
APPLICATIONES MATHEMATICAE
41,2-3 (2014), pp. 175–184

Abdelmoujib Benkirane (Fez)
Fatimazahra Blali (Fez)
Mohamed Sidi El Vally (Abha)

AN EXISTENCE THEOREM

FOR A STRONGLY NONLINEAR ELLIPTIC PROBLEM

IN MUSIELAK–ORLICZ SPACES

Abstract. We prove an existence result for some class of strongly non-
linear elliptic problems in the Musielak–Orlicz spaces W 1Lϕ(Ω), under the
assumption that the conjugate function of ϕ satisfies the ∆2-condition.

1. Introduction. Let Ω be an open subset of Rn. This paper is con-
cerned with the existence of solutions for strongly nonlinear elliptic problems
of the form

A(u) + g(x, u,∇u) = f in Ω,(1.1)

where A is a Leray–Lions operator: A(u) = −div a(x, u,∇u).

A. Benkirane and A. Elmahi [BE1] have proved the existence of a solution
for problem (1.1) in the Orlicz–Sobolev space W 1LM (Ω), assuming a sign
condition and a natural growth condition on g.

A. Elmahi and D. Meskine [EM] have proved an existence theorem for
problem (1.1) without assuming the ∆2-condition on M and its conjugate
function.

In the main result of [BE1], M is supposed to satisfy the ∆2-condition
and the domain Ω of Rn is supposed to have the segment property in order
to construct a complementary system (W 1

0LM (Ω),W 1
0EM (Ω),W−1LM (Ω),

W−1EM (Ω)). It is our purpose in this paper to prove an existence result for
the strongly nonlinear elliptic problem (1.1) in the setting of Musielak–Orlicz
spaces W 1Lϕ(Ω), under the assumption that the conjugate function of ϕ
satisfies the ∆2-condition.
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For some other existence results for strongly nonlinear elliptic problems
see [ABT, AHT].

2. Preliminaries. In this section we briefly list some definitions and
facts about Musielak–Orlicz–Sobolev spaces [M].

Let Ω be an open subset of Rn and let ϕ be a real-valued function defined
in Ω × R+ and satisfying the following conditions:

(a) ϕ(x, ·) is an N -function, i.e. convex, nondecreasing, continuous,
ϕ(x, 0) = 0, ϕ(x, t) > 0 for all t > 0, and

lim
t→0

sup
x∈Ω

ϕ(x, t)

t
= 0, lim

t→∞
inf
x∈Ω

ϕ(x, t)

t
=∞,

(b) ϕ(·, t) is a measurable function.

Then ϕ is called a Musielak–Orlicz function and we put ϕx(t) = ϕ(x, t).
Let ψ(x, s) = supt≥0{st−ϕ(x, t)} be the Musielak–Orlicz function com-

plementary to ϕ in the sense of Young with respect to the variable s.
The Musielak–Orlicz function ϕ is said to satisfy the ∆2-condition if

there exists k > 0 independent of x ∈ Ω and a nonnegative function h
integrable in Ω such that ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for large values of t.

We define the functional %ϕ,Ω(u) =
	
Ω ϕ(x, |u(x)|) dx and the Musielak–

Orlicz space Lϕ(Ω) = {u : Ω → R measurable : %ϕ,Ω(|u(x)|/λ) <∞, λ > 0}.
The closure in Lϕ(Ω) of the bounded measurable functions with com-

pact support in Ω is denoted by Eϕ(Ω). The space Eϕ(Ω) is separable and
Eψ(Ω)∗ = Lϕ(Ω) (see [M]).

W 1Lϕ(Ω) (resp. W 1Eϕ(Ω)) is the space of all functions u such that u
and its distributional derivatives of order 1 lie in Lϕ(Ω) (resp. Eϕ(Ω)). Let
α = (α1, . . . , αn) with nonnegative integers αi, |α| = α1 + · · ·+ αn, and let
Dαu denote the distributional derivatives. We set

%ϕ,Ω(u) =
∑
|α|≤1

%ϕ,Ω(Dαu), ‖u‖1,ϕ,Ω = inf{λ > 0 : %ϕ,Ω(u/λ) ≤ 1}.

The spaces W 1Lϕ(Ω) and W 1Eϕ(Ω) can be identified with subspaces of
the product of n + 1 copies of Lϕ(Ω). Denoting this product by ΠLϕ, we
will use the weak topologies σ(ΠLϕ, ΠEψ) and σ(ΠLϕ, ΠLψ).

Let W−1Lψ(Ω) (resp. W−1Eψ(Ω)) denote the space of distributions on
Ω which can be written as sums of derivatives of order ≤ 1 of functions in
Lψ(Ω) (resp. Eψ(Ω)).

If ψ satisfies the ∆2-condition, then the space D(Ω) is dense in W 1
0Lϕ(Ω)

for the topology σ(ΠLϕ, ΠLψ) (see [BS, Corollary 1]).

Lemma 2.1. Let Ω be an open subset of RN of finite measure. Let ϕ, ψ
and φ be Musielak functions such that φ � ψ, and let f : Ω × R → R be a
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Carathéodory function such that for a.e. x ∈ Ω and all s ∈ R,

(2.1) |f(x, s)| ≤ c(x) + k1ψ
−1
x ϕ(x, k2|s|),

where k1, k2 are positive real constants and c ∈ Eφ(Ω). Then the Nemytskĭı
operator Nf defined by Nf (u)(x) = f(x, u(x)) is strongly continuous from

P (Eϕ(Ω), 1/k2) = {u ∈ Lϕ(Ω) : d(u,Eϕ(Ω)) < 1/k2}
into Eφ(Ω).

3. Main results. Let Ω be a bounded open subset of Rn. Let ϕ be a
Musielak–Orlicz function, and ψ the Musielak–Orlicz function complemen-
tary (or conjugate) to ϕ. We assume here that ψ satisfies the ∆2-condition
near infinity, and let γ be a Musielak–Orlicz function such that γ � ϕ.

Let A : D(A) ⊂ W 1
0Lϕ(Ω) → W−1Lψ(Ω) be a mapping (not defined

everywhere) given by A(u) = −div a(x, u,∇u) where:

(A1) a : Ω × R× Rn → Rn is a Carathéodory function,
(A2) for a.e. x ∈ Ω and all s ∈ R and ξ ∈ Rn

|a(x, s, ξ)| ≤ c(x) + k1ψ
−1
x (γ(x, k2|s|)) + k3ψ

−1
x (ϕ(x, k4|ξ|)),

for some c ∈ Eψ(Ω), and k1, k2, k3, k4 ≥ 0,
(A3) for each x ∈ Ω, and all s ∈ R, ξ, ξ∗ ∈ Rn with ξ 6= ξ∗,

[a(x, s, ξ)− a(x, s, ξ∗)][ξ − ξ∗] > 0,

(A4) a(x, s, ξ) · ξ ≥ α · ϕ(x, |ξ|/λ) for some α, λ > 0.

Furthermore, let g : Ω×R×Rn → R be a Carathéodory function such that
for a.e. x ∈ Ω and all s ∈ R, ξ ∈ Rn,

(G1) g(x, s, ξ) · s ≥ 0,
(G2) |g(x, s, ξ)| ≤ b(|s|)(c′(x) + ϕ(x, |ξ|/λ′)),

where b : R→ R is a continuous and non-decreasing function and c′(x) is a
given non-negative function in L1(Ω) and λ′ > 0. Finally, we assume that

(3.1) f ∈WE−1ψ (Ω).

Consider the following elliptic problem with Dirichlet boundary condi-
tion:

(3.2)


u ∈W 1

0Lϕ(Ω), g(x, u,∇u) ∈ L1(Ω), g(x, u,∇u)u ∈ L1(Ω),�

Ω

a(x, u,∇u)∇v dx+
�

Ω

g(x, u,∇u)v dx = 〈f, v〉,

for all v ∈W 1
0Lϕ(Ω) ∩ L∞(Ω) and for v = u.

We shall prove the following existence theorem:

Main Theorem 3.1. Assume that conditions (A1)–(A4), (G1), (G2)
and (3.1) hold true. Then there exists a solution u of problem (3.2).
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Proof. Step 1. Consider the sequence of approximate equations

(3.3) un ∈W 1
0Lϕ(Ω), A(un) + gn(x, un,∇un) = f in D′(Ω),

where n ∈ N∗ and

gn(x, s, ξ) =
g(x, s, ξ)

1 + (1/n)|g(x, s, ξ)|
.

Note that gn(x, s, ξ) · s ≥ 0, |gn(x, s, ξ)| ≤ |g(x, s, ξ)| and |gn(x, s, ξ)| ≤ n.

Since gn(x, s, ξ) is bounded for any fixed n > 0, there exists a solution
un of (3.3) (see [BS, Theorem 1, Theorem 5 and Remark 1]).

Using in (3.3) the test function un we get

(3.4)
�

Ω

a(x, un,∇un) · ∇un dx ≤ 〈f, un〉.

By Theorems 1 and 5 of [BS],

(un) is bounded in W 1
0Lϕ(Ω) and

�

Ω

a(x, un,∇un) dx ≤ C1,(3.5)

a(x, un,∇un) is bounded in (Lψ(Ω))n,(3.6) �

Ω

gn(x, un,∇un) · un dx ≤ C2.(3.7)

Passing to a subsequence if necessary, we can assume that

un ⇀ u weakly in W 1
0Lϕ(Ω) for σ(ΠLϕ, ΠEψ) = σ(ΠLϕ, ΠLψ).

Then

(3.8) un → u strongly in Eϕ and un → u a.e. in Ω.

Step 2. Let φ(t) = t exp(γt2), γ > 0. It is easy to see that when γ ≥
(b(k)K/2α)2 one has

φ′(t)− (b(k)K/α)|φ(t)| ≥ 1/2, ∀t ∈ R,

where K > 0 is a constant which will be specified later.

Take zn = Tk(un) − Tk(u) and use vn = φ(zn) ∈ W 1
0Lϕ(Ω) as a test

function in (3.3) to get

〈A(un), vn〉+
�

Ω

gn(x, un,∇un)vn dx→ 0 as n→∞

since vn ⇀ 0 weakly in W 1
0Lϕ(Ω) for σ(ΠLϕ, ΠEψ) = σ(ΠLϕ, ΠLψ), as is

easily seen.

Below we denote by εi(n) (i = 1, 2, . . .) various sequences of real numbers
which tend to 0 as n→∞.
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Since gn(x, un(x),∇un(x))vn(x) ≥ 0 on the subset {x ∈ Ω : |un(x)| > k},
we have

(3.9) 〈A(un), vn〉+
�

{|un|≤k}

gn(x, un,∇un)vn dx ≤ ε1(n).

Fix a real number r > 0, define Ωr = {x ∈ Ω : |∇Tk(u(x))| ≤ r} and denote
by χr the characteristic function of Ωr.

Taking s ≥ r we have

0 ≤
�

Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)] dx

(3.10)

≤
�

Ωs

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)] dx

≤
�

Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx.

On the other hand,

〈A(un), vn〉 =
�

Ω

a(x, un,∇un)[∇Tk(un)−∇Tk(u)]φ′(zn) dx

=
�

Ω

a(x, un,∇Tk(un))[∇Tk(un)−∇Tk(u)χs]φ
′(zn) dx

−
�

Ω

a(x, un,∇un)∇Tk(u)φ′(zn) dx

+
�

Ω

a(x, un,∇Tk(un))∇Tk(u)χsφ
′(zn) dx.

Then

(3.11) 〈A(un), vn〉 =
�

Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]φ
′(zn) dx

−
�

Ω

a(x, un,∇Tk(un))∇Tk(u)χΩ\Ωs
φ′(zn) dx

+
�

Ω

a(x, un,∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]φ
′(zn) dx.

Denoting by χGn the characteristic function of Gn = {|un(x)| > k}, the
second term on the right-hand side of (3.11) reads

−
�

Ω

[a(x, un,∇un)− a(x, un, 0)]χGn∇Tk(u)φ′(zn) dx;

this tends to 0 since χGn∇Tk(u)φ′(zn) → 0 strongly in (Eϕ(Ω))n by Le-
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besgue’s theorem while a(x, un,∇un) − a(x, un, 0) is bounded in (Lψ(Ω))n

by (3.6) and (A1).
Since |a(x, un,∇Tk(un))| ≤ |a(x, un,∇un)| + |a(x, un, 0)| it follows that

a(x, un,∇Tk(un)) is bounded in (Lψ(Ω))n for σ(ΠLψ, ΠEϕ), for some h ∈
(Lψ(Ω))n.

We deduce that the third term on the right-hand side of (3.11) tends to

−
�

Ω\Ωs

a(x, u, 0)∇Tk(u) dx

since a(x, un,∇Tk(u)χs) tends strongly to a(x, u,∇Tk(u)χs) in (Eψ(Ω))n by
Lemma 2.1 while ∇Tk(un) tends weakly to ∇Tk(u) by (3.8).

This implies that

〈A(un), vn〉 =
�

Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)](3.12)

× [∇Tk(un)−∇Tk(u)χs]φ
′(zn) dx

+
�

Ω\Ωs

(a(x, u, 0)− h)∇Tk(u) dx+ ε2(n).

We now turn to the second term of the left-hand side of (3.9):∣∣∣ �

{|un|≤k}

gn(x, un,∇un)vn dx
∣∣∣ ≤ �

{|un|≤k}

b(k)

(
c′(x) + ϕ

(
x,
|∇un|
λ′

))
|vn| dx

≤ ε3(n) + b(k)
�

Ω

ϕ

(
x,
|∇Tk(un)|

λ′

)
|vn| dx

since (vn) is bounded in L∞(Ω) and vn → 0 a.e in Ω.
Using (A4) we can write

(3.13)
∣∣∣ �

{|un|≤k}

gn(x, un,∇un)vn dx
∣∣∣

≤ ε3(n) +
b(k)

α

�

Ω

a(x, un,∇Tk(un))∇Tk(un)|vn| dx

= ε3(n) +
b(k)

α

�

Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]|vn| dx

+
b(k)

α

�

Ω

a(x, un,∇Tk(un))∇Tk(u)χs|vn| dx

+
b(k)

α

�

Ω

a(x, un,∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]|vn| dx.
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The second term on the right-hand side of (3.13) tends to 0 since
a(x, un,∇Tk(un)) is bounded in (Lψ(Ω))n while∇Tk(u)χs|vn| tends strongly
to 0 in (Eϕ(Ω))

n by Lebesgue’s theorem.

The third term on the right-hand side of (3.13) tends to 0 since
a(x, un,∇Tk(u)χs)|vn| tends strongly to 0 in (Eψ(Ω))n by condition (A2)
while ∇Tk(un)−∇Tk(u)χs is bounded in (Lϕ(Ω))n.

We deduce that

(3.14)
∣∣∣ �

{|un|≤k}

gn(x, un,∇un)vn dx
∣∣∣

≤ ε4(n) +
b(k)

α

�

Ω

[a(x, un,∇un)− a(x, un,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]|vn| dx.

Combining (3.9), (3.12) and (3.14) we obtain
�

Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]

(
φ′(zn)− b(k)

α
|φ(zn)|

)
dx

≤ ε5(n)−
�

Ω\Ωs

(a(x, u, 0)− h)∇Tk(u) dx,

which gives, by using the inequality φ′(t)− (b(k)K/α)|φ(t)| ≥ 1/2,
�

Ω

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

≤ 2ε5(n)− 2
�

Ω\Ωs

(a(x, u, 0)− h)∇Tk(u) dx.

Using (3.10) yields
�

Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)] dx

≤ 2ε5(n)− 2
�

Ω\Ωs

(a(x, u, 0)− h)∇Tk(u) dx.

This implies that

0 ≤ lim sup
n→∞

�

Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)] dx

≤ 2
�

Ω\Ωs

(a(x, u, 0)− h)∇Tk(u) dx.

Using the fact that (a(x, u, 0) − h)∇Tk(u) ∈ L1(Ω) and letting s → ∞ we
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get
�

Ωr

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)] dx→ 0.

Passing to a subsequence if necessary, we can assume that

[a(x, un,∇Tk(un))− a(x, un,∇Tk(u))][∇Tk(un)−∇Tk(u)]→ 0 a.e. in Ωr.

As in [BE2], we deduce that there exists a subsequence, still denoted by un,
such that

∇un → ∇u a.e. in Ω.

Step 3. We shall prove that gn(x, un,∇un) → g(x, u,∇u) strongly in
L1(Ω) by using Vitali’s theorem.

To prove that gn(x, un,∇un) are uniformly equi-integrable in Ω, let
E ⊂ Ω be a measurable subset of Ω. We have, for any m > 0,

�

E

|gn(x, un,∇un)| dx ≤
�

E∩{|un|≤m}

|gn(x, un,∇un)| dx

+
�

E∩{|un|>m}

|gn(x, un,∇un)| dx

Moreover,

�

E∩{|un|≤m}

|gn(x, un,∇un)| dx ≤
�

E∩{|un|≤m}

|b(m)|
[
c′(x)+ϕ

(
x,
|∇un|
λ′

)]
dx

≤ b(m)
�

E

c′(x) dx+
b(m)

α

�

E

a(x, un,∇Tm(un))∇Tm(un) dx

≤ b(m)
�

E

c′(x) dx+
b(m)

α

[
2ε5(n) + 2

�

Ω\Ωs

(a(x, u, 0)− h)∇Tm(u) dx
]

+
b(m)

α

�

E

a(x, un,∇Tm(un))∇Tm(u)χs dx

+
b(m)

α

�

E

a(x, un,∇Tm(u)χs)[∇Tm(un)−∇Tm(u)χs] dx.

We claim that a(x, un,∇Tm(un))∇Tm(u)χs→ a(x, u,∇Tm(u))∇Tm(u)χs
and a(x, un,∇Tm(u)χs)[∇Tm(un)) − ∇Tm(u)χs] → a(x, u, 0)∇Tm(u)χΩ\Ωs

strongly in L1(Ω). To prove this claim we can use Lemma 2.4 of [BE1].

Let ε > 0. We have
�

E∩{|un|>m}

|gn(x, un,∇un)| dx ≤ 1

m

�

Ω

gn(x, un,∇un)un dx ≤
C2

m
.
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Thus for m sufficiently large, we can write�

E∩{|un|>m}

|gn(x, un,∇un)| dx ≤ ε

2
, ∀n.

Furthermore, there exists n0 > 0 such that 2(b(m)/α)ε5(n) ≤ ε/10 for
all n ≥ n0, and there exists s large such that

2
b(m)

α

�

Ω\Ωs

(a(x, u, 0)− h)∇Tm(u) dx ≤ ε

10
.

There exists δ1 > 0 such that |E| < δ1 implies

b(m)

α

�

E

a(x, u,∇Tm(u))∇Tm(u)χs dx ≤
ε

10
, ∀n,

b(m)

α

�

E

a(x, un,∇Tm(u)χs)[∇Tm(un)−∇Tm(u)χs] dx ≤
ε

10
, ∀n,

b(m)
�

E

c′(x) dx ≤ ε

10
.

Thus when |E| < δ1 one has
	
E∩{|un|≤m} |gn(x, un,∇un)| dx ≤ ε/2 for all

n ≥ n0. Consequently, |E| < δ1 implies
	
E |gn(x, un,∇un)| dx ≤ ε for all

n ≥ n0. But
	
E |gn(x, un,∇un)| dx ≤ n0|E| for all n < n0. Thus |E| <

δ = inf(δ1, ε/n0) implies
	
E |gn(x, un,∇un)| dx ≤ ε for all n. This shows

that gn(x, un,∇un) are uniformly equi-integrable in Ω. Applying Vitali’s
theorem yields gn(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω).

Going back to the approximate equation (3.3), one has

(3.15)
�

Ω

a(x, un,∇un)∇v dx+
�

Ω

gn(x, un,∇un)v dx = 〈f, v〉

∀v ∈W 1
0Lϕ(Ω) ∩ L∞(Ω).

Note that a(x, un,∇un)⇀a(x, u,∇u) weakly in (Lψ(Ω))n for σ(ΠLψ, ΠEϕ)
by Lemma 2 of [BS].

Letting n→∞ in (3.15), we get

(3.16)
�

Ω

a(x, u,∇u)∇v dx+
�

Ω

gn(x, u,∇u)v dx = 〈f, v〉.

This equality also holds for v = u.
Indeed, taking v = Tk(u) ∈W 1

0Lϕ(Ω) ∩ L∞(Ω) in (3.16), one has�

Ω

a(x, u,∇u)∇Tk(u) dx+
�

Ω

g(x, u,∇u)Tk(u) dx = 〈f, Tk(u)〉.

From (3.7) we deduce by Fatou’s Lemma that g(x, u,∇u)u ∈ L1(Ω).
Observe that Tk(u)→ u in W 1

0Lϕ(Ω) for modular convergence and a.e.
in Ω when k →∞.
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Note also that |g(x, u,∇u)Tk(u)| ≤ g(x, u,∇u)u ∈ L1(Ω).
Hence, by Lebesgue’s theorem, letting k →∞ we obtain�

Ω

a(x, u,∇u)∇u dx+
�

Ω

g(x, u,∇u)u dx = 〈f, u〉.

This completes the proof of Theorem 3.1.

Example 3.2. As an application of this result, we can treat the following
model problem: {

−∆ϕu + uϕ(x, |∇u|) = f on Ω,

u = 0 in ∂Ω,

where ∆ϕ is the ϕ-Laplacian operator ∆ϕu = div
(a(x,|∇u|)
|∇u| ∇u

)
and where a

is the derivative of ϕ with respect to t. The second member f is supposed to
lie in the dual space W−1Eψ(Ω) where ψ is the Musielak–Orlicz conjugate
to ϕ.
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