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ASYMPTOTIC DISTRIBUTION OF THE ESTIMATED

PARAMETERS OF AN ARMA(p, q) PROCESS IN THE

PRESENCE OF EXPLOSIVE ROOTS

Abstract. We consider an autoregressive moving average process of or-
der (p, q) (ARMA(p, q)) with stationary, white noise error variables having
uniformly bounded fourth order moments. The characteristic polynomials of
both the autoregressive and moving average components involve stable and
explosive roots. The autoregressive parameters are estimated by using the
instrumental variable technique while the moving average parameters are
estimated through a derived autoregressive process using the same sample.
The asymptotic distribution of the estimators is then derived.

1. Introduction. Consider the ARMA(p, q) model,

(1.1) Xt − α1Xt−1 − α2Xt−2 − · · · − αpXt−p = et − β1et−1 − · · · − βqet−q,

where Xt is the observation at time t, t = 1, . . . ,N, and et is a sequence of
identically and independently distributed (0, σ2) random variables with

(1.2) E(e4+δt ) <∞ for some δ > 0.

The initial conditions are assumed to be zero, that is, et = 0 for t ≤ 0.

The autoregressive (AR) component is said to be stable or explosive ac-
cording as the roots of the characteristic polynomial Φ(z) = 1−α1z−α2z

2−
· · · − αpzp are greater than or less than unity in absolute value. Similarly
the moving average (MA) component is stable or explosive according as the
roots of the characteristic polynomial Θ(z) = 1−β1z−β2z2−· · ·−βqzq are
greater than or less than unity in absolute value.
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By using a backward shift operator B, model (1.1) can be rewritten as

(1.3) Φ(B)Xt = Θ(B)et.

For an autoregressive process with identically and independently dis-
tributed errors, the limiting distribution of the least squares estimators un-
der stable and explosive roots has been studied by several authors, like Mann
and Wald (1943), White (1958), Anderson (1959) and Jeganathan (1988).
Chan and Wei (1988) derived the asymptotic distribution of the least square
estimators in the presence of stable and explosive roots. Basu and Sen Roy
(1993) considered all forms of roots and derived the asymptotic distribution
of the estimator assuming φ-mixing error variables. However, such studies
have not been extended to ARMA processes.

In the present work our aim is to find the limiting distribution of the
estimated parameters when the characteristic polynomials of the AR and
MA components have both stable and explosive roots. Since the ordinary
least squares estimator of the AR parameters is inconsistent, we use the
instrumental variable technique to estimate these parameters. The MA pa-
rameters are estimated through a derived AR process as proposed by Tsay
(1993).

In studying the limiting distribution, a componentwise break-up accord-
ing to stable and explosive roots is made using techniques similar to those
of Chan and Wei (1988). Then using suitably chosen norming matrices, the
limiting distribution of each component is found separately. The results are
then put together in the final theorem.

In Section 2 a componentwise break-up of the process is made. Sec-
tion 3 considers the asymptotic distributions of the estimators component-
wise, while Section 4 contains the main theorem. Some concluding remarks
are given in Section 5.

In the following, In and 0n respectively denote the identity matrix of
order n and the n-dimensional vector of zero elements. diag(·) denotes a
block diagonal matrix. The norm of a vector refers to euclidean norm, while
for a matrix A,

‖A‖ = sup
‖x‖=1

‖Ax‖.

Finally, ci, i = 0, 1, . . . , denote constants.

2. A componentwise break-up of the process. For r + s = p and
|ρi| > 1, i = 1, . . . , r, and |γj | < 1, j = 1, . . . , s, Φ(z) can be rewritten as

(2.1) Φ(z) =
r∏
i=1

(1− ρ−1i z)
s∏
j=1

(1− γ−1j z)

where ρi are the r stable roots and γj are the s explosive roots of Φ(z) = 0.
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Similarly Θ(z) can be written as

(2.2) Θ(z) =

c∏
i=1

(1− π−1i z)

d∏
j=1

(1− η−1j z)

where πi are the stable roots and ηj are the explosive roots of Θ(z), with
|πi| > 1, i = 1, . . . , c, |ηj | < 1, j = 1, . . . , d, and c + d = q. All roots are
assumed to be distinct.

Model (1.3) can be rewritten as

(2.3) Φ(B)Xt = ut,

where

(2.4) ut = Θ(B)et

is an MA(q) process.

Defining

xt = (Xt, . . . ,Xt−p+1)
′, ut = (ut,0

′
p−1)

′, A =

(
α1 . . . αp−1 αp

Ip−1 0p−1

)
,

(2.3) can be rewritten as

(2.5) xt = Axt−1 + ut, t = 1, 2, . . . .

Since xt−1 is correlated with ut through et−1, . . . , et−q, the least squares
estimator of the AR parameter α = (α1, . . . , αp)

′ will be inconsistent. Taking
n = N − q − 1 and following Basu, Sen Roy and Bhattacharya (2005), the
instrumental variable estimator of α is

(2.6) α̂n =
( n∑
t=1

xtx
′
t+q

)−1( n∑
t=1

xtXt+q+1

)
.

To estimate the parameters of the MA component, let Yt−i = det/dβi be
the partial derivative of et with respect to βi. Then following Tsay (1993)
we obtain the derived AR(q) process

(2.7) Θ(B)Yt = et, t = 1, 2, . . . .

Defining

yt = (Yt, . . . ,Yt−q+1)
′, vt = (et,0

′
q−1)

′, C =

(
β1 . . . βq−1 βq

Iq−1 0

)
,

(2.7) can be rewritten as

(2.8) yt = Cyt−1 + vt, t = 1, 2, . . . .
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Then the least squares estimator of β = (β1, . . . , βq)
′, based on n observa-

tions, is

(2.9) β̂n =
( n∑
t=1

yt+qy
′
t+q

)−1( n∑
t=1

yt+qYt+q+1

)
.

Let θ = (α′,β′)′, θ̂n = (α̂′n, β̂
′
n)′, zt = (x′tut+q+1,y

′
t+qet+q+1)

′, and

Dn =

(∑n
t=1 xtx

′
t+q 0

0
∑n

t=1 yt+qy
′
t+q

)
.

Then

(2.10) θ̂n − θ = D−1n

( n∑
t=1

zt

)
.

Denote by B the backshift operator. Then the different components are
segregated as

Rt = Φ(B)
r∏
i=1

(1− ρ−1i B)−1Xt,(2.11)

St = Φ(B)
s∏
i=1

(1− γ−1i B)−1Xt,(2.12)

Qt = Θ(B)
c∏
i=1

(1− π−1i B)−1Yt,(2.13)

Pt = Θ(B)

d∏
i=1

(1− η−1i B)−1Yt.(2.14)

Let rt = (Rt, . . . ,Rt−r+1), st = (St, . . . ,St−s+1), qt = (Qt, . . . ,Qt−c+1) and
pt = (Pt, . . . ,Pt−d+1). By (2.1) and (2.11), Rt can be written as

(2.15) Rt =

s∏
i=1

(1− γ−1i B)Xt = Xt − γ∗1Xt−1 − · · · − γ∗sXt−s

so that for the r × p matrix

T1 =


1 −γ∗1 . . . −γ∗s 0 0 0 0

0 1 −γ∗1 . . . −γ∗s 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 1 −γ∗1 . . . −γ∗s


we have T1xt = rt. Again by (2.1) and (2.12) we may find an s×p matrix T2

such that T2xt = st. Hence there exists a p × p matrix T(1) = (T′1,T
′
2)
′

such that T(1)xt = (r′t, s
′
t)
′. Similarly, using (2.2), (2.13) and (2.14) we may
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define a q × q matrix T(2) such that T(2)yt = (q′t,p
′
t)
′. Finally let T =

diag(T(1),T(2)). We next derive the componentwise limiting distributions.

3. Componentwise asymptotic distributions

3.1. The AR stable component. We first consider the stable com-
ponent of the autoregressive part,

∏r
i=1(1−ρ

−1
i B)Rt = ut. Following (2.11),

this can be reconstructed as

(3.1) Rt = ρ∗1Rt−1 + · · ·+ ρ∗rRt−r + ut,

where ρ∗ = (ρ∗1, . . . , ρ
∗
r) are the parameters of the process with roots ρj ,

j = 1, . . . , r. Define

L1 =

(
ρ∗1 . . . ρ∗r−1 ρ∗r

Ir−1 0r−1

)
and u1t = (ut,0

′
r−1).

Then (3.1) can be rewritten as

(3.2) rt = L1rt−1 + u1t, t = 1, 2, . . . .

Let ρ̌1 = max1≤j≤r |ρ−1j | < 1. Then

(3.3) ‖Ln1‖ ∼ c0ρ̌n1 as n→∞.

Let Jn = n−1/2In and Σ1 = E(rnr
′
n+q); then Σ1 is positive definite. Define

wt = r′tut+q+1 and Rn = n−1
∑n

t=1 rtr
′
t+q.

Lemma 3.1. Under (3.3) and bounded fourth order moments of the in-
novations,

(3.4) n−1/2
n∑
t=1

wt
d−→ N(0,Σ∗1),

where

(3.5) Σ∗1 = E(w1w
′
1) +

∞∑
k=1

E(w1w
′
k+1) +

∞∑
k=1

E(wk+1w
′
1),

and the two series in Σ∗1 are convergent.

Proof. Observe that by (1.2) and (3.3),

‖E(rtr
′
tu

2
t+q+1)‖ ≤ c1

∞∑
j=1

∞∑
k=1

‖Lj1‖ · ‖L
k
1‖ · E|ut−jut−k|(3.6)

≤ c2(1− ‖L1‖)−2 <∞.

Defining ϑ(wt) as the dispersion matrix for the sequence wt we have

(3.7) ‖ϑ(wt)‖ <∞.
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Truncating wt =
∑∞

j=0(L
j
1)
′u′1,t−jut+q+1 to a finite number of l + 1 terms,

define w∗t =
∑l

j=0(L
j
1)
′u′1,t−jut+q+1 so that

(3.8)

∞∑
l=1

[E‖wt −w∗t ‖2]1/2 =

∞∑
l=1

[
E
∥∥∥ ∞∑
j=l+1

Lj1u1,t−jut+q+1

∥∥∥2]1/2.
By (1.2),

E
∥∥∥ ∞∑
j=l+1

Lj1u1,t−jut+q+1

∥∥∥2 ≤ c3( ∞∑
j=l+1

‖Ll1‖
)2
,(3.9)

so that using (3.3),
∞∑
l=1

[E‖wt −w∗t ‖2]1/2 ≤
∞∑
l=1

[
c4

{ ∞∑
j=l+1

‖Lj1‖
}2]1/2

(3.10)

≤ c5
∞∑
l=1

∞∑
j=l+1

‖Lj1‖ <∞.

Thus from (3.7) and (3.10) and using the multivariate version of Theorem
21.1 of Billingsley (1968) on the sequence wt, the lemma follows.

Lemma 3.2. Under bounded fourth order moments of the innovations,
for some constant c6 and for all ε > 0,

(3.11) P[‖Rn − Σ1‖ > ε] < c6n
−1ε−1.

Proof. Writing

rt+1r
′
t+q+1 − rtr

′
t+q = L1rtr

′
t+qL

′
1 + u1,t+1r

′
t+qL

′
1 + L1rtu

′
1,t+q+1

+u1,t+1u
′
1,t+q+1 − rtr

′
t+q

we have

(3.12) (I− L1 ⊗ L1)
[
Vec
(
n−1

n∑
t=1

rtr
′
t+q

)
−Vec Σ1

]
= n−1Vec[r1r

′
1+q − E(r1r

′
1+q)]− n−1Vec[rn+1r

′
n+q+1 − E(rn+1r

′
n+q+1)]

+ n−1Vec
( n∑
t=1

L1rtu
′
1,t+q+1

)
+n−1Vec

[ n∑
t=1

{u1,t+1r
′
t+qL

′
1−E(u1,t+1r

′
t+qL

′
1)}
]

+ n−1Vec
[ n∑
t=1

{u1,t+1u
′
1,t+q+1 − E(u1,t+1u

′
1,t+q+1)}

]
where I− L1 ⊗ L1 is nonsingular. Now by (1.2) and (3.3),

E‖RnR
′
n+q‖ ≤

∞∑
j=1

∞∑
k=1

‖Lj1‖ · ‖L
k
1‖ · E|un−jun+q−k| <∞,(3.13)
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so that for some c7 > 0 the first term of (3.12) satisfies

P[‖{r1r′1+q − E(r1r
′
1+q)}‖ > nε/5] ≤ 10n−1ε−1[E‖r1r′1+q‖](3.14)

≤ c7n−1ε−1.

Similarly the second term in (3.12) can be shown to be of the same order as
(3.14).

For the third term in (3.12) let r∗t = L1rtut+q+1. Since ut is a (q + 1)-
dependent process and hence φ-mixing with φn = 0 for n > q+ 1, r∗t is also
φ-mixing with mean zero and

(3.15) ‖ϑ(r∗t )‖ <∞.

Again defining r̃t =
∑l

j=0 Lj+1
1 u1,t−jut+q+1, from (1.2) and (3.3) it follows

that

∞∑
l=1

[E‖r∗t − r̃t‖2]1/2 <∞.(3.16)

Using (3.15), (3.16) and the multivariate version of Theorem 21.1 of Billings-
ley (1968), we obtain

(3.17) n−1/2
n∑
t=1

L1rtut+q+1
d−→ N(0, Σ̃1),

where

Σ̃1 = E(L1r1r
′
1L
′
1u

2
q+2) +

∞∑
k=1

E(L1r1r
′
k+1L

′
1uq+2uk+q+2)(3.18)

+
∞∑
k=1

E(L1rk+1r
′
1L
′
1uq+2uk+q+2).

Hence for large n and some c8 > 0,

P
[∥∥∥n−1Vec

( n∑
t=1

L1rtu
′
1,t+q+1

)∥∥∥ > ε/5
]
≤ c8e−

√
nε/5.(3.19)

Similarly since L1rt+qut+1−E(L1rt+qut+1) and ut+1ut+q+1−E(ut+1ut+q+1)
are zero mean φ-mixing processes, the last two terms of (3.12) are also of
order e−

√
nε/5.

Combining the above results, (3.11) follows.

We next state the main theorem of this section.
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Theorem 3.1. Under conditions (1.2) and (3.3),

Jn

n∑
t=1

rtr
′
t+qJ

′
n

p−→ Σ1,(3.20)

(J′n)−1
( n∑
t=1

rtr
′
t+q

)−1( n∑
t=1

rtut+q+1

)
d−→ Nr(0,Σ

−1
1 Σ∗1Σ

−1
1 ).(3.21)

Proof. This follows from Lemmas 3.1 and 3.2.

3.2. The AR explosive component. Next consider the explosive
component of the autoregressive part,

∏s
i=1(1 − γ

−1
i B)St = ut, which from

(2.12) can be rewritten as

(3.22) St = γ∗1St−1 + · · ·+ γ∗sSt−s + ut for t = 1, 2, . . . ,

where γ∗ = (γ∗1 , . . . , γ
∗
s ) are the parameters of the process with roots γj for

j = 1, . . . , s. Defining

F =

(
γ∗1 . . . γ∗s−1 γ∗s

Is−1 0

)
and u2t = (ut,0

′
s−1)

′,

the model (3.22) can be rewritten as

(3.23) st = Fst−1 + u2t, t = 1, 2, . . . .

Let γ̌1 = min1≤j≤s |γ−1j | > 1 and γ̌2 = max1≤j≤s |γ−1j | > 1. Then ‖Fn‖ ∼
c9γ̌

n
2 and

‖F−n‖ ∼ c10γ̌−n1 as n→∞.(3.24)

Writing the first column of F−(t−1) as ft, let

(3.25) s∗n = F−(n−1)sn =

n∑
t=1

F−(t−1)u2t =

n∑
t=1

ftut.

By the results of Longnecker and Serfling (1978), and because of (1.2) and∑∞
t=1 ‖F−t‖ <∞, it follows that s∗n converges a.s. Let

(3.26) lim
n→∞

s∗n = s∗ =
∞∑
t=1

F−(t−1)u2t.

Lemma 3.3. s∗n
L2−→ s∗ and hence s∗n

p−→ s∗.

Proof. Under the condition of bounded second order moments and (3.24),

E‖(s∗n − s∗)(s∗n − s∗)′‖ ≤ c11
( ∞∑
t=n

F−t
)2
→ 0 as n→∞.
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Let

dn = F−(n−1)
n∑
t=1

stut+q+1 and hn =
n∑
t=1

F−(t−1)s∗nun+q+2−t.

Lemma 3.4. dn − hn
p−→ 0.

Proof. We have

dn − hn = F−(n−1)
n∑
t=1

F(n−t)(s∗n−t+1 − s∗n)un+q+2−t.

Then from (3.26) it follows that

E‖dn − hn‖ ≤ ‖F−(n−1)‖
n∑
t=1

E‖F(n−t)(s∗n−t+1 − s∗n)un+q+2−t‖

≤ c12‖F−(n−1)‖
n∑
t=1

[{ t−2∑
j=0

‖F−(j+1)‖
}2]1/2

= c13n‖F−n‖ → 0 as n→∞.

Let K be a nonsingular matrix such that KFK−1 = diag(γ−11 , . . . , γ−1s ).
Writing G = diag(γ1, . . . , γs), we have F−n = K−1GnK where

(3.27) ‖Gn‖ ∼ c14γ̌−n1 as n→∞.
Also let Sn and S be s×s diagonal matrices with ith diagonal element equal
to the ith element of Ks∗n and Ks∗ respectively, and let ϑn = (v1, . . . , vs)

′,

where vj =
∑n

i=1 γ
(i−1)
j un+q+2−i for j = 1, . . . , s. Then hn can be written in

the form

(3.28) hn = K−1
n∑
t=1

Gt−1Ks∗nun+q+2−t = K−1Snϑn.

Define the s× s diagonal matrix S∗n with ith diagonal element equal to the

ith element of K
∑[n/2]

t=1 ftut, and ϑ∗n = (v∗1, . . . , v
∗
s) with

v∗j =

[n/2]∑
i=1

γ
(i−1)
j un+q+2−i, j = 1, . . . , s.

Here S∗n and ϑ∗n are partial sums consisting of only [n/2] of the ui’s. However
S∗n depends on the first [n/2] observations of ut, while ϑ∗n depends on the
last [n/2] observations. Since S∗n and ϑ∗n are separated by q + 1 intervening
ui’s, they are independently distributed.

Lemma 3.5. Sn and ϑn are asymptotically independent.

Proof. From (1.2) and (3.24) we have

E‖(Sn − S∗n)(Sn − S∗n)′‖ ≤ c15‖F−2[n/2]‖ → 0 as n→∞.

Hence Sn − S∗n
L2−→ 0, which implies Sn − S∗n

p−→ 0.
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Again by (1.2) and (3.27),

E‖(ϑn − ϑ∗n)(ϑn − ϑ∗n)′‖ ≤ c16‖G2[n/2]‖ → 0 as n→∞.

Hence, ϑn − ϑ∗n
L2−→ 0, which implies ϑn − ϑ∗n

p−→ 0.

Since S∗n and ϑ∗n are mutually independent random variables, Sn and ϑn
are asymptotically independent.

Lemma 3.6. S∗n
L2−→ S and ϑ∗n

L2−→ ϑ, where ϑ = (v̄1, . . . , v̄s) with v̄j =∑∞
i=1 γ

(i−1)
j un+q+2−i for j = 1, . . . , s.

Proof. The proof is similar to that of Lemma 3.5.

Next, define

Γ =

 (1− γ21)−1 (1− γ1γ2)−1 . . . (1− γ1γs)−1

. . . . . . . . . . . .

(1− γ1γs)−1 (1− γ2γs)−1 . . . (1− γ2s )−1

 ,

F∗ =
∞∑
i=1

F−(i−1)s∗(s∗)′(F−(i−1))′.

Then with γ(i−1) = (γi−11 , . . . , γi−1s )′ we observe that

F∗ = K−1
∞∑
i=1

Sγ(i−1)(γ(i−1))′S′(K−1)′ = K−1SΓS′(K−1)′.(3.29)

Taking Kn = F−(n+q−1) we have the following theorem.

Theorem 3.2. Under (1.2) and (3.24),

(3.30) Kn−q+1

n∑
t=1

sts
′
t+qK

′
n

p−→ F∗.

If in addition et’s are Gaussian, then F∗ is positive definite a.s. and

(3.31) (K′n)−1
( n∑
t=1

sts
′
t+q

)−1( n∑
t=1

stut+q+1

)
d−→ N∗1,

where N∗1 = K′S−1Γ−1ϑ, ϑ being an s-variate Gaussian variable with mean
zero and dispersion matrix V = ((vij)) with

vij =

∞∑
k=1

∞∑
l=1

γ
(k−1)
i γ

(l−1)
j E(un+q+2−kun+q+2−l).

Also ϑ is independent of K′S−1Γ−1.
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Proof. Since s∗ is convergent a.s, under (3.24) and using Lemma 3.6,∥∥∥F−(n−1) n∑
t=1

sts
′
t+q(F

−(n+q−1))′ − F∗
∥∥∥

≤
∥∥∥ ∞∑
t=n

F−ts∗(s∗)′(F−t)′
∥∥∥+

∥∥∥ n∑
t=0

F−t(s∗n−t(s
∗
n+q−t)

′ − s∗(s∗)′)(F−t)′
∥∥∥

≤ ‖s∗(s∗)′‖
∞∑
t=n

‖F−t‖2 +

∞∑
t=0

‖F−t‖2‖s∗n−t(s∗n+q−t)′ − s∗(s∗)′‖ p−→ 0

as n→∞. Since et’s and hence ut’s are Gaussian, s∗n being a linear transform

of Gaussian variables is also Gaussian. As s∗n
L2−→ s∗, s∗ is also Gaussian.

Hence, P(t′s∗ = 0) = 0 for all t ∈ Rs − {0}. Thus by Lai and Wei (1983),
F∗ is positive definite a.s.

Define ũn = (un, . . . , uq+2)
′ and

Σ̃n =

 E(u2n) . . . E(unuq+2)

. . . . . . . . .

E(unuq+2) . . . E(u2q+2)

 , G̃n =

 1 γ1 . . . γn−11

. . . . . . . . . . . .

1 γs . . . γn−1s

 .

Thus ϑn = G̃nũn. As the roots of the explosive component are distinct,
the rows of G̃n are linearly independent. Again since ũn is Gaussian with
mean zero and dispersion matrix Σ̃n, ϑn is Gaussian with mean zero and

dispersion matrix G̃nΣ̃nG̃
′
n. Hence as ϑn

L2−→ ϑ, ϑ is also Gaussian with
mean zero and dispersion matrix V.

By Lemmas 3.4–3.6, dn
d−→ K−1S̄ϑ. Using this and (3.30) in

((F−(n+q−1))′)−1
( n∑
t=1

sts
′
t+q

)−1 n∑
t=1

stut+q+1

=
(
F−(n−1)

n∑
t=1

sts
′
t+q(F

−(n+q−1))′
)−1

dn,

the theorem follows.

3.3. The MA stable component. From (2.13), writing

L2 =

(
π∗1 . . . π∗c−1 π∗c

Ic−1 0c−1

)
and v1t = (et,0

′
c−1)

′,

the stable part of the moving average component can be written as

(3.32) qt = L2qt−1 + v1t, t = 1, 2, . . . .
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Let π̌1 = max1≤j≤c |π−1j | < 1. Then

(3.33) ‖Ln2‖ ∼ c17π̌n1 as n→∞.

Let Mn = n−1/2In and Σ2 = E(qnq
′
n).

Theorem 3.3. Under the conditions (1.2) and (3.33),

Mn

n∑
i=1

qt+qq
′
t+qM

′
n

p−→ Σ2,(3.34)

(M′n)−1
( n∑
i=1

qt+qq
′
t+q

)−1( n∑
i=1

qt+qet+q+1

)
d−→ Nc(0,Σ

−1
2 Σ∗2Σ

−1
2 ),(3.35)

where Σ∗2 = E(qq+1q
′
q+1e

2
q+2).

Proof. The proof is similar to that of Theorem 3.1 but somewhat simpler
because, unlike the ut’s in (3.1), the et’s in (3.32) are uncorrelated.

3.4. The MA explosive component. From (2.14), writing

F̃ =

(
η∗1 . . . η∗d−1 η∗d

Id−1 0d−1

)
and v2t = (et,0

′
d−1)

′,

the explosive component of the moving average part can be written as

(3.36) pt = F̃pt−1 + v2t, t = 1, 2, . . . .

Let η̌1 = min1≤j≤d |η−1j | > 1 and η̌2 = max1≤j≤d |η−1j | > 1. Then ‖F̃n‖ ∼
c18η̌

n
2 and

(3.37) ‖F̃−n‖ ∼ c19η̌−n1 as n→∞.

Let K̃ be a nonsingular matrix such that K̃F̃K̃−1 = diag(η−11 , . . . , η−1d ) and

s̃ =
∑∞

t=1 F̃
−(t−1)v2t. Define the d×d diagonal matrix S̃ whose ith diagonal

element is the ith element of K̃s̃. Let

Nn = F̃−(n+q−1), Λ =

 (1− η21)−1 . . . (1− η1ηd)−1

. . . . . . . . .

(1− η1ηd)−1 . . . (1− η2d)−1

 ,

F̃∗ =
∞∑
i=1

F̃−(i−1)s̃s̃′(F̃−(i−1))′ = K̃−1S̃ΛS̃′(K̃−1)′.

Theorem 3.4. Under (1.2) and (3.37),

(3.38) Nn

n∑
t=1

pt+qp
′
t+qN

′
n

p−→ F̃∗.
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In addition if et’s are Gaussian, then F̃∗ is positive definite a.s. Also

(3.39) (N′n)−1
( n∑
t=1

pt+qp
′
t+q

)−1 n∑
t=1

pt+qet+q+1
d−→ N∗2,

where N∗2 = K̃′S̃−1Λ−1ϑ̃, ϑ̃ being a d-variate Gaussian variable with mean

zero and dispersion matrix Ṽ = ((ṽij)) with ṽij =σ2
∑∞

k=1

∑∞
l=1 η

(k−1)
i η

(l−1)
j .

Also ϑ̃ is independent of K̃′S̃−1Λ−1.

Proof. Similar to that of Theorem 3.2.

4. The Main Theorem

Theorem 4.1. Under conditions (1.2), (3.3), (3.24), (3.34) and (3.39),
as n→∞,

GnTDnT
′G′n

p∼ diag(Σ1,F
∗,Σ2, F̃

∗),(4.1)

(T′G′n)−1(θ̂n − θ)
d∼ (Nr,N

∗
1,Nc,N

∗
2)
′,(4.2)

where the stable and explosive components are asymptotically independent of
each other, but the two stable components and the two explosive components
of the AR and MA parts are not.

To prove Theorem 4.1 we will require the following lemmas.

Lemma 4.1. Under conditions (1.2), (3.3), (3.24), (3.34) and (3.39),

(i) Jn

n∑
t=1

rts
′
t+qK

′
n

p−→ 0,

(ii) Mn

n∑
t=1

qt+qp
′
t+qN

′
n

p−→ 0.

Proof. Under condition (1.2),

E‖n−1/2rt‖2 ≤ n−1c20
( t−1∑
j=0

‖Lj1‖
)2
→ 0 as n→∞ uniformly in t,

so that

(4.3) sup
t
n−1/2rt

p−→ 0.

Again since F−(n+q−1)St+q is bounded in probability, there exists an increas-
ing sequence m′n (m′n/n→ 1 as n→∞) such that

(4.4) n−1/2
n∑

t=m′
n+1

rts
′
t+q(F

−(n+q−1))′
p−→ 0.
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Also under (3.24), as n→∞,

sup
t

E
∥∥∥n−1/2 m′

n∑
t=1

rts
′
t+q(F

−(n+q−1))′
∥∥∥

≤ sup
t
n−1/2

m′
n∑

t=1

E‖rt‖2E‖s∗t+q‖2‖F−n+t‖ → 0

so that

(4.5) n−1/2
m′

n∑
t=1

rts
′
t+q(F

−(n+q−1))′
p−→ 0.

Combining (4.4) and (4.5), (i) follows. (ii) follows similarly.

Lemma 4.2. Jn
∑n

t=1 rtut+q+1 and Kn
∑n

t=1 stut+q+1 are asymptotically
independent.

Proof. Using Lemma 3.4 and the expression in (3.28), it is enough to
show that hn is asymptotically independent of n−1/2

∑n
t=1 rtut+q+1.

Consider any sequence kn ↑ ∞ such that kn/n → 0 as n → ∞. By
Lemma 3.5, for each n, Sn depends on ei for 1 ≤ i ≤ kn and ϑn depends on
ei for n−kn+1 ≤ i ≤ n. Hence the lemma will follow if it can be shown that
for large n, n−1/2

∑n
t=1 rtut+q+1 depends only on ei, kn + 1 ≤ i ≤ n− kn.

We first show that

(4.6) n−1/2
n∑
t=1

rtut+q+1 − n−1/2
n−kn−q−1∑
t=kn+q+1

rtut+q+1
p−→ 0.

Since ‖rtut+q+1‖ is a mixing process, by Theorem 20.1 of Billingsley (1968),

(4.7) E
∥∥∥n−1( kn+q∑

t=1

rtut+q+1

)( kn+q∑
t=1

rtut+q+1

)′∥∥∥
≤ kn + q

n
E

(
1√

kn + q

kn+q∑
t=1

‖rtut+q+1‖
)2

→ 0 as n→∞,

the term within bracket being bounded. Similarly,

(4.8) E
∥∥∥n−1( n∑

t=n−kn−q
rtut+q+1

)( n∑
t=n−kn−q

rtut+q+1

)′∥∥∥→ 0 as n→∞.

Combining (4.7) and (4.8) yields (4.6).

Next define r∗j = u1j +L1u1,j−1 + · · ·+Lj−kn−1−q1 u1,kn+1+q. Then under
(1.2),
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E
∥∥∥n−1( n∑

j=kn+q+1

(rj − r∗j )uj+q+1

)( n∑
j=kn+q+1

(rj − r∗j )uj+q+1

)′∥∥∥
≤ c21n−1

∞∑
j=kn+q+1

∞∑
k=kn+q+1

‖Lj−kn−q−11 ‖ · ‖Lk−kn−q−11 ‖ → 0 as n→∞.

Hence

n−1/2
n−kn−q−1∑
t=kn+q+1

rtut+q+1 − n−1/2
n−kn−q−1∑
t=kn+q+1

r∗tut+q+1
p−→ 0,

and the assertion follows.

Corollary 4.1. The following are asymptotically independent:

(i) Mn
∑n

t=1 qt+qet+q+1 and Kn
∑n

t=1 stut+q+1,

(ii) Jn
∑n

t=1 rtut+q+1 and Nn
∑n

t=1 pt+qet+q+1,

(iii) Mn
∑n

t=1 qt+qet+q+1 and Nn
∑n

t=1 pt+qet+q+1.

Proof. The proofs are similar to that of Lemma 4.2.

Corollary 4.2. The following terms are dependent even for large n:

(i) Jn
∑n

t=1 rtut+q+1 and Mn
∑n

t=1 qt+qet+q+1,

(ii) Kn
∑n

t=1 stut+q+1 and Nn
∑n

t=1 pt+qet+q+1.

Proof. Following the arguments in Lemma 4.2, for large n, both the
terms in (i) depend on ei, kn + 1 ≤ i ≤ n− kn, and hence are dependent.

Similarly, the terms in (ii) are dependent since for large n, Sn and S̃n
depend on ei for 1 ≤ i ≤ kn and ϑn and ϑ̃n depend on ei for n− kn + 1 ≤
i ≤ n.

Proof of Theorem 4.1. The theorem follows from Theorems 3.1–3.4, Lem-
mas 4.1 and 4.2 and Corollaries 4.1 and 4.2.

5. Concluding remarks. In this paper we have derived the asymptotic
distribution of the estimated ARMA parameters taking the instrumental
variable estimator for the AR component and the derived AR process esti-
mator for the MA component. The latter is unobservable and hence cannot
be directly used to estimate β. As suggested by Chan and Tsay (1996), the
derived process Yt(β

0) can be constructed from an initial value β0 of β and

then iterated to obtain the final solution β̂.

The stable components are shown to be asymptotically normal while
the explosive components are mixtures of normals. However, although the
stable components are independent of the explosive components, between
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themselves the stable and explosive components are dependent. An implica-
tion of this is that even for large samples, inferences regarding each compo-
nent cannot be done independently of the corresponding stable or explosive
component.

The proofs indicate that the results would hold even if the et’s are a
sequence of martingale differences. However, for more complex dependent
structures condition (1.2) may not suffice and some additional conditions
may need to be imposed.
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