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FINITE TIME ASYMPTOTICS OF FLUID AND RUIN
MODELS: MULTIPLEXED FRACTIONAL BROWNIAN
MOTIONS CASE

Abstract. Motivated by applications in queueing fluid models and ruin
theory, we analyze the asymptotics of

sup ( NiB, (t —ct) >u>

<te[0T Z ’

where {Bpy,(t) : t > 0}, ¢ = 1,...,n, are independent fractional Brownian
motions with Hurst parameters H; € (0,1] and Aq,..., A, > 0. The asymp-
totics takes one of three different qualitative forms, depending on the value
Of minizlw’n Hz

1. Introduction. Let {Bpg,(t) : t > 0}, ¢ = 1,...,n, be independent
fractional Brownian motions with Hurst parameters H; € (0, 1], i.e. centered
Gaussian processes with stationary increments, continuous sample paths a.s.,
and variance functions 0’%{1_ (t)=t*Hi i=1,...,n.

This paper focuses on the analysis of the tail distribution of

(1) IP’( sup (Z)\ By, ( )—ct) >u),

t€[0,T]
with A1,..., A, > 0. Apart from theoretical interest in , our motivation
comes from applications of to some problems arising in:

o Gaussian queueing models. A vast literature on analysis of traffic in
large communication networks focuses on models where the traffic is assumed
to be a Gaussian process. There are at least two reasons why Gaussian
processes are an appropriate choice here. On the one hand, the class of
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Gaussian processes delivers a broad range of correlation structures, which is
convenient from the modeling point of view. On the other (theoretic-level)
hand, it has been proven that under heavy traffic parameterization, a large
number of i.i.d. 0-1 alternating renewal processes (regarded as a natural
model of input to the network) can be approximated by a Gaussian process;
see, e.g., [3,[8,10]. Importantly, the statistical measurements that showed the
presence of long-range dependence and self-similarity of the traffic, turned the
attention of researchers to the class of fractional Brownian motions, [11]. Let
us consider a fluid queue with infinite buffer capacity, with the accumulated
input over the time interval [0,¢) modeled by superposition of a number of
independent fractional Brownian motions Y ;' ; A;Bp,(t) and drained with
a constant rate ¢ > 0. Let {Q(t) : ¢ > 0} be the buffer content process.
Then, providing that Q(0) = 0 a.s. and invoking Reich [14], the probability
that the transient buffer content Q(T') at time T exceeds a level u > 0
equals . The steady-state analog of the above problem, i.e. the asymptotics
of P(sup;>o(> iy A\iBm, (t) —ct) > u), was analyzed in, e.g., [15] 5]. We refer
to |11}, 16 [4] and references therein for a selection of works that deal with the
case of a single fractional Brownian motion source.

e Ruin models. The tail probability has a natural interpretation in
the context of ruin problems. Using the fact that {By(t)} =4 {—Bu(t)},
can be rewritten as the finite-time ruin probability

]P’(t nf (u Yt — i B, (t)> < 0)
’ =1

for the ruin model with claims modeled by Y_." | A;Bg, (t), with initial capital
u and premium rate c. We refer to [9] for the limit-theoretic model that
justifies approximation of the claims by fractional Brownian motion.

Contribution. The aim of this paper is to give the exact asymptotics of
as u — oo. It appears that the asymptotics takes one of three different
quantitative forms, depending on the value of min;—q,__, H;. Additionally,
under the condition that min,—; _, H; > 1/2 (i.e. the increments of frac-
tional Brownian motions are nonnegatively correlated) we obtain uniform
upper and lower bounds for , which (up to a constant) are asymptotically
consistent.

Notation. Let ¥(u) = P(N > u), where N denotes the standard nor-
mal random variable. Pickands’s constants Hz, which appear in the exact
asymptotics, are defined by the following limit:

. Eexp(supyepor(V2Br(t) — t*7))
Hy = Thm T .

We refer to [12] for the analysis of the properties of Hp.
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Organization. The main results of the paper are presented in Section
The proofs are deferred to Section [3]

2. Main results. In this section we provide the asymptotics and esti-
mates for . Since for given Hy = Hy = H we have \{ By, (t)+ 2B, (t) =4
VA + X2 By(t), we assume that

Hy <. < Hp,.
In the following theorem we give the exact asymptotics of .

THEOREM 2.1. Let {Bp,(t) : t > 0}, i = 1,...,n, be independent frac-
tional Brownian motions and let \; >0,i=1,...,n.

(i) If Hy < 1/2, then as u — oo,

IP’( sup (i AiBp,(t) — ct) > u)

tef0,7] V4

wt el U2 po)t/2
=Hm, Son AZT2H: S H\2T2Hi—1

xw< utel )(1—1—0(1)).

\/ e AF T2

(i) If Hy =1/2, then as u — oo,

P(tes[%%] (g XiBm, (t) — ct) > u)

A2 /2 } u+ T
= [1+ L v 1+o(1)).
[ AT/2 4 300y Hy N T2 <\/)\§T Ly, A2T2Hi> (L+ol1))

(iii) If Hy > 1/2, then as u — oo,

IP’( sup (Zn:)\iBHi(t) —ct) > u) = W( utel )(1+0(1)).

e T] V2 AFT2H:

The proof of Theorem [2.1]is given in Section

REMARK 2.2. Theorem generalizes the results of [9] and [4] where
models with a single fractional Brownian motion (n = 1) were considered.

1=

REMARK 2.3. The qualitative type of the asymptotics obtained in The-
orem differs from the one for an infinite time horizon. In particular in
[15] it was proved that if 2Hy > 1 + Hj, then

IP’( sup (B, (t)+ B, (t)—ct) >u) :1@( sup (B, () —ct) >u)(1—|—0(1))
te[0,00) t€[0,00)
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as u — 0o0. From Theorem [2.1] one can observe that this is not the case for
a finite time horizon, where each process contributes to the asymptotics.

In the following theorem we present an upper and a lower estimate for .

THEOREM 2.4. Let {Bp,(t) : t > 0}, i =1,...,n, be independent frac-
tional Brownian motions and let \; > 0,i=1,...,n.

(i) For each T,u >0,

IP’( sup <i>\iBHi(t) fct) > u) > W( utel )

tE[O,T] i=1 \/ Z?:l AZZT2H1

(i) If Hy > 1/2, then for each T,u > 0,

]P’(tESB%] (é XiBm, (t) — ct) > u)

u+cT —2cTu u—cl’
<v +exp| =i —aam | ¥ ‘
VI AT ST o e
The proof of Theorem [2.4] is given in Section [3]

REMARK 2.5. If H; > 1/2, then the estimates in Theoremare asymp-
totically consistent, up to a constant of 2, with the asymptotics of Theo-
rem The lower bound (i) is asymptotically exact in this case.

3. Proofs. To prove Theorem [2.1] we introduce some notation. Let
n
B(t) =Y \Bpg,(t).
i=1

Note that B (t) is a centered Gaussian process with stationary increments
and variance function a%(t) = Y0 AZ2Hi A bar will always indicate a
standardized process, that is, X (t) := X (t)/ox(t) for some Gaussian process
X(t). Let

_u+tcl
my(t) = gy

for o € (0,2] and R > 0.

The proof of Theorem is based on an appropriate use of Theorem 1
of Piterbarg and Prisyazhnyuk [I3] (see also Theorem 2.2 of Konstant and
Piterbarg [7]), which we present in a form suitable for our application.

and FLE:.= lim Eexp( sup (B j2(t) — (1+ R)to‘)>
S—00 t€[0,5]

THEOREM 3.1. Let (§(t))sejo,r) be a centered Gaussian process with con-
tinuous sample paths a.s. and variance function Ug(') such that the maximum
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of o¢(+) on [T/2,T] is attained at the unique point t = T with o¢(T) =

Assume that:
(a) there exist A, 3 > 0 such that
oe(t) =1— AT —t|°(1+0(1)) ast— T;
(b) there exist D,a > 0 such that
1 — Cov(&(t),E(s)) = D|t — s|* +o(|t — s|*)  as s,t — T;
(c) there exist C,ay > 0 such that, for s,t € [T/2,T],
E((t) — £(s))? < Clt — s/,
Then:
(i) for B> a and G, 5 = HQ/QF(l/ﬂ)Dl/aﬁ—lA—l/B; as u — 0o,

P sup €()> u) = Gugu® ()1 + o(1)):
te[T/2,T]

(ii) for f=a and R:= A/D, as u — oo,

IP’( sup  &(t) > u) = FRw(u)(1+ o(1));
te[T/2,T)

(iii) for B < a, as u — oo,

IP’( sup  £(t) > u) ~ U(u).
te[T/2,T]

3.1. Proof of Theorem [2.1]l Observe that
IP’( sup (B(t) — ct) > u) > m(u),

t€[0,T]
P(tes[lé%](B(t) —ct) > u) < P(te[sol,lIP/Q](B(t) —ct) > u) + 7 (u),
where
(2) m(u) == IP’( sup (B(t) — ct) > u)
te[T/2,T)

= sup B mu(T) m

a P(te[T/IQ),T]B(t) mu(t) g U(T)>'
Since

L may(T) _ o5(T) —og(t) opt)e(t—T)
ma®  op@) " (uteog(D)

for each ¢ > 0 and t € [T/2,T] we have
(3) 1 UE(T)_UE(t) < mu(T) < 1_(1_6)0'§(T)—0'§(t)

JE(T) a mu(t) UE(T)

111
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for u sufficiently large. Let

for € € [0,1). Then, from (3)), for each € € (0,1) and u sufficiently large,

() < m(u) = P(te[sTl}gT} X.(t) > mu(T)>,

() > mo(u) = ]P’( sup  Xo(t) > mu(T)>.
te[T/2,T)
Let us focus on the analysis of 7 (u). Let € € (0,1). Then ox_(t) attains its
unique maximum over [1/2,T] at t =T, with ox_(T") = 1. Moreover
og(T) —op(t)
ox.(t)=1—(1—¢g) BB~
o5(T)
>y HN T

=1—-(1-¢) ST NI,

|T —t| + o(|T —t|)

ast 1T, and

A
iy AT

I

—

|
N =
| —

} |s — t|?H1 4 o(|s — t|?H1)

as s,t — T, and

2
E(X.(s) - Xo(t))? = E<e<B<s> CB) + (B - é(t»)

< 2eE(B(s) - B(t))* + —

8e20%(T)  2(1—¢)2\ .., = -
<(02§<T/2> o%m)

< C|s —t[*H

for s,t € [T/2,T] and some positive constant C. Thus the process X.(t)
satisfies the conditions of Theorem B.J] with

n o HNT2Hi—1 1 2
A:(1_5)22:1n 5 —, sz#,
Zz’zl A; T2H: 2 Zi:l A; T2t

«a = 2H, and B = 1, which straightforwardly implies that
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(i) if H; < 1/2, then as u — oo,

ut el \UT2/H 32011 /20
W) S H N\ T?Hi-1

w( utcl ><1+o<1>>;

\/ i1 AFT2Hi

(ii) if H; = 1/2, then as u — oo,

B A1/2
W ) = [+ oy ot e

() = (1 a)‘lHHl(

( u+cT
x ¥
AT S

(iii) if H; > 1/2, then as u — oo,

1 (u) = w( utel )(1 +o(1)).

\/ Doy AFTRH:

In (4) we used the fact that E exp(sup;epo o) V2B jo(t)—(14b)t) = (1 +b)/b
for b > 0, which directly follows from the distribution of sup;¢g ) V2B, /2(1)
— (14 b)t) being exponential with parameter 1+ b.

Hence, letting ¢ — 0, we get the asymptotic upper bound for m(u) which
is consistent with the conclusion of Theorem 2.1

)(1 +o(1));

For my(u) the argument is the same and thus we omit it.

Finally we observe that due to Borell’s inequality (see, e.g., Adler [I]),
for some constant C1,

B — C u exX —M =o\T(u
P( o (B0 —et) > ) < 2o~ ) = k)

as u — oo. This completes the proof of Theorem [2.1 =
3.2. Proof of Theorem (i) It suffices to observe that for each u, T

we have

]P’(tes[té%] (Zzn; NiB,(t) — ct) > u) > P(Zzn; NiBu, (T) — T > u)

u+ T

(i)

This completes the proof of (i).



114 K. Debicki and G. Sikora

(ii) Define a Gaussian process {Y (t) : ¢ > 0} by

Y(t) = By (Zn: A,
=1

where {B)/5(t) : t > 0} is a standard Brownian motion. We have
By ()] =0=EBO], o} (1) =Y N = 0%,

Since Hy > 1/2, a%(t) is convex. Thus for 0 < s <t we have

=1 =1
= Zn: X E[Bu,(s)Bu,(t)] = i AQ’Z[SQHI' + 12— (= s)?M]
i=1 =1
> i M2 = BV (s)Y (1))
=1

Hence, in view of Slepian’s inequality (see, e.g., Adler [I]), we have

P sup (S 1)) > )

t€[0,T]

< IP’( sup (Y (t) —ct) > u) = IF’( sup (Bl/g(a%(t)) —ct) > u)

te[0,T] te[0,7)
=B( sup (Bip(t) —c(0}) (1) > u),
tE[O,a%(T)]

where (O’%)_l(t) is the inverse function of 0% ( ). Since (0%)_1(75) is concave,
we have (O’%)_ (t) > (T/O'E( )t for ¢ € [0, JB(T)], which implies

P sup  (Bipp(t) = clo2) 7 (1) > u)

1el0.02(7)
T
< JP’( sup <Bl/2(t) — 02t> > u>
t€[0,02 (1) o=(T)

Finally, using the formula for the distribution of sup,cp 77(By/2(t) — At) (see
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Baxter and Donsker [2]), we have
T
}P’< sup (Bl/z(t) — 02t> > u>
1€[0.0% (T)] o%(T)

_ w(%) " xp<_202;mu)gp<g(£)

This completes the proof of (ii). m
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