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EXISTENCE OF A RENORMALIZED SOLUTION OF

NONLINEAR DEGENERATE ELLIPTIC PROBLEMS

Abstract. We study a general class of nonlinear elliptic problems asso-
ciated with the differential inclusion β(u)− div(a(x,Du) + F (u)) 3 f in Ω
where f ∈ L∞(Ω). The vector field a(·, ·) is a Carathéodory function. Using
truncation techniques and the generalized monotonicity method in function
spaces we prove existence of renormalized solutions for general L∞-data.

1. Introduction. Let Ω be a bounded open subset of RN (N ≥ 1) with
Lipschitz boundary if N ≥ 2, let p be a real number such that 1 < p < ∞
and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions on Ω (i.e., every
component wi(x) is a measurable function which is positive a.e. in Ω). Let

W 1,p
0 (Ω,w) be the weighted Sobolev space associated with the vector w. Our

aim is to show existence of renormalized solutions to the nonlinear elliptic
equation

(E, f)

{
β(u)− div(a(x,Du) + F (u)) 3 f in Ω,

u = 0 on ∂Ω.

with right-hand side f ∈ L∞(Ω). Furthermore, F and β are functions satis-
fying the following assumption:

(A0) F : R → RN is locally Lipschitz continuous and β : R → 2R a set
valued, maximal monotone mapping such that 0 ∈ β(0). Moreover,

(1.1) β0(l) ∈ L1(Ω)

for each l ∈ R, where β0 denotes the minimal selection of the graph
of β, that is, β0(l) = inf{|r| | r ∈ R and r ∈ β(l)}.

Moreover, a : Ω × RN → RN is a Carathéodory function satisfying the
following assumptions:
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(A1) There exists a positive constant λ such that

a(x, ξ) · ξ ≥ λ
N∑
i=1

wi|ξi|p

for all ξ ∈ RN and almost every x ∈ Ω.

(A2) |ai(x, ξ)| ≤ αw1/p
i (x)[k(x) +

∑N
j=1w

1/p′

j (x)|ξj |p−1] for almost every

x ∈ Ω, all i = 1, . . . , N , and every ξ ∈ RN , where k(·) is a non-
negative function in Lp

′
(Ω), p′ = p/(p− 1), and α > 0.

(A3) (a(x, ξ) − a(x, η)) · (ξ − η) ≥ 0 for almost every x ∈ Ω and every
ξ, η ∈ RN .

Note that in the case with variable exponents and Orlicz spaces the
problem was studied by Wittbold et al. [9, 12]. Other work in this direction
can be found in [2, 5, 6].

2. Preliminaries. Let Ω be a bounded open subset of RN (N ≥ 1),
let p be a real number such that 1 < p < ∞, and let w = {wi(x), 0 ≤
i ≤ N} be a vector of weight functions, i.e., every component wi(x) is a
measurable function which is positive a.e. in Ω. Further, we suppose in all
our considerations that

wi ∈ L1
loc(Ω),(2.1)

w
−1/(p−1)
i ∈ L1

loc(Ω),(2.2)

for any 0 ≤ i ≤ N . We denote by W 1,p(Ω,w) the space of all real-valued
functions u ∈ Lp(Ω,w0) such that the derivatives in the sense of distribu-
tions fulfill ∂u/∂xi ∈ Lp(Ω,wi) for i = 1, . . . , N, which is a Banach space
under the norm

(2.3) ‖u‖1,p,w =

[ �

Ω

|u(x)|pw0(x) dx+

N∑
i=1

�

Ω

∣∣∣∣∂u(x)

∂xi

∣∣∣∣pwi(x) dx

]1/p
.

The condition (2.1) implies that C∞0 (Ω) is a subspace of W 1,p(Ω,w), and

consequently we can define the subspace X = W 1,p
0 (Ω,w) of W 1,p(Ω,w)

as the closure of C∞0 (Ω) with respect to the norm (2.3). Moreover, condi-

tion (2.2) implies that W 1,p(Ω,w) as well as W 1,p
0 (Ω,w) are reflexive Ba-

nach spaces. We recall that the dual space of W 1,p
0 (Ω,w) is equivalent to

W−1,p
′
(Ω,w∗), where w∗ = {w∗i = w1−p′

i , i = 0, . . . , N} and where p′ is the
conjugate of p, i.e. p′ = p/(p− 1) (for more details we refer to [10]).

Assumption (H1). The expression

|||u|||X =

( N∑
i=1

�

Ω

∣∣∣∣∂u(x)

∂xi

∣∣∣∣pwi(x) dx

)1/p
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is a norm defined on X and is equivalent to the norm (2.3). There exist a
weight function σ on Ω and a parameter q, 1 < q <∞, such that

σ1−q
′ ∈ L1(Ω),(2.4)

with q′ = q/(q − 1). The Hardy inequality,

(2.5)
( �

Ω

|u(x)|qσ dx
)1/q

≤ c
( N∑
i=1

�

Ω

∣∣∣∣∂u(x)

∂xi

∣∣∣∣pwi(x) dx

)1/p

,

holds for every u ∈ X with a constant c > 0 independent of u, and moreover
the imbedding

(2.6) X ↪→↪→ Lq(Ω, σ),

expressed by the inequality (2.5), is compact. Note that (X, ||| · |||X) is a
uniformly convex (and thus reflexive) Banach space.

3. Notion of solutions and existence results

Definition 3.1. A renormalized solution to (E, f) is a pair of functions
(u, b) satisfying the following conditions:

(R1) u : Ω → R is measurable, b ∈ L1(Ω), u(x) ∈ D(β(x)) and b(x) ∈
β(u(x)) for a.e. x ∈ Ω.

(R2) For each k > 0, Tk(u) ∈W 1,p
0 (Ω,w) and

(3.1)
�

Ω

b · h(u)ϕ+
�

Ω

(a(x,Du) + F (u)) ·D(h(u)ϕ) =
�

Ω

fh(u)ϕ

for all h ∈ C1
c (R) and all ϕ ∈ W 1,p

0 (Ω,w) ∩ L∞(Ω), where Tk(·) is
truncation at height k.

(R3)
	
{k≤|u|≤k+1} a(x,Du) ·Du→ 0 as k →∞.

Theorem 3.2. Under assumptions (H1), (A0)–(A3) and f ∈ L∞(Ω)
there exists at least one renormalized solution (u, b) to (E, f).

Proof. Step 1: Approximate problem. First we approximate (E, f) for
f ∈ L∞(Ω) by problems for which existence can be proved by standard
variational arguments. For 0 < ε ≤ 1, let βε : R→ R be the Yosida approx-
imation of β (see [7]). We introduce the operators

A1,ε : W 1,p
0 (Ω,w)→W−1,p

′
(Ω,w∗), u 7→ βε(T1/ε(u))− div a(x,Du),

A2,ε : W 1,p
0 (Ω,w)→W−1,p

′
(Ω,w∗), u 7→ −divF (T1/ε(u)).

Because of (A2) and (A3),A1,ε is well-defined and monotone (see [11, p. 157]).
Since βε ◦ T1/ε is bounded and continuous and thanks to the growth con-
dition (A2) on a, it follows that A1,ε is hemicontinuous (see [11, p. 157]).
From the continuity and boundedness of F ◦ T1/ε it follows that A2,ε is
strongly continuous. Therefore Aε := A1,ε +A2,ε is pseudomonotone. Using
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the monotonicity of βε, the Gauss–Green Theorem for Sobolev functions and
the boundary condition on the convection term

	
Ω F (T1/ε(u)) ·Du, we show

by similar arguments to [5] that Aε is coercive and bounded. Then it follows
from [11, Theorem 2.7] that Aε is surjective, i.e., for each 0 < ε ≤ 1 and

f ∈W−1,p′(Ω,w∗) there exists a solution uε ∈W 1,p
0 (Ω,w) to the problem

(Eε, f)

{
βε(T1/ε(uε))− div

(
a(x,Duε) + F (T1/ε(uε))

)
= f in Ω,

uε = 0 on ∂Ω,

such that �

Ω

βε(T1/ε(uε))ϕ+
�

Ω

(
a(x,Duε) + F (T1/ε(uε))

)
·Dϕ = 〈f, ϕ〉(3.2)

for all ϕ ∈W 1,p
0 (Ω,w).

Step 2: A priori estimates

Lemma 3.3. For 0 < ε ≤ 1 and f ∈ L∞(Ω) let uε ∈ W 1,p
0 (Ω,w) be a

solution of (Eε, f). Then:

(i) There exists a constant C1 = C1(‖f‖∞, λ, p,N) > 0, not depending
on ε, such that

(3.3) |||uε||| ≤ C1.

(ii)

(3.4) ‖βε(T1/ε(uε))‖∞ ≤ ‖f‖∞
(iii) For all l, k > 0 we have

(3.5)
�

{l≤|uε|≤l+k}

a(x,Duε) ·Duε ≤ k
�

{|uε|>l}

|f |.

Proof. (i) Taking uε as a test function in (3.2) we obtain�

Ω

βε(T1/ε(uε))uε dx+
�

Ω

a(x,Duε)·Duε dx+
�

Ω

F (T1/ε(uε)))·Duε dx=
�

Ω

fuε dx

As the first term on the left-hand side is nonnegative and the integral over
the convection term vanishes, by (A1) we have

λ

N∑
i=1

�

Ω

∣∣∣∣∂uε∂xi

∣∣∣∣pwi(x) dx ≤
N∑
i=1

�

Ω

ai(x,Duε) ·
∂uε
∂xi

dx ≤
�

Ω

fuε dx

≤ C‖f‖∞
( N∑
i=1

�

Ω

∣∣∣∣∂uε(x)

∂xi

∣∣∣∣pwi(x) dx

)1/p( �
Ω

σ1−q
′
dx
)1/q′

(due to (2.5)). Thus |||uε|||p ≤ C2|||uε||| where C2 is a positive constant. Hence

we can deduce that uε remains bounded in W 1,p
0 (Ω,w), i.e., |||uε||| ≤ C1.

(ii) Taking 1
δ [Tk+δ(βε(T1/ε(uε)))−Tk(βε(T1/ε(uε)))] as a test function in

(3.2), letting δ → 0 and choosing k > ‖f‖∞ we obtain (ii).
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(iii) For k, l > 0 fixed we take Tk(uε− Tl(uε)) as a test function in (3.2).
Using

	
Ω a(x,Duε) ·DTk(uε − Tl(uε)) dx =

	
{l<|uε|<l+k} a(x,Duε) ·Duε dx,

and as the first term on the left-hand side is nonnegative and the convection
term vanishes, we get

�

{l<|uε|<l+k}

a(x,Duε) ·Duε dx ≤
�

Ω

fTk(uε − Tl(uε)) dx ≤ k
�

{|uε|>l}

|f | dx.

Remark 3.4. For k > 0, since

|{|uε| > l}| ≤ C2

l1−1/p
,(3.6)

from Lemma 3.3(iii) we deduce that

�

{l≤|uε|≤l+k}

a(x,Duε) ·Duε ≤ k‖f‖∞|{|uε| > l}| ≤ C2(k)

l1−1/p
.(3.7)

Step 3: Basic convergence results

Lemma 3.5. For 0 < ε ≤ 1 and f ∈ L∞(Ω) let uε ∈ W 1,p
0 (Ω,w) be the

solution of (Eε, f). There exist u ∈ W 1,p
0 (Ω,w) and b ∈ L∞(Ω) such that

for a not relabeled subsequence of (uε)0<ε≤1 as ε ↓ 0:

uε ⇀ u in W 1,p
0 (Ω,w) and a.e. in Ω,(3.8)

Tk(uε) ⇀ Tk(u) in W 1,p
0 (Ω,w) and strongly in Lq(Ω, σ),(3.9)

βε(T1/ε(uε)) ⇀ b in L∞(Ω),(3.10)

Moreover, for any k > 0

DTk(uε) ⇀ DTk(u) in
N∏
i=1

Lp(Ω,wi),(3.11)

a(x,DTk(uε)) ⇀ a(x,DTk(u)) in

N∏
i=1

Lp
′
(Ω,w∗i ).(3.12)

Proof. (3.10) follows directly from Lemma 3.3 and Remark 3.4. From
(3.6), (3.3) and (2.6) we deduce with a classical argument (see, e.g., [1])
that for a subsequence still indexed by ε, (3.8)–(3.9) and (3.11) hold as ε
tend to 0, where u is a measurable function defined on Ω.

It is left to prove (3.12). For this, by (A2) and (3.3) it follows that given
any subsequence of (a(x,DTk(uε))ε), there exists a subsequence, still de-

noted by (a(x,DTk(uε)))ε, such that a(x,DTk(uε))⇀Φk in
∏N
i=1 L

p′(Ω,w∗i ).
We will prove that Φk = a(x,DTk(u)) a.e. on Ω. The proof consists of three
steps.
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Step i : For every h ∈ W 1,∞(R), h ≥ 0 and supp(h) compact, we will
prove that

lim sup
ε→0

�

Ω

a(x,DTk(uε)) ·D[h(uε)(Tk(uε)− Tk(u))] dx ≤ 0.(3.13)

Taking h(uε)(Tk(uε)− Tk(u)) as a test function in (3.2) we have

(3.14)�

Ω

βε(T1/ε(uε))h(uε)(Tk(uε)−Tk(u))+
�

Ω

a(x,Duε)·D[h(uε)(Tk(uε)−Tk(u))]

+
�

Ω

F (T1/ε(uε)) ·D[h(uε)(Tk(uε)− Tk(u))] =
�

Ω

fh(uε)(Tk(uε)− Tk(u)).

Using |h(uε)(Tk(uε) − Tk(u))| ≤ 2k‖h‖∞, by Lebesgue’s dominated con-
vergence theorem we find that limε→0

	
Ω fh(uε)(Tk(uε) − Tk(u)) = 0 and

limε→0

	
Ω F (T1/ε(uε))D[h(uε)(Tk(uε) − Tk(u))] = 0. By using the same ar-

guments as in [4] we can prove that

lim sup
ε→0

�

Ω

βε(T1/ε(uε)) · [h(uε)(Tk(uε)− Tk(u))] dx ≥ 0.

Passing to the limit in (3.14) and using the above results we obtain (3.13).

Step ii : We now prove that for every k > 0,

lim sup
ε→0

�

Ω

a(x,DTk(uε)) · [DTk(uε)−DTk(u)] dx ≤ 0.(3.15)

Indeed, for k > l, take hl(uε)(Tk(uε) − Tk(u)) as a test function in (3.2).
Letting ε ↓ 0 and then l→∞ we obtain

�

Ω

a(x,DTk(uε)) ·D[hl(uε)(Tk(uε)− Tk(u))] dx

=
�

[|uε|≤k]

hl(uε)a(x,DTk(uε)) · [DTk(uε)−DTk(u)] dx

+
�

[|uε|>k]

hl(uε)a(x,DTk(uε)) · (−DTk(u)) dx

+
�

Ω

h′l(uε)(Tk(uε)− Tk(u))a(x,DTk(uε)) ·Duε dx

= E1 + E2 + E3.

Since l > k, on the set [|uε| ≤ k] we have hl(uε) = 1 so that we can write

lim sup
ε→0

E1 = lim sup
ε→0

�

Ω

a(x,DTk(uε)) · (DTk(uε)−DTk(u)) dx.
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For E2, using Lebesgue’s dominated convergence theorem we get

lim
ε→0

E2 = −
�

[|u|>k]

hl(u)Φl+1 ·DTk(u) dx = 0.

For E3, we have

−
�

Ω

h′l(uε)(Tk(uε)− Tk(u))a(x,DTk(uε))Duε dx

≤ 2k
�

[l<|uε|≤l+1]

a(x,Duε)Duε dx.

Using (3.7) we deduce that

lim sup
l→∞

lim sup
ε→0

(
−

�

Ω

h′l(uε)(Tk(uε)− Tk(u))a(x,DTk(uε)) ·Duε dx
)
≤ 0.

Applying (3.13) with h replaced by hl, l > k, we get

lim sup
ε→0

�

Ω

a(x,DTk(uε)) · (DTk(uε)−DTk(u)) dx

≤ lim sup
ε→0

(
−

�

Ω

h′l(uε)(Tk(uε)− Tk(u))a(x,DTk(uε)) ·Duε dx
)
.

Now letting l→∞ yields (3.15).

Step iii : In this step we prove by monotonicity arguments that for k > 0,
Φk = a(x,DTk(u)) for almost every x ∈ Ω. Let ϕ ∈ D(Ω) and α̃ ∈ R. Using
(3.15), we have

α̃ lim
ε→0

�

Ω

a(x,DTk(uε)) ·Dϕdx ≥ α̃
�

Ω

a(x,D(Tk(u)− α̃ϕ)) ·Dϕdx.

Dividing by α̃ > 0 and by α̃ < 0 and letting α̃→ 0 we obtain

lim
ε→0

�

Ω

a(x,DTk(uε)) ·Dϕdx =
�

Ω

a(x,DTk(u)) ·Dϕdx.

This means that for all k > 0,
	
Ω Φk ·Dϕdx =

	
Ω a(x,DTk(u)) ·Dϕdx and

so Φk = a(x,DTk(u)) in D′(Ω) for all k > 0. Hence Φk = a(x,DTk(u)) a.e.

in Ω and so a(x,DTk(uε)) ⇀ a(x,DTk(u)) weakly in
∏N
i=1 L

p′(Ω,w∗i ).

Step 4: Proof of existence. Let h ∈ C1
c (R) and φ ∈W 1,p

0 (Ω,w)∩L∞(Ω).
Taking hl(uε)h(u)φ as a test function in (3.2), we obtain

I1ε,l + I2ε,l + I3ε,l = I4ε,l(3.16)
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where

I1ε,l =
�

Ω

βε(T1/ε(uε))hl(uε)h(u)φ,

I2ε,l =
�

Ω

a(x,Duε) ·D(hl(uε)h(u)φ),

I3ε,l =
�

Ω

F (T1/ε(uε)) ·D(hl(uε)h(u)φ),

I4ε,l =
�

Ω

fhl(uε)h(u)φ.

Step i : Letting ε ↓ 0 using the convergence results (3.8), (3.10) from
Lemma 3.5 we can immediately calculate the following limits:

lim
ε→0

I1ε,l =
�

Ω

bhl(u)h(u)φ,(3.17)

lim
ε→0

I4ε,l =
�

Ω

fhl(u)h(u)φ.(3.18)

We write I2ε,l = I2,1ε,l + I2,2ε,l where

I2,1ε,l =
�

Ω

h′l(uε)a(x,Duε) ·Duεh(u)φ, I2,2ε,l =
�

Ω

hl(uε)a(x,Duε) ·D(h(u)φ).

Using (3.7) we get the estimate∣∣∣lim
ε→0

I2,1ε,l

∣∣∣ ≤ ‖h‖∞‖φ‖∞ · C2l
−(1−1/p).(3.19)

By Lebesgue’s dominated convergence theorem it follows that for any i ∈
{1, . . . , N} we have

hl(uε)
∂

∂xi
(h(u)φ)→ hl(u)

∂

∂xi
(h(u)φ) in Lp(Ω, σ) as ε ↓ 0.

Keeping in mind that I2,2ε,l =
	
Ω hl(uε)a(x,DTl+1(uε)) ·D(h(u)φ), by (3.12),

we get

lim
ε→0

I2,2ε,l =
�

Ω

hl(u)a(x,DTl+1(u)) ·D(h(u)φ).(3.20)

Let us write I3ε,l = I3,1ε,l + I3,2ε,l , where

I3,1ε,l =
�

Ω

h′l(uε)F (T1/ε(uε)) ·Duεh(u)φ,

I3,2ε,l =
�

Ω

hl(uε)F (T1/ε(uε)) ·D(h(u)φ).
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For any l ∈ N, there exists ε0(l) such that for all ε < ε0(l),

I3,1ε,l =
�

Ω

h′l(Tl+1(uε))F (Tl+1(uε)) ·DTl+1(uε)h(u)φ.(3.21)

Using the Gauss–Green Theorem for Sobolev functions in (3.21) we get

I3,1ε,l = −
�

Ω

Tl+1(uε)�

0

h′l(r)F (r) dr ·D(h(u)φ).(3.22)

Now, using (3.8) and the Gauss–Green Theorem, after letting ε ↓ 0 we get

lim
ε→0

I3,1ε,l =
�

Ω

h′l(u)F (u) ·Duh(u)φ.(3.23)

Choosing ε small enough, we can write

I3,2ε,l =
�

Ω

hl(uε)F (Tl+1(uε)) ·D(h(u)φ)(3.24)

and conclude

lim
ε→0

I3,2ε,l =
�

Ω

hl(u)F (u) ·D(h(u)φ).(3.25)

Step ii : We let l→∞. Combining (3.16) and (3.17)–(3.25) we find

I1l + I2l + I3l + I4l + I5l = I6l(3.26)

where

I1l =
�

Ω

bhl(u)h(u)φ, I2l =
�

Ω

hl(u)a(x,DTl+1(u)) ·D(h(u)φ),

|I3l | ≤ C2l
−(1−1/p)‖h‖∞‖φ‖∞, I4l =

�

Ω

hl(u)F (u) ·D(h(u)φ),

I5l =
�

Ω

h′l(u)F (u) ·Duh(u)φ, I6l =
�

Ω

fhl(u)h(u)φ.

Obviously, we have

lim
l→∞

I3l = 0.(3.27)

Choosing m > 0 such that supph ⊂ [−m,m], we can replace u by Tm(u) in
I1l , I

2
l , . . . , I

6
l , and

h′l(u) = h′l(Tm(u)) = 0 if l + 1 > m, hl(u) = hl(Tm(u)) = 1 if l > m.

Therefore, letting l→∞ and combining (3.26) with (3.27) we obtain�

Ω

bh(u)φ+
�

Ω

(a(x,Du) + F (u)) ·D(h(u)φ) =
�

Ω

fh(u)φ(3.28)

for all h ∈ C1
c (R) and all φ ∈W 1,p

0 (Ω,w) ∩ L∞(Ω).
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Step iii: Subdifferential argument. It is left to prove that u(x) ∈ D(β(x))
and b(x) ∈ β(u(x)) for almost all x ∈ Ω. Since β is a maximal monotone
graph, there exists a convex, l.s.c., proper function j : R→ [0,∞] such that
β(r) = ∂j(r) for all r ∈ R. According to [7], for 0 < ε ≤ 1, jε : R → R
defined by jε(r) =

	r
0 βε(s) ds has the properties as in [12]. Using the same

argument as in [12] we can prove that for all r ∈ R and almost every x ∈ Ω,
u ∈ D(β) and b ∈ β(u) almost everywhere in Ω. With this last step the
proof of Theorem 3.2 is completed.
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LIMAO, Faculté Polydisciplinaire
B.P. 1223 Taza Gare, Taza, Morocco
E-mail: akdimyoussef@yahoo.fr

chakir.allalou@yahoo.fr

Received on 25.2.2014;
revised version on 18.7.2014 (2233)

http://dx.doi.org/10.1016/j.anihpc.2005.09.009
http://dx.doi.org/10.1016/j.na.2007.12.027
http://dx.doi.org/10.1016/S0362-546X(03)00031-2
http://dx.doi.org/10.2307/1971423
http://dx.doi.org/10.1016/j.jde.2012.03.025
http://dx.doi.org/10.1016/j.na.2009.11.041

	1 Introduction
	2 Preliminaries
	3 Notion of solutions and existence results
	References

