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EXISTENCE AND UNIQUENESS RESULT FOR A CLASS
OF NONLINEAR PARABOLIC EQUATIONS WITH L! DATA

Abstract. We prove the existence and uniqueness of a renormalized solu-
tion for a class of nonlinear parabolic equations with no growth assumption
on the nonlinearities.

1. Introduction. This paper is concerned with the initial-boundary
value problem

Blew) _ div(A(x, ) Du + S(u)) + f(a,t,u) =0 in Q,
(P) b(xz,u)(t =0) = b(x,up) in £2,
u=0 on a2 x(0,7),

where (2 is a bounded open set in RY (N > 1), T is a positive real number,
Q = 2 x (0,T), while the data b(x,ug) is in L'(£2). The matrix A(z,t) is
a bounded symmetric and coercive matrix; b(z,s) is a strictly increasing
C-function of s (for every x € §2) but which is not restricted by any growth
condition with respect to s (see assumptions (2[1)) and (2[2) of Section [2);
f is a Carathéodory function in @ x R and not controlled with respect to s.
The function @ is just assumed to be continuous in R.

Note that a large number of papers have been devoted to the study of the
existence and uniqueness of solutions of parabolic problems under various
assumptions and in different contexts; for classical results see e.g. [§], [9],

2. Assumptions on the data and definition of a renormalized
solution. Let {2 be a bounded open set in RY (N > 1), T > 0 and Q =
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2 x (0,T). Assume that:

(2.1) b: 2 xR — Ris a Carathéodory function such that for every = € (2,
b(z,s) is a strictly increasing C!'-function of s, with b(x,0) = 0;

(2.2) for any K > 0, there exists Ag > 0, a function Ag in L>°(£2) and a
function By in L?(2) such that

b(x, s b(x, s

o) v. (5| < Bt
for almost every x € 2 and every s such that |s| < K

(2.3) A(x,t) is a symmetric coercive matrix field with coefficients lying in
LOO(Q), i.e. A(l‘,t) = (aij(l‘,t))lsi,jgjv with aij(-,-) € LOO(Q) and
a;j(z,t) = aji(z,t) a.e. in Q, for all 4, j, and there exists o > 0 such
that A(z,t)¢- € > alé]? a.e. (z,t) in Q, V€ € RY;

(2.4) @ :R — R is a continuous function;

(2.5) f:Q xR — R is a Carathéodory function;

(2.6) for almost every (z,t) € @, and every s € R,

sign(s)f(x,t,s) >0 and f(x,t,0)=0;
(2.7) maxysi<sy |f(2,t,5)| € L(Q) for any K > 0;
(2.8) wg is a measurable function such that b(-,ug) € L' (£2).

REMARK 2.1. As already mentioned in the introduction Problem (P)
does not admit a weak solution under assumptions (2[I)—(2[8) since the
growth of b(z,u), ¢(u) and f(x,t,u) is not controlled with respect to u.

)\K < < AK(.T) and

Throughout, for any nonnegative real number K we denote by Tk (r) =
min(K, max(r, —K)) the truncation function at height K. The definition of
a renormalized solution for Problem (P) can be stated as follows.

DEFINITION 2.2. A measurable function u defined on @ is a renormalized
solution of Problem (P) if

(2.9) Ty (u) € L*(0,T; H} (2)) VK > 0 and b(x,u) € L>=(0,T; L'(£2)),
(2.10) S A(z,t)DuDudxdt -0 asn — oo,
{(t,2)eQ; n<|u(z,t)|[<n+1}

and if for every function S in W?2°°(R) which is piecewise C'! and such that
S’ has a compact support,

(2.11) absgf’“) — div(S' () A(z, t) Du) + 8" (u) A(z, t)Du - Du
. — div(S'(w)®(u)) + " (u)@(u)Du + f(x,t,u)S (u) =0 in D'(Q),
(2.12) bs(z,u)(t =0) = bs(x,ug) in {2,

where bg(x,r) = | Z2% 9b(z.5) 8 (s) ds
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REMARK 2.3. Note that due to each term in has a mean-
ing in LY(Q) + L?(0,T; H-1(£2)), and Obs(z,u)/0t belongs to L'(Q) +
L?(0,T; H-1(£2)). Due to the properties of S and (2, we see that bg(z,u)
belongs to L%(0,T; H}(£2)), which implies that bs(z,u) € C°([0, T]; L*(£2))
(for a proof of this trace result see [18]), so that the initial condition
makes sense.

3. Existence result. This section is devoted to establishing the follow-
ing existence theorem.

THEOREM 3.1. Under assumptions (27(2 there exists a renormal-
ized solution u of Problem (P).

Proof. The proof is divided into three steps.

STEP 1: Approximate problem. Let us introduce the following regular-
ization of the data: for € > 0 fixed
(3.1) be(w,s) = b(z,T1/.(5))) ae. in 2, Vs € R.
(3.2) &, is a Lipschitz-continuous bounded function from R into RY such
that @, uniformly converges to @ on any compact subset of R as ¢ — 0.
(3.3) fo(z,t,8) = f(x,t,T1/.(5)) a.e. in Q, Vs € R.
(3.4) uf € C§°(£2) and be(z,uf) — b(x,up) in L*(£2) as e — 0.

Let us now consider the regularized problem

Pelr’) _ div(A(w, t) Dus + B (u)Duf) + f=(,t,uf) =0 in Q,
(P°) be(x,u®)(t = 0) = bo(x,uf) in £2,

u® =0 on 912 x (0,T),
Proving existence of a weak solution u® € L%(0,T; H}(£2)) of (P?) is an easy
task (see e.g. [19]).

STEP 2: A priori estimates. The estimates derived in this step rely on
usual techniques for problems of type (P¢) and we just sketch their proof
(the reader is referred to [7], [10], [§] or [I7] for elliptic versions of (P)).
Using Tk (u®) as a test function in (P), we deduce that
(3.5) Ty (uf) is bounded in L?(0,T; HE(£2))
independently of ¢ for any K > 0. Proceeding as in [7], [I0] for any S €
W2 (R) such that S’ is compact (supp S’ C [~ K, K]) we find that
(3.6) bs(z,u) is bounded in L*(0,T; H}(£2)),

(3.7) Obg(x,u®)/0t is bounded in LY(Q) + L?(0,T; H~1(£2))

independently of €.
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For any integer n > 1, using the admissible test function 6, (u) =
Thi1(u®) — T, (uf) in (PF), we obtain for almost ¢ € (0,7,
t
(3.8) S S Az, t)Duf - DO, (u®) dx ds < S be (2, ug) de.
00 Q
Again as in [7], [§] and [10], estimates (3.6) and (3.7) imply that, for a
subsequence still indexed by &,

(3.9) ut = u almost everywhere in @,
(3.10) Tr(u) = Tx(u)  weakly in L2(0,T; Ha (£2)),
(3.11) be(z,u®) — b(x,u) strongly in L'(Q),

(3.12) On(u) — On(u) weakly in L2(0,T; H} (2)),
as € = 0 for any K > 0 and any n > 1. We conclude that
(3.13) b(x,u) € L=(0,T; L' (1)),

and

(3.14)  lim limsup S A(z,t) D141 (uf) - DTy4q(u®) dz dt = 0.
N0 0
{n<|us|<n+1}
STEP 3: Time regularization. In this step we introduce, for K > 0 fixed,
a time regularization of the function T (u). This specific time regularization
is defined as follows. Let (vf),, be a sequence of functions defined on {2 such
that for all p > 0,

. 1
vl € L®(2)NHg (12), |vh || 2oy < K, vh — Tk (uo), ngfolo;HUgHL?(Q) =0.

Let us consider the unique solution Tk (u), € L=(Q) N L?(0,T; Hi(£2)) of

e1s) P ), - T =0 D(Q),
(3.16) Tk (u)u(t=0)=vf in L.

We just recall here that (3.15)—(3.16) imply that Tk (u), — Tk(u) a.e. in
Q and weakly-x in L>°(Q) and strongly in L?(0,T; H(£2)) as p — oo. Let
h € WH(R), h > 0, with supp h compact. The main estimate is

LEMMA 3.2 (see [19]).

Ts c
lim sup lim S S <8bE (gt’ u)

HU—>00 e—0

() (T () — <TK<u>>u>> dtds >0
00

where { , ) denotes the duality pairing between L'(£2)+H ~1(82) and L>(£2)N
Hj(£2).
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LEMMA 3.3 (see [19]). A subsequence of u® defined in Step 3 satisfies,
for any K >0,
Tt
limn inf VIV Az, )[DTw (uf) — DT (u)] - [DTk (u°) — DT ()] daz dt ds = 0,
008
and

Ty (uf) = T (u)  strongly in L*(0,T; HL(£2)) as e — 0.

Now, let S in W2>(R) be such that S’ has a compact support, say

supp S’ C [-K, K]. Pointwise multiplication of the approximate equation
(P%) by S’(uf) leads to

(3.17) abs(;;’“) — div(S' (u) Az, ) Duf) + S" (u) Az, t) Du - Duf

— div(S'(u®) P (u)) + 5" (uf) P (u®) Duf + f&(x,t,u%)S' (u®) =0 in D'(Q),

where
T

be(x, s
o) = el,2)
Letting € — 0 in each term of , we conclude that u satisfies .

As a consequence, an Aubin type lemma (see e.g. [2I, Corollary 4])
implies that bg(z,u®) lies in a compact subset of C°([0, T]; W~15(£2)) for
any s < inf(2, N/(N —1)). It follows that, on one hand, bg(z,u®)(t = 0)
= bg(z,uf) converges to bg(z,u)(t = 0) strongly in W~=5%(£2). On the
other hand, (3M) and the smoothness of S imply that bg(z,u§) converges
to bg(x,u)(t = 0) strongly in L?({2) for all ¢ < co. Then we conclude that
bs(x,u)(t = 0) = bg(x,up) in £2. By Steps 1-3, the proof of Theorem is
complete.

S'(s)ds.

4. Comparison principle and uniqueness result. This section is
concerned with a comparison principle (and a uniqueness result) for renor-
malized solutions in the case where f(x,t,u) is independent of u. We estab-
lish the following theorem.

THEOREM 4.1. Assume that assumptions (2[1))~(2[4) and (2[8) hold true
and moreover that:

(4.1) for any K > 0, there exists Bx > 0 such that
ob(z,z1)  0Ob(x, 22)
0s ds

for almost every x in 2, and all z1 and z9 such that |z1|, |z2| < K,
(4.2) @ is a locally Lipschitz-continuous function on R,

(4.3) f1, f2 € LY(Q).

< Brlz1 — 22|
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Let w1 and ug be renormalized solutions corresponding to the data (fl,u(l))
and (f2,ud) for the problem (i = 1,2)
Blrui) _ div(A(z, t)Du; + B(w;)) = fi(z,t) in Q,
(P;) b(x,u;)(t = 0) = b(z,ul) in 2,
u; =0 on 02 x(0,T).
If fi < f2 and u} < ud a.e., then uy < ug a.e. in Q.
Sketch of the proof. Here we just give an idea of how u; < wo can be
obtained following the outline of [20]. Let us introduce a specific S in (2.11)).

For all n > 0, let S, € C'(R) be defined by S/ (r) =1 for |r| < n, S/ (r) =
n+1—|r[forn <|r| <n+1and S} (r) =0for [r| > n+ 1. Taking S = S,

in (2.11) yields
Obg, (x,u;)

(4.4) ~

— div(S), (u;) Az, t) Du;) + S” (u;) A(z, t) Du; Du;
— div(®s, (w)) = fiSp(wi)  in D'(Q)

for i = 1,2 with bg, (z,7) = {; %S’,’l(s) ds.
We use 175 (bs, (z,u1) — bs, (z,u2)) as a test function in the difference
of equations (4.4) for u; and wus to get

(4.5)
1 o a(bSn(xvul) —bsn(.’E,UQ)) T+
= , T 7 (bs, (x,u1) —bg, (z,u2)) ) dsdt+ A?
4 g< - 5.2, 0) = s, (0,1) )

=B, +Cy + D;
for any ¢ > 0, n > 0, where
Tt

A7 — % 111 180(u) A(t 2) Dy — S, (uz) A(t, ) Dy

n

o
o
Q

- DT, (bs, (z,u1) — bs, (z,us)) dz ds dt,

Tt
1
Bl = p S S S S (uy) Az, t) Duy Duy T (bs, (2, u1) — bs, (,u2)) dx ds dt
0048
1 Tt
= LU 82(u2) A, £) Dus DT (b, (1) — b, (2, u2)) dv ds
7000
Tt
1
Oy ==\ | [@s, (w1) = Bs, (u2)| DT (bs, (w,u1) — b, (, uz)) d ds dt,
g 0080
T
o 1 0 / +
Dy = — |\ (155 (u1) = foS3,(u2)) T (bs, (. 11) = bs, (2, u2)) da dis dt.
008
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We will pass to the limit in (4.5)) as ¢ — 0 and then n — co. Upon application
of Lemma 2.4 of [I1], the first term on the right hand side of (4.5)) is

Tt
(4.6) é §)§)<a(b5" (=, “1)82 D50 U2)) (e (2 un) — b uQ))> ds dt
= % | 77 (bs, (2, 1) = bs, (,u2)) dz dt—g | T5F (bs, (2, up) = bs, (z,uf)) d=
Q 9]

where T (t) = Sg T5(s)ds. Due to the assumption uj < ud a.e. in 2 and
the monotone character of bg, (z,-) and T,(-) , we have

(4.7) | ToF (bs,, (2, up) — bs, (2, u5)) dz = 0.

(0]
It follows from (|4.5)—(4.7) that

1, ~
(4.8) - \ T,F (bs, (2, w1) = bg, (2, up)) da dt + A = BS + C7 + D5,
Q
for any o > 0 and any n > 0. We need the following lemma (see [20])

LEMMA 4.2. We have

liminfliminf A7 >0, liminfliminf B; =0,

(4 9) n—oo  o—0 n—oo  o0—0
' liminf Cy =0, lim inf lim sup Dy < 0.

0 n—0o0 4540

ag—
In view of (4.7)~(4.9) we have §,(b(z,u1) — b(z,uz))" drdt <0, so that

b(x,u1) < b(z,uz) a.e. in @, which in turn implies that u; < ug a.e. in Q,
and Theorem [.1]is established.
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