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IMPROVED BALL CONVERGENCE OF NEWTON’S

METHOD UNDER GENERAL CONDITIONS

Abstract. We present ball convergence results for Newton’s method in
order to approximate a locally unique solution of a nonlinear operator equa-
tion in a Banach space setting. Our hypotheses involve very general majo-
rants on the Fréchet derivatives of the operators involved. In the special case
of convex majorants our results, compared with earlier ones, have at least
as large radius of convergence, no less tight error bounds on the distances
involved, and no less precise information on the uniqueness of the solution.

1. Introduction. Let X and Y be Banach spaces and let D be a non-
empty convex subset of X. In the present paper F : D ⊆ X → Y is Fréchet-
differentiable.

Many problems in computational sciences can be brought in the form of
the nonlinear equation

(1.1) F (x) = 0

using mathematical modeling.

The solutions x? of equation (1.1) can rarely be found in closed form.
That is why most solution methods for these equations are iterative.

The most popular iterative procedure for generating a sequence approx-
imating x? is undoubtedly Newton’s method:

(1.2) xn+1 = xn − F ′(xn)−1F (xn) n ≥ 0, x0 ∈ D.

Here F ′(x) ∈ L(X ,Y), the space of bounded linear operators from X into Y,
denotes the Fréchet derivative of the operator F [4], [10].
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Newton’s method converges quadratically to x? (under certain conditions
[3], [4], [10]), and requires one function evaluation and one inverse at each
step. Therefore the efficiency index E = p1/q (p is the order of convergence,
and q the number of function evaluations per iterative step) is E =

√
2

[4], [14].

The convergence for Newton-type methods under very general conditions
has been studied by several authors. A survey of recent results can be found
in [4], [10] (and the references there; see also [3], [13], [14]).

In this study we suppose that the nonlinear operator equation (1.1) has
a solution x?. An interesting problem is to estimate the radius of the con-
vergence ball of Newton’s method (1.2). An open ball U(x?, r) ⊆ D with
center x? and radius r is called a convergence ball of an iterative method
if the sequence generated by this iterative method starting from any initial
value in it converges. The convergence ball of an iterative method is very
important in computational mathematics, because it shows the extent of
difficulty of choosing initial points. Ball convergence theorems can be im-
mediately obtained by specializing results on Newton-type methods in the
case of Newton’s method [1]–[7], [9], [12]. However, a more direct approach
is expected to generate more exact results.

In particular, we are motivated by optimization considerations and the
work of Ferreira [8], where it is claimed that the best possible radius of
convergence can be obtained for Newton’s method using the information
(F, F ′) under convex majorants.

In this paper, we introduce even more general majorant conditions that
do not necessarily imply the convexity of the functions involved. We pro-
vide a ball convergence result for Newton’s method (1.2). If we specialize
our theorem in the case of convex majorants we obtain a result which, in
comparison with earlier ones [8], [12]–[15] (under the same hypotheses and
computational cost), has

(a) at least as large radius of convergence;
(b) no less tight error estimates on the distance ‖xn − x?‖ (n ≥ 0);
(c) no less precise information on the uniqueness of the solution x?.

Advantages (a)–(c) are important in computational mathematics, since
they allow a wider choice of initial guesses x0, and the computation of fewer
iterative steps to obtain the same desired error tolerance. Numerical ex-
amples further validating the theoretical results are also provided in this
study.

2. Ball convergence of Newton’s method. We shall show the main
local convergence result for Newton’s method (1.2).
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Theorem 2.1. Let X and Y be Banach spaces, D ⊆ X an open set,
and F : D → Y a continuously Fréchet-differentiable operator. Let x? ∈ D,
R > 0, and α = sup{t ∈ [0, R) : U(x?, t} ⊂ D}. Suppose that F (x?) = 0,
F ′(x?) is invertible, and there exist functions f, f0 : [0, R)→ R continuously
differentiable such that for all θ ∈ [0, 1], x ∈ U(x?, α):

(H1) ‖F ′(x?)−1 (F ′(x) − F ′(x? + θ(x − x?)))‖ ≤ f ′(‖x − x?‖) −
f ′(θ‖x− x?‖);

(H2) ‖F ′(x?)−1 (F ′(x)− F ′(x?))‖ ≤ f ′0(‖x− x?‖)− f ′0(0);
(H3) let β = sup{t ∈ [0, R) : f ′0(t) < 0}, γ = sup{t ∈ (0, β) : rf0,f ≤ 1},

δ = min{α, γ}, where rf0,f : [0, δ)3 → R is given for 0 ≤ t < v < δ,
x ∈ U(x?, δ) by

rf0,f = rf0,f (t, v, ‖x− x?‖) = − e(t, v)

f ′0(‖x− x?‖)
,

e(t, v) = f(v)− f(t)− f ′(v)(v − t);
(H4) the functions t 7→ f ′(t) − f ′(θt), t 7→ f ′0(t) − f ′0(0) are increasing

for all t ∈ [0,∞), θ ∈ [0, 1];
(H5) f0(t) ≤ f(t) and f ′0(t) ≤ f ′(t) for t ∈ [0, R);
(H6) f ′0(0) ≥ −1.

Then the sequence {xn} generated by Newton’s method (1.2) for x0∈U(x?, δ)
− {x?} is well defined, remains in U(x?, δ) for all n ≥ 0, and converges to
x?, which is the unique solution of F (x) = 0 in U(x?, α).

From now on we assume that the hypotheses of Theorem 2.1 hold. We
shall prove Theorem 2.1 through a series of lemmas:

Lemma 2.2. If x ∈ U(x?, t) and t ∈ [0, β0), where β0 = min{α, β}, then
F ′(x)−1 ∈ L(Y,X ), and

(2.1) ‖F ′(x)−1F ′(x?)‖ ≤ − 1

f ′0(‖x− x?‖)
≤ − 1

f ′0(t)
≤ − 1

f ′(t)
.

Proof. Using hypotheses (H2)–(H6), we obtain

‖F ′(x?)−1 (F ′(x)− F ′(x?))‖ ≤ f ′0(‖x− x?‖)− f ′0(0)(2.2)

≤ f ′0(‖x− x?‖) + 1 ≤ f ′0(t) + 1 < 1.

It follows from (2.2), and the Banach lemma on invertible operators [4], [10]
that F ′(x)−1 ∈ L(Y,X ), so that (2.1) holds true.

Lemma 2.3. Let x ∈ U(x?, t), and 0 ≤ t < v < β0. Set

E(x?, x) = F (x)− F (x?)− F ′(x)(x− x?)

=

1�

0

[F ′(x? + θ(x− x?))− F ′(x)](x− x?) dθ.
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Then

‖F ′(x?)−1E(x?, x)‖ ≤ e(t, v)‖x? − x‖,(2.3)

rf0,f ≤ 1,(2.4)

where e(t, v) and rf0,f are given in (H3).

Proof. Using (H1), (H4), and the definition of E we obtain

(2.5) ‖F ′(x?)−1E(x?, x)‖

≤
1�

0

‖F ′(x?)−1(F ′(x? + θ (x− x?))− F ′(x))‖ ‖x− x?‖ dθ

≤
1�

0

(f ′(‖x− x?‖)− f ′(θ‖x− x?‖))‖x− x?‖ dθ,

which implies estimate (2.3).

In view of (H5), we get

(2.6)

	1
0(f
′(t)− f ′(θt)) dθ
−f ′0(t)

≤ 1,

which together with (H3) implies (2.4).

Proof of Theorem 2.1. According to Lemmas 2.2 and 2.3, it remains to
show xn ∈ U(x?, δ) (n ≥ 1), limn→∞ xn = x?, and the uniqueness part.

By hypothesis x0 ∈ U(x?, δ). Let us assume xk ∈ U(x?, δ) for all k ≤ n.
We shall show xk+1 ∈ U(x?, δ). Using (1.2), and Lemma 2.3 for x = xn, we
get

(2.7) ‖xk+1 − x?‖ < ‖xk − x?‖ < δ,

which shows xk+1 ∈ U(x?, δ), and limk→∞ xk = x?.

Finally, to show uniqueness in U(x?, α), let y? be a solution of F (x) = 0
in U(x?, α). Define a linear operator M by

M =

1�

0

F ′(x? + θ(y? − x?)) dθ.

Using (2.1) with x? + θ (y? − x?) ∈ U(x?, α) replacing x, we conclude M−1
exists. It then follows from the identity

(2.8) F (y?)− F (x?) =M (y? − x?)

that x? = y?.

If f0, f satisfy certain convexity conditions, then Proposition 2.4 below
specializes to Theorem 2.1 in [8, p. 748]. The proofs are omitted, since they
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follow from the corresponding ones in [8], where the estimate

(2.9) ‖F ′(x)−1F ′(x?)‖ ≤ − 1

f ′(‖x− x?‖)
was used instead of the at least as tight

(2.10) ‖F ′(x)−1F ′(x?)‖ ≤ − 1

f ′0(‖x− x?‖)
(see Lemma 2.2).

Proposition 2.4. Let X and Y be Banach spaces, D ⊆ X an open
set, and F : D → Y a continuously Fréchet-differentiable operator. Let
x? ∈ D, R > 0, and α = sup{t ∈ [0, R) : U(x?, t) ⊂ D}. Suppose that
F (x?) = 0, F ′(x?) is invertible, and there exist functions f, f0 : [0, R) → R
twice continuously differentiable such that for all x ∈ U(x?, α), θ ∈ [0, 1]:

(H1) ‖F ′(x?)−1(F ′(x) − F ′(x? + θ(x − x?)))‖ ≤ f ′(‖x − x?‖) −
f ′(θ‖x− x?‖);

(H2) ‖F ′(x?)−1(F ′(x)− F ′(x?))‖ ≤ f ′0(‖x− x?‖)− f ′0(0);
(H3) let β = sup{t ∈ [0, R) : f ′0(t) < 0}, γ = sup{t ∈ (0, β) : rf0,f ≤ 1},

δ = min{α, γ}, where rf0,f : [0, δ)3 → R is given for 0 ≤ t < v < δ,
x ∈ U(x?, δ) by

rf0,f = rf0,f (t, v, ‖x− x?‖) = − e(t, v)‖x− x?‖
(v − t)2f ′0(‖x− x?‖)

,

e(t, v) = f(v)− f(t)− f ′(v)(v − t);

(H4) f ′0, f
′ are convex and strictly increasing functions on [0, R);

(H5) f0(t) ≤ f(t) and f ′0(t) ≤ f ′(t) for t ∈ [0, R);
(H6) f0(0) = f(0) = 0 and f ′0(0) = f ′(0) = −1.

Then the sequence {xn} generated by Newton’s method (1.2) is well defined,
remains in U(x?, α) for all n ≥ 0, and converges to a unique solution x? in
U(x?, λ) of F (x) = 0, where

(2.11) λ = sup{0 < t < α : f0(t) < 0}.
Moreover, the scalar sequence {tn} given for t0 = ‖x? − x0‖ by

(2.12) tn+1 =

∣∣∣∣tn − f(tn)

f ′(tn)

∣∣∣∣ ∣∣∣∣f ′(tn)

f ′0(tn)

∣∣∣∣ (n ≥ 0)

is well defined, remains in (0, α), is strictly decreasing, and converges to
zero.

Furthermore, {tn+1/t
2
n} is strictly decreasing,

‖x? − xn+1‖ ≤
tn+1

t2n
‖x? − xn‖2 (n ≥ 0),(2.13)

‖x? − xn‖ ≤ t0
(
t1
t0

)2n−1
(n ≥ 0),(2.14)
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and

(2.15)
tn+1

t2n
≤ f ′′(t0)

2|f ′0(t0)|
(n ≥ 0).

If, additionally rf0,f (γ, γ, γ) = 1, and γ < α, then α = γ is the best possible
convergence radius.

Proof. As noted above, the proof follows as in Theorem 2.1 in [8] (simply
replace (2.9) by (2.10) in the computation of the upper bounds of the norm
‖F ′(x)−1F ′(x?)‖) with the exception of the uniqueness part. We have

(2.16) y? − x? = −
1�

0

F ′(x?)−1[F ′(x? + θ(y? − x?))− F ′(x?)](y? − x?) dθ.

Using (H2), (H4), (H6) and (2.16) with x = x? + θ(y? − x?), and θ = 0, we
get

‖y? − x?‖ ≤
1�

0

[f ′0(θ‖y? − x?‖)− f ′0(0)]‖y? − x?‖ dθ(2.17)

= f0(‖y? − x?‖)− f0(0)− f ′0(0)‖y? − x?‖,

which implies

(2.18) f0(‖y? − x?‖) ≥ 0.

The function f0 is strictly convex and f(t) < 0 in [0, α). That is, 0 is
the unique solution of f0(t) = 0 in [0, α). Hence, estimate (2.18) implies
‖y? − x?‖ = 0. Thus, x? = y?.

Remark 2.5. If f ′0 = f ′ on [0, R), then Proposition 2.4 reduces to The-
orem 2.1 in [8]. Otherwise, i.e. if

(2.19) f ′0(t) < f ′(t), t ∈ [0, R),

then our results are finer with advantages as stated in the abstract.

Note that (H2) is not an addition to (H1), since f0 always exists in this
case. Hence, through Theorem 2.1 we have studied the local convergence of
Newton’s method under very general majorants (not necessarily convex).

Moreover, using Proposition 2.4 we expanded the applicability of Theo-
rem 2.1 using the same hypotheses on (F, F ′), and convex majorants.

In the next section, we provide numerical examples where (2.19) holds.

3. Applications

Example 3.1. Assume there exists L > 0 such that

(3.1) ‖F ′(x?)−1(F ′(y)−F ′(x))‖ ≤ L‖x− y‖ for all x, y ∈ U(x0, R) ⊆ D.
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Define a scalar majorant function f : [0, R]→ (−∞,∞) by

(3.2) f(t) =
L

2
t2 − t

and set

(3.3) f0(t) = f(t), t ∈ [0, R].

It then follows from Proposition 2.4 (or Theorem 2.1 in [8]) that we can set

(3.4) rRTW =
2

3L
,

which is the radius of convergence obtained by Rheinboldt [12], [4], and
Traub [14].

It follows from (3.1) that there exists L0 > 0 such that

(3.5) ‖F ′(x?)−1(F ′(x)− F ′(x?))‖ ≤ L0‖x− x?‖ for all x ∈ U(x0, R).

Clearly

(3.6) L0 ≤ L
and L/L0 can be arbitrarily large [2]–[4].

Define

(3.7) f0(t) =
L0

2
t2 − t.

It then follows from Proposition 2.4 that we can set

(3.8) rAH =
2

2L0 + L
.

By comparing (3.4) with (3.8) we conclude that

(3.9) rRTW ≤ rAH .

If strict inequality holds in (3.6), then so is the case in (3.9). Note also that

rRTW

rAH
=

2L0
L + 1

3
→ 1

3
as

L0

L
→ 0.

Hence, our approach triples (at most) the radius of convergence given by
(3.4) ([3], [4], [8], [10], [12]–[15]).

Example 3.2. Let f : [0, R)→ (−∞,∞) be a twice continuously differ-
entiable function with f ′ convex. Then F satisfies (2.2) if and only if

(3.10) ‖F ′(x?)−1F ′′(x)‖ ≤ f ′′(‖x− x?‖) for all x ∈ D ∩ U(x?, R)

(see Lemma 14 in [8] or [15]).
Define a function f on [0, R) by

(3.11) f(t) =
γt2

1− γt
− t,

where R < 1/γ for some γ > 0.
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If for example F is an analytic operator, then (3.10) is satisfied for

(3.12) γ? = sup
k≥2

∥∥∥∥F ′(x?)−1F (k)(x?)

k!

∥∥∥∥1/(k−1).
Smale [13] and Wang [15] have used (3.11) to provide a convergence analysis
for Newton’s method (1.2). In particular Wang [15] showed convergence for
F being only twice Fréchet continuously differentiable for γ satisfying

(3.13) γ? ≤ γ.
We have also used (3.11) to provide a convergence analysis for the secant
method [5] (see also [4]).

Define

(3.14) f0(t) = f(t), t ∈ [0, R).

For analytic operators F we obtain Smale’s radius of convergence [13]:

(3.15) t?S =
5−
√

13

6γ?
,

and for twice Fréchet continuously differentiable operator F we obtain
Wang’s radius [15]:

(3.16) t?W =
5−
√

13

6γ
.

In what follows we shall show that we can enlarge the radii given by (3.15)
and (3.16).

We can see that for f given by (3.11), condition (3.10) or equivalently
(2.2) implies that there exists γ0 > 0 satisfying

(3.17) γ0 ≤ γ,
so that f0 : [0, 1/γ0) → (−∞,∞) satisfies condition (2.1) for R ∈ [0, 1/γ0).
Note also that γ/γ0 can be arbitrarily large [2]–[4]. It follows by (3.17) that
there exists a ∈ [0, 1] such that

(3.18) γ0 = aγ.

Set

(3.19) b = 1− a,
and define a scalar polynomial Pa by

(3.20) Pa(t) = 3a2t3 + a(6b− a)t2 + (3b2 − 2ab− 1)t− b2.
Then for fixed a, we get

(3.21) Pa(0) = −b2 ≤ 0 and Pa(1) = 1.

Using (3.21) and the intermediate value theorem we conclude that there
exists ta ∈ [0, 1) such that Pa(ta) = 0. Denote by ta the minimal number in
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[0, 1) satisfying Pa(ta) = 0. Define

(3.22) t?a =
1− ta
γ

.

In particular for a = 1, t1 = (1 +
√

13)/6, and consequently

(3.23) t?a =
5−
√

13

6γ
= t?W .

It is simple algebra to show that for all a ∈ [0, 1], Pa(t1) ≥ 0, which implies

(3.24) ta ≤ t1
and

(3.25) t?1 ≤ t?a.
We also note that strict inequality holds in (3.24) and (3.25) for a 6= 1.

As an example, let a = 1/2. Then we obtain

t1/2 = 0.65185 < t1 =
1 +
√

13

6
= 0.76759,

t?1 =
0.23241

γ
<

0.34815

γ
= t?1/2.(3.26)

Finally note that clearly if strict inequality holds in (2.4), i.e., in (3.6) or
(3.17), then our estimates on ‖xn+1 − x?‖ (n ≥ 0) are finer (more precise)
than the corresponding ones in [1], [8], [10], [12]–[15] (see e.g. (2.10)).

These results are also obtained under the same computational cost since
in practice the evaluation of L (or γ) requires that of L0 (or γ0).

Remark 3.3. As noted in [2]–[6], [11], [14], [16] the local results obtained
here can be used for projection methods such us Arnold’s, the generalized
minimum residual method (GMRES), the generalized conjugate residual
method (GCR), for combined Newton/finite projection methods, and in
connection with the mesh independence principle to develop the cheapest
and most efficient mesh refinement strategies.

Remark 3.4. The local results obtained can also be used to solve equa-
tions of the form F (x) = 0, where F ′ satisfies the autonomous differential
equation ([4], [10])

(3.27) F ′(x) = T (F (x)),

where T : Y → X is a known continuous operator. Since F ′(x?) = T (F (x?))
= T (0), we can apply our results without actually knowing the solution x?

of F (x) = 0.

Example 3.5. Let X = Y = (−∞,∞), D = U(0, 1), and define a func-
tion F on D by

(3.28) F (x) = ex − 1.
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Then, for x? = 0, we can set T (x) = x+ 1 in (3.27). Using (3.1), (3.7) and
(3.28) we obtain L0 = e− 1 < L = e. In view of (3.4) and (3.8), we get

rRTW = 0.2571658439 < rAH = 0.3249472314.

Hence, (2.19) holds and our radius of convergence is larger than the one
provided in [8], [10], [12]–[15].

Example 3.6. Let X = Y = C[0, 1], the space of continuous functions
defined on [0, 1], and equipped with the max-norm. Let D = U(0, 1). Define
a function F on D by

F (h)(x) = h(x)− 5

1�

0

xθh3(θ) dθ.

Then

F ′(h[u])(x) = u(x)− 15

1�

0

xθh2(θ)u(θ) dθ for all u ∈ D.

Then, as in Example 3.5, we get for h?(x) = 0, L0 = 7.5 < L = 15,

rRTW = 0.04 < 0.06 = rAH .

Note again that (2.19) holds, and our convergence radius is larger than
before ([8], [10], [12]–[15]).
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