

I
(cWn1(x)/sn)2>ε

]
=

kn
ns2n

E[Y 2
n1(x)I{(Y 2

n1(x)/
√
n)>εsn}].

Since Yn1(x) < CMn/
√
h3
n, we have

Ψn(ε) ≤
knC

2M2
n

ns2nh
3
n

P (|Yn1(x)| > εn−1/2sn).
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From the Chebyshev inequality, it follows that

Ψn(ε) ≤
knc

2M2
n

ε2n2s4nh
3
n

σ2Yn1(x) =
(

Mn√
nh3

n

)2(c
ε

)2( kn
ns4n

σ2Yn1(x)
)
.

Since s2n → σ1(x), with a suitable choice of Mn, the right-hand side above
converges to zero. This completes the proof of the proposition.

Proposition 4.4. Under the assumptions (H.1), (H.2), (H.3), and
(H.4)(a)&(b), for any x ∈ R,

fn(x)− f(x) = O

(
h2
n +

1
nhn

)
a.s.

Proof. First we evaluate the bias term. It is clear that

1
nhn

n∑
i=1

E

[
K

(
x−Xi

hn

)]
− f(x) =

1
hn
E

[
K

(
x−X1

hn

)]
− f(x)

=
1
hn

�
K

(
x− z
hn

)
f(z) dz − f(x)

�
K(z) dz (K is p.d.f.).

Let z1 = (x− z)/hn. Then from this change of variable, the Taylor expansion
to order 2 under (H.2)(b) and the dominated convergence theorem, we obtain

(15) Efn(x)− f(x) = O(h2
n) a.s.

Let us now examine the variance of fn(x). By repeating the arguments
employed in the proof of Proposition 4.1 (Gn(x) :↔: fn(x)),

nhn Var fn(x)→ f(x)
�
K2(z) dz,

so that

(16) Var fn(x) = O

(
1
nhn

)
a.s.

By combining (15) and (16), we deduce that

(17) fn(x)− f(x) = O

(
h2
n +

1
nhn

)
a.s.

Proof of the main result. It suffices to combine the results of Proposition
4.2, 4.4 and show that√

nhn

(
EGn(x)
fn(x)

−Hg(x)
)
→ 0 as n→∞.

To this end, observe that
EGn(x)
fn(x)

−Hg(x) =
1

fn(x)
[E(Gn(x))−G(x)] +

G(x)
fn(x)f(x)

[fn(x)− f(x)]

where G(x) :=
	
g(y)ϕ2(x, y) dy.
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Similarly for the the bias term of fn, we have

(18) E(Gn(x))−G(x) = O(h2
n) a.s.

and

there exists η > 0 such that
∞∑
i=1

P (inf |fn(x)| < η) <∞.

Indeed,

(19)
∞∑
i=1

P (|fn(x)| ≤ 1/2) ≤
∞∑
i=1

P (|fn(x)− Efn(x)| > 1/2) <∞.

Thus by (17)–(19) and (H.3), we get the convergence, which completes
the proof.
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