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EXISTENCE OF A RENORMALIZED SOLUTION OF
NONLINEAR DEGENERATE ELLIPTIC PROBLEMS

Abstract. We study a general class of nonlinear elliptic problems asso-
ciated with the differential inclusion (u) — div(a(z, Du) + F(u)) > f in 2
where f € L*(§2). The vector field a(-,-) is a Carathéodory function. Using
truncation techniques and the generalized monotonicity method in function
spaces we prove existence of renormalized solutions for general L°°-data.

1. Introduction. Let {2 be a bounded open subset of RV (N > 1) with
Lipschitz boundary if N > 2, let p be a real number such that 1 < p < oo
and w = {w;(x), 0 < i < N} be a vector of weight functions on {2 (i.e., every
component w;(z) is a measurable function which is positive a.e. in §2). Let
Wol’p(Q, w) be the weighted Sobolev space associated with the vector w. Our
aim is to show existence of renormalized solutions to the nonlinear elliptic
equation

with right-hand side f € L*°({2). Furthermore, F' and § are functions satis-
fying the following assumption:

(Ag) F: R — RY is locally Lipschitz continuous and 3: R — 2% a set
valued, maximal monotone mapping such that 0 € 3(0). Moreover,

(1.1) A1) € LY(2)

for each I € R, where 3° denotes the minimal selection of the graph
of B, that is, fo(l) = inf{|r| | r € R and r € B(])}.

Moreover, a : 2 x RV — RY is a Carathéodory function satisfying the

following assumptions:
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(A1) There exists a positive constant A such that

N
a(w,€)- € > A Y wilelP
i=1
for all ¢ € RY and almost every x € £2.
(A2) |ai(z,8)] < aw, /p( )[k(z) —i—Z;»V:l wjl-/p (z)|¢;P~1] for almost every
r € ali=1,...,N, and every ¢ € RV, where k(-) is a non-
negative function in L? (2), p’ = p/(p — 1), and a > 0.
(Asz) (a(z,&) —a(z,n)) - (€ —n) > 0 for almost every = € {2 and every
&neRN.
Note that in the case with variable exponents and Orlicz spaces the
problem was studied by Wittbold et al. [9] [12]. Other work in this direction
can be found in [2] 5] [6].

2. Preliminaries. Let {2 be a bounded open subset of RY (N > 1),
let p be a real number such that 1 < p < oo, and let w = {w;(z),0 <
i < N} be a vector of weight functions, i.e., every component w;(x) is a
measurable function which is positive a.e. in 2. Further, we suppose in all
our considerations that

(2.1) w; € Lik . (92),
(2.2) w P e Ll (),

7
for any 0 < i < N. We denote by W1P(£2,w) the space of all real-valued
functions u € LP({2,wp) such that the derivatives in the sense of distribu-
tions fulfill Ou/0z; € LP(£2,w;) for i = 1,..., N, which is a Banach space

under the norm
1/p
w;(x) d:):} .

29 Il = [Py + 3 1| %
9 =1 2

The condition implies that C5°(£2) is a subspace of W1P(2, w), and
consequently we can define the subspace X = Wol’p(Q,w) of WHP(02,w)
as the closure of C§°(£2) with respect to the norm (2.3). Moreover, condi-
tion implies that W1P(£2,w) as well as I/VO1 P(0,w) are reflexive Ba-
nach spaces. We recall that the dual space of T/VO1 P(0,w) is equivalent to
Wb (2, w* ), where w* = {w} = wl v ,4=0,...,N} and where p’ is the
conjugate of p, i.e. o’ =p/(p—1) (for more details we refer to [10]).

P 1/p
wi(z) dm)

AssumpTION (H1). The expression

N
ful = (30| %

i=1 0 Oz;
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is a norm defined on X and is equivalent to the norm (2.3). There exist a
weight function o on (2 and a parameter ¢, 1 < g < oo, such that

(2.4) o' e LY(1),
with ¢ = q/(¢ — 1). The Hardy inequality,

@5  ([m@led) " < (fjg i) de ) "
2 i=1 0

holds for every u € X with a constant ¢ > 0 independent of u, and moreover
the imbedding

(2.6) X —— Li(£2,0),

expressed by the inequality (2.5)), is compact. Note that (X, | - [x) is a
uniformly convex (and thus reflexive) Banach space.

Ju(x)
61'1'

3. Notion of solutions and existence results

DEFINITION 3.1. A renormalized solution to (E, f) is a pair of functions
(u, b) satisfying the following conditions:
(R1) u: 2 — R is measurable, b € L*(£2), u(x) € D(B(x)) and b(x) €
B(u(x)) for a.e. x € (2.
(R2) For each k > 0, Tj(u) € WyP(£2,w) and
(31) (b hwe+ {(ale, Du) + P() - Dih(u)p) = | fh(u)p
2 n n
for all h € C}(R) and all ¢ € Wol’p(Q, w) N L>®(£2), where Ty(+) is
truncation at height k.
(R3) S{kg\u|§k+1} a(x,Du)-Du — 0 as k — oo.

THEOREM 3.2. Under assumptions (Hy), (Ag)~(A3) and f € L>*(£2)
there exists at least one renormalized solution (u,b) to (E, f).

Proof. STEP 1: Approzimate problem. First we approximate (FE, f) for
f € L*(£2) by problems for which existence can be proved by standard
variational arguments. For 0 < e <1, let 5.: R — R be the Yosida approx-
imation of 3 (see [7]). We introduce the operators

A WoP(2,w) = W (2,0%),  ue Be(Thy(u) — diva(z, Du),
Ao WP (2,w) = W (Q,w%),  ues —div F(Ty - (u)).

Because of (Az) and (A3), A;  is well-defined and monotone (see [I1, p. 157]).
Since B¢ o Ty /. is bounded and continuous and thanks to the growth con-
dition (Az) on a, it follows that A; . is hemicontinuous (see [I1, p. 157]).
From the continuity and boundedness of F o Tj, it follows that As. is
strongly continuous. Therefore A, := A; . + Ay is pseudomonotone. Using
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the monotonicity of S, the Gauss—Green Theorem for Sobolev functions and
the boundary condition on the convection term {, F(T}/.(u)) - Du, we show
by similar arguments to [5] that A, is coercive and bounded. Then it follows
from [I1, Theorem 2.7] that A. is surjective, i.e., for each 0 < ¢ < 1 and
f e W' (0, w*) there exists a solution u. € Wol’p(Q, w) to the problem
ﬂg(Tl/E(ua)) — div(a(az, Du,) + F(Tl/s(ug))) =f in {2,
(Ex f)
ue =0 on 0f2,
such that
(3.2) S ﬁe(Tl/s(ue))SD + S (a(:c, Due) + F(Tl/s(ue))) Do = (f, )
Q Q
for all p € Wol’p(Q,w).
STEP 2: A priori estimates

LEMMA 3.3. For 0 < e <1 and f € L*®(£2) let uc € Wol’p(ﬂ,w) be a
solution of (Ee, f). Then:

(i) There exists a constant C; = C1(|| flloos A, 0, N) > 0, not depending
on €, such that

(3-3) Juell < Ch.

(i)
(3.4) 18 (T /e (ue)) lloo < [1f lloo

(iii) For alll,k > 0 we have
(3.5) | a(z,Duc)-Du. <k | |f].

{i<|uc|<l+k} {lue|>1}

Proof. (i) Taking u. as a test function in (3.2)) we obtain
S Be (T e (ue) )ue dr+ S a(x, Du)-Du. dx+ S F (T /e (ue))) Due dr= S fuedx
Q Q Q Q

As the first term on the left-hand side is nonnegative and the integral over
the convection term vanishes, by (A1) we have

ﬁ:(ﬂ) A |

dm<ZSaszu5)~g§ _Sfugdﬁc
! Q

=1
< CHf”m(ZS aue( ) ( )dw>1/1)<801_q,d$>1/q/
9

2
i=1 0 O

(due to (2.5)). Thus |Jue||P < Coluc| where Cs is a positive constant. Hence
we can deduce that u. remains bounded in W, ?(2, w), i.e., [Juc|| < Ci.

(i) Taking 1[Tie(8e (T () — Ti(Be(Th e (1)) 2  test function in
(3.2), letting 6 — 0 and choosing k > || f||cc We obtain (ii).
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(iii) For k, 1 > 0 fixed we take T} (u. — Tj(u.)) as a test function in (3.2)).
Using {, a(z, Duc) - DTy (ue — Ti(ue)) do = S{l<\ue\<l+k} a(x, Du) - Du, dz,
and as the first term on the left-hand side is nonnegative and the convection
term vanishes, we get

S a(x, Duc) - Due dx < S fTe(ue — Ti(us))de < k S |f|dx.
{l<|ue|<l+k} 2 {lue|>1}

REMARK 3.4. For k > 0, since

Cs
(3.6) [{[ue| > 1} < o i/p’
from Lemma [3.3(iii) we deduce that
Ca(k)
(3.7) | al@ Duc) Due < Ellfllool{lue| > 13 < 757

{I<|ue|<I+k}
STEP 3: Basic convergence results

LEMMA 3.5. For 0 <e <1 and f € L>®(12) let u. € Wol’p(Q,w) be the
solution of (Ec, f). There exist u € W&’p(Q,w) and b € L>®(82) such that
for a not relabeled subsequence of (uz)o<e<1 as € ] 0:

(3.8) Ue — U in Wol’p(ﬁ,w) and a.e. in {2,
(3.9) Ti(ue) = Ti(u) in Wol’p(ﬁ,w) and strongly in LI(£2,0),
(3.10) Be(T/e(ue)) = b in L>(£2),

Moreover, for any k > 0

N

(3.11) DTy (ue) — DT (u) in HLP(Q,wi),
7,]:\[1 |

(3.12) a(x, DTg(ue)) = a(x, DTy (uw)) in ] LP (2, w}).
i=1

Proof. (3.10) follows directly from Lemma and Remark [3.4] From

(13.6), (3.3) and (2.6) we deduce with a classical argument (see, e.g., [1])
that for a subsequence still indexed by ¢, (3.8)—(3.9) and (3.11) hold as ¢

tend to 0, where u is a measurable function defined on 2.

It is left to prove (3.12). For this, by (A2) and it follows that given
any subsequence of (a(x, DTy (us)):), there exists a subsequence, still de-
noted by (a(x, DTy (uz)))e, such that a(x, DTj(uc)) — &y, in [T, LP(2, w}).
We will prove that & = a(z, DTj(u)) a.e. on 2. The proof consists of three
steps.
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Step i: For every h € WH*(R), h > 0 and supp(h) compact, we will
prove that

(3.13) lim S(I)lp S a(x, DTy (us)) - D[h(ue)(Tx(ue) — T (u))] dz < 0.
=0 o

Taking h(ue)(Tx(ue) — Ti(u)) as a test function in (3.2]) we have

(3.14)
| B (T e (we))h(ue) (Th(ue) = Ti(w) + | alx, Duc)- DIA(ue) (Th(ue) = Ti(w)]
(0] 2
+ | F(Tyc(ue)) - DIP(ue) (Th(ue) = Ti(w)] = § f1(ue)(Ti(ue) — Ti(w)).
2 (0]

Using |A(ue)(Ti(ue) — Tk(u))| < 2k||h||so, by Lebesgue’s dominated con-
vergence theorem we find that lim._o {, fh(us)(Ty(ue) — Ti(u)) = 0 and
lime o {, F(Th - (1)) Dl(ue)(Ti (1) — T(w))] = 0. By using the same ar-
guments as in [4] we can prove that

i sup § 5Ty () 4(0e) Teue) = Tu(w)] o 0
Passing to the limit in and using the above results we obtain .
Step #i: We now prove that for every k > 0,
(3.15) limS(l)lp S a(x, DTy (ue)) - [DTk(us) — DTy (u)] dz < 0.
=Y 0

Indeed, for k > I, take hj(us)(Tk(us) — Tr(u)) as a test function in (3.2)).
Letting € | 0 and then | — oo we obtain

[ aw, DT(ue)) - Dl () (T(ue) — Ti(w))] da
2

= | (uo)a(z, DTi(ue)) - [DTj(uc) — DTy (u)] d

[Jue|<K]
+ | huo)ale, DTi(ue)) - (~DTk(w)) da
[|“5|>k]
+ | By (ue) (Ti(ue) — Th(u))a(z, DTk (ue)) - Due dz
(0]
= F| + By + Es.

Since [ > k, on the set [Jus| < k] we have hj(us) = 1 so that we can write

limsup E; = limsup S a(z, DTy (ue)) - (DTk(us) — DTk (w)) dx.

e—0 e—0 0
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For Es, using Lebesgue’s dominated convergence theorem we get
lim By = — | Ry(u)®iyq - DT} (u) dz = 0.
e—0
(lul>k]
For E3, we have
— | B (ue) (Th(ue) — Ti(w))a(z, DTy (ue)) Due da

n
<2k S a(z, Duz)Du, dz.

[[<|ue|<I41]

Using (3.7) we deduce that

lim sup lim sup<— S hy(ue ) (Ti(ue) — T(u))a(z, DTk (ue)) - Due dm) <0.

l—o0 e—0 0

Applying (3.13) with h replaced by h;, I > k, we get

lim sup | a(z, DTy (uc)) - (DTy(ue) — DTy (w)) dz
e— 0

< lim sglp(f S hy(ue) (Tg(ue) — Ti(u))a(z, DTk (ue)) - Due dm).
e— 0

Now letting [ — oo yields (3.15]).

Step #ii: In this step we prove by monotonicity arguments that for & > 0,
&y, = a(x, DTy (u)) for almost every = € 2. Let ¢ € D({2) and & € R. Using

(3.15)), we have

d;i_r{(l) S a(x, DTy (us)) - Dpdx > & S a(x, D(Ti(u) — ap)) - Dy dx.
2

Dividing by & > 0 and by & < 0 and letting & — 0 we obtain

lim S a(x, DTy (us)) - Do dx = S a(x, DTy (u)) - Dy dx.

a—>OQ o
This means that for all k > 0, {, @y - Dedx = {, a(z, DT (u)) - Dy dz and
s0 @y = a(z, DTk (u)) in D'(2) for all k > 0. Hence & = a(x, DTi(u)) a.e.
in 2 and so a(z, DTj(u:)) — a(x, DT (u)) weakly in Hf\il LV (02,w}).

STEP 4: Proof of existence. Let h € C}(R) and ¢ € Wol’p(Q,w)ﬁLoo(_Q).
Taking h;(us)h(u)¢ as a test function in (3.2)), we obtain

(3.16) Iel,z + 152,1 + Ig,z = Ig,z
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where

Step i: Letting € | 0 using the convergence results (3.8)), (3.10) from
Lemma [3.5 we can immediately calculate the following limits:

(3.17) lim I}y = | bhu(u)h(u)o,
(9}

(3.18) lim 12 = | fhy(u)h(u)o.
(9}

. 2.1 2,2
We write Ig’l = Is:l + I&’l where

12 = \ hj(ue)a(z, Duc) - Duch(u)g, 127 = | hi(ue)a(z, Duc) - D(h(u)p).
2 2

Using (3.7) we get the estimate
(3.19)

tim 73] < [l o - Col =07,

e—=0 =

By Lebesgue’s dominated convergence theorem it follows that for any ¢ €

{1,..., N} we have

0 0
h h

7 (1)) = hu(w) 5~

Keeping in mind that Ij’l2 =\, hi(ue)a(z, DTy (ue)) - D(h(u)¢), by 1)
we get

hy(ue) (h(u)p) in LP(£2,0) ase 0.

(3.20) lim 127 = | hy(u)a(z, DT} (u) - D(h(u)g).

e—0 ©
2

. 1 2
Let us write I g,l = I?,’l + Ii’l , where

I3,1 _ S h;(uE)F(TI/g(UE)) . Dugh(u)gi),

el —

2
137 = | hi(ue) F(Ty e (ue)) - D(h(u)).
2
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For any [ € N, there exists £o(l) such that for all € < g¢(I),

(321) I3 =\ BT (ue) F(Tiga (ue)) - DTiga (ue)h(u)g.
2
Using the Gauss—Green Theorem for Sobolev functions in (3.21) we get
Ti41(ue)
(3.22) ==\ | h@)F(F)dr- D(h(u)s).
Q2 0
Now, using (3.8) and the Gauss—Green Theorem, after letting £ | 0 we get
.31
(3.23) lim 7 = éh;(u)F(u) - Duh(u)g.
Choosing € small enough, we can write
(3.24) 1312 = S hi(ue) F(Tiy1(ue)) - D(h(u)@)
2
and conclude
(3.25) lim Ijl = | h(u)F(u) - D(h(u)¢).
Q
Step ii: We let [ — oco. Combining (3.16) and (3.17)—(3.25)) we find
(3.26) D+ R+ +0+ 1 =17
where
1} = { bhu(u)h(u), = | hi(uw)a(z, DTit1(u)) - D(h(u)g),
Q 10
117 < Col )bl oo |6 oo = | hu(u D(h(u)9),
19
= | W) F(u) - Duh(u)p, I} = | fhu(u

Q Q
Obviously, we have
(3.27) lim I} = 0.

l—00

Choosing m > 0 such that supp h C [-m,m], we can replace u by T, (u) in
INIE ... 1P, and

hy(u) = by (T (u)) =0 if I +1 > m, hl(u) = h(Tp(u)) =1if I > m.
Therefore, letting [ — oo and combining (3.26]) with - we obtain
(3.28) J bh(w)e + |\ (a(z, Du) + F(u)) - D(h(w)¢) = | fh(u)¢

2

9] 2
for all b € C}(R) and all ¢ € W,P(£2,w) N L®(£2).
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Step iii: Subdifferential argument. Tt is left to prove that u(x) € D(B(x))

and b(z) € f(u(z)) for almost all x € §2. Since S is a maximal monotone
graph, there exists a convex, l.s.c., proper function j : R — [0, 00| such that
B(r) = 9j(r) for all r € R. According to [7], for 0 < e <1, j. : R - R
defined by j.(r) = Sg B:(s) ds has the properties as in [12]. Using the same
argument as in [I2] we can prove that for all » € R and almost every x € (2,
u € D(B) and b € B(u) almost everywhere in (2. With this last step the
proof of Theorem [3.2]is completed.

(1]

2]

References

L. Aharouch, E. Azroul and A. Benkirane, Quasilinear degenerated equations with
L' datum and without coercivity in perturbation terms, Electron. J. Qualit. Theory
Differential Equations 2006, no. 19, 18 pp.

L. Aharouch, A. Benkirane, J. Bennouna and A. Touzani, Ezistence and unique-
ness of solutions of some nonlinear equations in Orlicz spaces and weighted Sobolev
spaces, in: Recent Development in Nonlinear Analysis, World Sci., 2010, 170-180.
Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasi-linear de-
generated elliptic equations, Electron. J. Differential Equations 2001, no. 71, 19 pp.
F. Andreu, N. Igbida, J. M. Mazén and J. Toledo, L' existence and unigqueness
results for quasi-linear elliptic equations with nonlinear boundary conditions, Ann.
Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 61-89.

M. Bendahmane and P. Wittbold, Renormalized solutions for monlinear elliptic
equations with variable exponents and L*-data, Nonlinear Anal. 70 (2009), 567-583.
A. Benkirane and J. Bennouna, Ezistence of solutions for nonlinear elliptic degen-
erate equations, Nonlinear Anal. 54 (2003), 9-37.

H. Brézis, Opérateurs Mazimaux Monotones, North-Holland, Amsterdam, 1973.
R.-J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations:
Global existence and weak stability, Ann. of Math. 130 (1989), 321-366.

P. Gwiazda, P. Wittbold, A. Wréblewska and A. Zimmermann, Renormalized so-
lutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential
Equations 253 (2012), 635-666.

A. Kufner, Weighted Sobolev Spaces, Wiley, 1985.

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires,
Dunod, Paris, 1969.

P. Wittbold and A. Zimmermann, Existence and uniqueness of renormalized solu-
tions to nonlinear elliptic equations with variable exponents and L' -data, Nonlinear
Anal. 72 (2010), 2990-3008.

Youssef Akdim, Chakir Allalou
LIMAOQO, Faculté Polydisciplinaire
B.P. 1223 Taza Gare, Taza, Morocco
E-mail: akdimyoussef@yahoo.fr

chakir.allalou@yahoo.fr

Received on 25.2.2014;
revised version on 18.7.2014 (2233)


http://dx.doi.org/10.1016/j.anihpc.2005.09.009
http://dx.doi.org/10.1016/j.na.2007.12.027
http://dx.doi.org/10.1016/S0362-546X(03)00031-2
http://dx.doi.org/10.2307/1971423
http://dx.doi.org/10.1016/j.jde.2012.03.025
http://dx.doi.org/10.1016/j.na.2009.11.041

	1 Introduction
	2 Preliminaries
	3 Notion of solutions and existence results
	References

