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EVOLUTION IN A MIGRATING POPULATION MODEL

Abstract. We consider a model of migrating population occupying a com-
pact domain (2 in the plane. We assume the Malthusian growth of the pop-
ulation at each point x € (2 and that the mobility of individuals depends
on z € 2. The evolution of the probability density u(z,t) that a randomly
chosen individual occupies x € {2 at time t is described by the nonlocal
linear equation u; = §, ¢(y)u(y,t) dy — p(x)u(x,t), where p(z) is a given
function characterizing the mobility of individuals living at . We show that
the asymptotic behaviour of u(x,t) as t — oo depends on the properties of
© in the vicinity of its zeros.

1. Introduction. Evolution problems of the form
(1) Owu(x,t) = G(u, z,t) — u(z, t) Lu(z, t),

where G is in general a nonlinear operator, which depends on u in nonlocal
way, and L is a linear operator, have been considered in many papers; see
e.g. [, [2], [3], [5], [6] and the references therein.

For example, the equation

dru(a,t) = | I — yyuly, 1) dy — ulw, )
Rn

has been applied in [I] to describe the evolution of the density u(x,t) of
a population. Here the function J(z — y) is interpreted as the migration
probability from location y to location x and —u(z,t) is the rate at which
individuals leave x to move to any other site.

The authors of [5] give many other examples of biological phenomena
which can be modelled by equation .

In this paper we will consider a particular form of equation . A pop-
ulation of density m(z,t) occupies a compact domain 2 C R? so that
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Sw m(x,t) dz is the mass of the population in a subdomain w C 2 at time ¢.
Assume that the density of newborn individuals is proportional to m(z,t)
(the Malthusian law of growth of population), and moreover, that the in-
dividuals living at  can move to other points in 2. Let m,(z,t) be the
density of outgoing individuals, and m;(z,t) the density of incoming indi-
viduals. The mobility of individuals living at x is characterized by a non-
negative, continuous function ¢ on 2, 0 < p(x) < 1, i.e. the density has the
form my(z,t) = p(z)m(x,t). Assume that m;(x,t) depends only on ¢, i.e.
individuals can move from a point x in {2 to another one with probability
independent of the destination. This assumption and the fact that the mass
of outgoing individuals equals the mass of incoming individuals lead to

| mo(z,t) de = | p(z)m(z,t) do = | mi(t) do = m,(t)| 2],
n N 2
where |§2] denotes the volume of the domain (2. Below we assume, for sim-
plicity, that [2| = 1. Hence m;(t) = |, ¢(y)m(y,t) dy.
The change of m(z,t) during the time interval At depends on:

(i) the mass of newborn individuals, which according to the Malthusian
law equals am(x,t)At, where a > 0 is a constant;
(ii) the growth of the mass of incoming individuals, which is m;(t) At;
(iii) the growth of the mass of outgoing individuals, which is m,(z, t) At.

The above assumptions lead to the following continuity equation:
(2) Orm(x,t) = am(z,t) + S o(y)m(y,t) dy — p(x)m(z,t).
Q

Equation is supplemented with the initial condition
(3) m(z,0) = mo(z),
where mg(z) > 0 is a given initial density. Integrating over {2 we get an
equation for the total mass M(t) of the population, M'(t) = aM(t). Hence
M (t) = My exp(at), where My = §, mo(x) da.

The function u(z,t) = m(x,t)/M(t) is the probability density that a
randomly chosen individual at time ¢ lives at a point x € 2. The evolution
of u(x,t) is described by the linear nonlocal problem

(4)  Owu(x,t) = | e(y)uly,t) dy — p(x)u(z,t) = Au(t) — p(z)u(z,t),

0
(5)  w(z,0) =uo(x),
where ug(z) = mo(z)/My. Problem (#)—(5) can be considered for £2 C R"
with n > 2, but this does not lead to more interesting mathematical phe-
nomena. Indeed, is a family of ordinary differential equations indexed by
the parameter x and the dimension of the space of parameters is not impor-
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tant for our considerations. The choice n = 2 is motivated by a biological
interpretation of the problem.
By a solution of problem f we mean a continuous function of x and
t on {2 x [0,T], differentiable with respect to ¢, which satisfies pointwise
on {2 x [0,T] and satisfies the initial condition ().
For a fixed x, u(z,t) as a function of ¢ satisfies a linear differential equa-
tion with the initial data ug(x), hence by the variation of parameters formula
¢
(6) u(z,t) = ug(z)e P@ 4 et S e?@)3 Au(s) ds.
0
Equation @ is the integral form of the differential problem 7, which
is quite convenient to prove the existence of solution of f as well as to
study its properties.

LEMMA 1.1. If lim oo Au(t) = 0 and p(x) > a > 0 on B C {2, then
u(x,t) = 0 as t — oo uniformly on B.

Proof. We rewrite @ in the form

T t
u(x, t) = ug(x)e P 4 7Pt S e?@)5 Au(s) ds 4 e @)t S e?®)S Au(s) ds.
0 T

For a given ¢ > 0 we choose T such that Au(t) < € for ¢ > T. Then for
x € B, we obtain

r 1—el—t
u(z,t) < up(x)e™ + e~ S e?®)5 Au(s) ds + e ——r
a
0

Letting ¢ — oo, we see that the solution u(x,t) converges to 0 uniformly
on B.

2. Existence of solution and its properties. Problem f fea-
tures properties characteristic for diffusion problems. The reason is that
equation , after some transformation of time, becomes the nonlocal diffu-
sion equation related to the functional (see [4] for the definition of nonlocal
diffusion)

F) = | (@) - oy)v(y)* dz dy.
20

One of the characteristic properties of diffusion problems is the existence

of an entropy or, in other words, of a Lyapunov functional.

PROPERTY 1. The square of the L?>-norm of the solution of f with
respect to the measure o(x)dx, Lu(t) = {,u?(z,t)p(x)dz, is a Lyapunov
functional for that problem.
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Proof. Multiplying by pu we get
1d
(7) B £<P(U2) = pudu — p*u’.
Integrating over {2, and using the Jensen inequality, we obtain
1 1d
(8) S (t) = 5 —( | p(@)e?(x,t) do
2 2dt 4
= (Au(t))? = | ¢*(x)u?(z,t) da < 0.
2

PROPERTY 2. The unique solution with homogeneous initial data s
u(z,t) = 0.

Proof. We have Lu(t) = 0, so the Lebesgue measure of the intersection
of the supports of u(-,t) and ¢ is zero. Hence takes the form Opu(z,t) =
—(x)u(z,t), which implies that u(z,t) = ug(z)e ?®! = 0.

The next property says that, under some assumption, the solution u
becomes instantaneously positive, so u diffuses at infinite speed.

PROPERTY 3. If the intersection of the supports of ug and @ has a posi-
tive Lebesgue measure, then u(xz,t) > 0 for all t > 0.

Proof. Our asumption implies that Au(t) > 0 for small ¢t. Now the pos-
itivity of the solution is a consequence of the integral equation @ satisfied

by any solution of f.
If the assumption of Property 3 is not satisfied, we can write the solution
of our problem in an explicit form.

PROPERTY 4. If the supports of ug and ¢ do not meet in a set of positive
Lebesgue measure, then u(x,t) = ug(x) is the unique solution of our problem.

Proof. 1t is easy to check that u(x,t) = ug(x) is a solution. Assume that
there exists another solution v. Because our problem is linear, w = v — v is
a solution of with homogeneous initial data. Using Property 2 we have
w =0, and so u(x,t) = v(z,t).

The problem — describes the evolution of density, hence its solution
must satisfy

PROPERTY 5. The solution u(z,t) is nonnegative and §, u(z,t) dr = 1.

Proof. The conservation of the L'-norm is obvious, it is enough to inte-
grate over {2. The nonnegativity of u is a consequence of Properties 3
and 4.

For the proof of existence of such a solution we use the Banach contraction
principle.
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THEOREM 2.1. There exists a unique solution of problem f.

Proof. It follows from Property 5 that it is enough to look for nonnegative
solutions. For fixed T' > 0 and A > 0 we define
X ={u:[0,T] = C°02): u>0, u0) =ug}.
The set X equipped with the distance function
d(u,v) = sup e M|u(t) = v(t)]coq)
te[0,T]

is a complete metric space. The operator W defined on (X, d)) by

t
Wot)(z) = ug(x)e Pt 4 e—e@) S e?(@)s S e(x)v(s)(y) dy ds

0 9]

is a contraction on X for A > 1. In fact, we have

W W) = sup e [Wault)a) = Wo(t)@) v
te|0,

< t:%%]H — () tsjew 5}26)\56—)\5|u W) —v(s)(y)|dyd8‘ o
<t:%%]H — (At z)tsjew Séeksdx w dyds‘ o

= dy(u,v) t:[%%}He_(AW(I )tS)e Mgl ds‘ .

:d,\(u,v)tesg(l)%} m oo %d)\(u,v).

3. Asymptotic behaviour of solutions. The asymptotic properties
of solutions of f depend on the behaviour of the function ¢ in the
vicinity of the set of its zeros, B = {x € 2 : ¢(x) = 0}. If ¢ > 0, the
solution tends as ¢ — oo uniformly to the unique stationary solution, thus
we may say that the steady state coincides with this stationary solution. If
B # (), the situation is more complicated. The steady state is a measure with
a density or a singular measure, depending on the properties of 1/¢p.

This kind of asymptotic behaviour is characteristic for semigroups of
Markov operators for which the Foguel alternative is satisfied, i.e. sweeping
occurs or the semigroup is asymptotically stable (for a detailed presentation
see [7] and the references therein).

First, we consider the case B = (), i.e. ¢ > 0 on {2. The stationary solution
U satisfies AU(z) = ¢(z)U(z), hence U(z) = A(U)/¢(z). Here A(U) is a
constant, which depends on the unknown density U. We have {, U(z) dz = 1,
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so A(U) = (§,(p(x))"* dz)~. This implies that the stationary solution is
of the form

1 -1
©) v = ( §Zso<y>dy> @)

THEOREM 3.1. If p(z) > 0 on £2, then the solution of [{)-() tends
uniformly to the stationary solution U defined in @D

Proof. The function v(z,t) = u(x,t) — U(x) satisfies equation and
§ov(z,t)dz = 0. Using the Cauchy inequality we get

(10) Av(t) < (g () dx)l/Q(Lv(t))l/z
(9}

The L2-norm of v satisfies

11 ()2 = %(g v? daz) =2 { w(w,t) dz Av(t) — 2 | v (2, t)p() do
(9] (9] (9}
= —2Lu(t).

Now, it follows from that Lv tends to 0 as t — oco. Hence implies
that Av(t) — 0 as t — oo. Using Lemma , we get the uniform convergence
of solutions to the steady state U.

If B# 0 and {,1/¢(z)dx < co, we define U(x) by @ for z ¢ B and
U(x) = oo on B, and we call such a function the steady state.

THEOREM 3.2. If {,1/p(z)dx < oo, then the solution of f con-
verges to the steady state as t — oo uniformly on each compact subset of
2\ B.

Proof. Again we consider the difference v(z,t) := u(z,t) — U(x). Evi-
dently v satisfies on 2\ B and {,v(z,t)dr = 0. We cannot, as before,
differentiate the L?-norm of v (it is not even clear if v is in L?(§2) or not).

However, we can still use the Lyapunov functional which is well defined
for v, and inequality holds. We show that Av(t) — 0 ast — oo. First, we
prove that there exists a sequence t, — oo such that Av(t,) — 0. Suppose
that Av(t) > a > 0 for all ¢ > 0. Then

(12) Ov(z,t) > a— @(x)v(x,t)
and therefore

v(x (e e @t
1) 02 o5~ (o)

For each neighbourhood K, ={x € 2 : dist(z, B) < r} of B, and for suf-
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ficiently large ¢, we have

1 a
14 v(x,t)dxr > = ——dx.
(14) Q\SKT (e,t) d > 2 Q\SKT @
Thus, for sufficiently small r we get
(15) S v(z,t)de = S u(x,t)dx — S U(z)dx > — S U(z)dx
K, K, K, Ky
1 a
> —— S dx.
4 k. p(z)

Inequalities f imply {,v(z,t)dz > 0 for sufficiently large ¢, which
leads to a contradiction.

Suppose that there exists a sequence t,, — oo such that Av(¢,) > a for
some a > 0. Note that

(16) (Av)'(t) = | p(x) da Av(t) — | v(z, t)*(2) da.
2 (9}

It follows from that Awv(t) is bounded. Moreover we have

H v(z, t)p(x) dw‘ < max ¢?(x) S lu(z,t) — U(z)| de < 2max ¢?(x)
2 9]
and hence (Av)’ (t) is bounded on RY.
To show that Av(t) — 0, it is enough to prove that Lv(¢) — 0. Assume
to the contrary that Lv(t) > b > 0 for all t > 0 and some b.
Note that

(17) % (§2 (2, 1) dr) = Av(t) ~ Lo().

As shown above, there exists ¢, — oo such that Av(t,) — 0, and the
derivative of Awv(t) is bounded. Hence for some § > 0 the intervals A, :=
(tn — 0,t, + d) are such that on A,

(18) jt((gz w*(z, 1) dx) < —%b.

This implies that SQ u?(x,t) dz becomes negative in finite time, which is
absurd. In this way we proved that Lv(t) — 0, so Av(t) — 0.

If 1/¢ is not integrable, we have only partial results about the asymptotic
behaviour of solutions. If B is a single point, B = {x¢}, and 1/¢ is not
integrable, we call the measure d,, the stationary state. This is justified by
the next theorem.
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THEOREM 3.3. If B = {x0} and 1/¢ is not integrable, then the solution
of problem f tends to 05, ast — oo in the sense of weak convergence
of measures.

Proof. We show that Au(t) — 0 as t — oo. First, we prove that there
exists a sequence t, tending to oo such that Au(t,) — 0. Assume that
Au(t) > a > 0, hence

u(z @ _ b () Je @t
1 002 o5 (i )<

For § > 0 we define Es = {z € 2 : ||z — x¢|| > ¢}. Now we choose § > 0
such that a SE& 1/¢(x) dx > 2. For each sufficiently large ¢,

(20) (sozlx) - uo(m)>e‘p(x)t <1,

so we get [ u(z,t)dx > 1, a contradiction. Note that

(Au) (1) = Au(t) § pl) do — Lu(t),
9}

and the derivative (Au)'(t) is bounded. To prove that Lu(t) tends to 0, we
proceed as in the preceding proof. Having this convergence and using
(with u instead of v), we know that Au(t) — 0 and Lemma [I.1|implies that
u(-,t) goes to 0 uniformly on each compact subset of 2\ {zo}.
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