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EXISTENCE RESULT FOR A CLASS OF DOUBLY
NONLINEAR PARABOLIC SYSTEMS

Abstract. We prove the existence of a renormalized solution to a class of
doubly nonlinear parabolic systems.

1. Introduction. We consider the following nonlinear parabolic system:
abi(gt’ui) —div(a(z, t,u;, Vug)) + div(e(z, t, u;))
(1.1) = fi(w,u1,u2) — div(F;) in Qr,
ui(xz,t) =0 on 92 x (0,7T),
bi(x,ui(x,0)) = bi(z,upi(z)) in £2,
where i = 1, 2.

In , 2 is a bounded domain of RY (N > 2); T is a positive real
number; Qpr = 2 x (0,T); —div(a(x,t,u;, Vu;)) is a Leray—Lions operator
defined on LP(0,T; Wol’p((})); ¢i(z,t,u;) is a Carathéodory function (see
assumptions 7); b; : 2 x R — R is a Carathéodory function such
that for every = € 2, b;(x,) is a strictly increasing C'-function; ug; is in
LY(2) with b;(-,up;) in LY(2); fi + 2 x R x R — R is a Carathéodory
function (see Assumptions H4); and F; € (L¥ (Q))V.

Under our assumptions, problem does not admit, in general, a weak
solution since the terms ¢;(x,t,u;) and f;(x,u;1,u2) may not belong to
(LL (Q))N. In order to overcome this difficulty, we work in the framework of
renormalized solutions (see Definition 3.1). This notion was introduced by
R.-J. DiPerna and P.-L. Lions [7] for the study of the Boltzmann equation. It
was adapted to the study of some nonlinear elliptic or parabolic problems in
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fluid mechanics in [5]. In the case where b(z,u) = u, the existence of renor-
malized solutions for has been established by R. Di Nardo et al. [6].

In the case where ¢(x,t,u) = 0 and f € L'(Qr), the existence of renor-
malized solutions has been established by H. Redwane [12] in the classi-
cal Sobolev space; existence results have also been proved in [I], [9] in the
case where f;(x,u1,us) is replaced by f — div(g) where f € L'(Q) and
ge (L Q).

It is our purpose in this paper to generalize the result of [6] and prove
the existence of a renormalized solution of system .

The plan of the paper is as follows: In Section 2 we give the basic as-
sumptions. In Section 3 we give the definition of a renormalized solution of
(1.1), and we establish (Theorem 3.1) the existence of such a solution.

2. Assumptions on data. Let {2 be a bounded open set in RV (N >2),
T a positive real number, and Qr = 2 x (0,7).

2.1. Assumptions. Throughout this paper, we assume that the follow-
ing assumptions hold true:

AssumpTION (HI1). b; : 2 x R — R is a Carathéodory function such
that for every = € (2, b;(x,-) is a strictly increasing C''(R)-function with
bi(z,0) = 0 for any k > 0, and there exists a constant \; > 0 and functions
Al € L*>®(£2) and B. € LP(2) such that for almost every z in (2,

0b;(x, s) obi(x, s)

= < Al(x), ‘vz<8s>‘g3,i(x) V|s| < k.

AssUMPTION (H2). a: Q7 x R x RY — RY is a Carathéodory function
such that, for any k > 0, there exist v, and a function hy € LPI(QT) with

2.1) N <

(2.2) la(a,t,5,6) < vi(hi(a,t) + €7 Vs| <k,
(2.3) a(z,t,s,8)§ > al¢|P  with some a > 0,
(2.4) (a(z,t,5,€) —alz,t,s,m)(§ —n) >0  when &7 1.

AssUMPTION (H3). ¢; : Qr x R — R¥ is a Carathéodory function such
that for almost every (z,t) € Qr and every s € R,

(2.5) |q§i(x,t,s)\ < Ci(Z'?t)‘SW?

N+p N+2
, Y= (p—1).

p—1 N+p

AssuMPTION (H4). Fori=1,2, f; : 2 x R xR — R is a Carathéodory

function with fi(z,0,s) = fa(x,s,0) = 0 for a.e. x € £2, and all s € R; and
for almost every x € {2, and every s1, s2 € R,

(2.6) c; € L'(Qr) with 7=

sign(s;) fi(x, s1,52) > 0.
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The growth assumptions on f; are as follows: for each £ > 0 there exist
or > 0 and F), € L*(£2) such that

(2.7)  |fi(z,s1,82)| < F + op|ba(z, 52)| a.e. x € 2,V]s1]| <k, Vsg € R,
and for each k > 0 there exist yy > 0 and Gy, € L*(£2) such that
(2.8) |fa(x, s1,52)] < Gi(x) + pg|bi(x, s1)] a.e. x € 2, V|sa| <k, Vs; € R.

Finally, ug ; is a measurable function such that b;(-, ug ;) € LY () fori=1,2.

3. Main results. In this section, we study the existence of renormalized
solutions to systems (|1.1J).

DEFINITION 3.1. A couple of measurable functions (ui,u2) defined on
Qr is called a renormalized solution of (1.1) if for ¢ = 1,2 the function u;
satisfies
(3.1) bi(x,u;) € L°°(0,T; L' (12)),

(3.2) Ti(us) € LP(0,T; Wy P(£2))  for any k > 0,
1
(3.3) lim — S a(x,t,u;, Vu;)Vu; dz dt =0,
n—oo N
{(xzt)eQT: |ul(x,t)|§n}

and for every function S in W?%°°(R) which is piecewise C! and such that
S’ has compact support,

(3.4) 831’%(;0’1%) —div(a(z, t,u;, Vui) S (u;)) + S (w)a(z, t, u;, Vu; )V,
+ div (s (2, t, ui) S (us)) — 8" (us) iz, t, ui) Vg
= fi(w,u1,u2)S" (u;) — div(S'(us) F;) + 8" (us) F;Vu; — in D'(Qr),
and
(35) Biys(ﬂf, UZ)(t = 0) = Biys(ﬂf, ui,O) in .Q,

where B; s(z,z) = {; %S’(s) ds.

Equation is formally obtained through pointwise multiplication of
by S'(u). However a(z, t,u;, Vu;) and ¢;(x, ¢, u;) do not in general make
sense in . Recall that for a renormalized solution, due to , each term
in has a meaning in L'(Q)+L¥ (0, T; W=7 (£2)) (see e.g. [5]). We have

(3.6) ‘W e LF(0,T; W1 (02)) + LH(Q),
(3.7) Bis(z,u;) € LP(0, T; W, P(£2)).

Then (3.6) and (3.7) imply that B; g(z,u;) belongs to C°([0,T]; L' (£2)) (for
a proof of this trace result see [11]), so that the initial condition (3.5 makes
sense.
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MAIN THEOREM 3.2. Let b(x,ug) € L*(£2) and assume that (H1)—(H4)
hold true. Then there exists a renormalized solution (uy,us) of problem (|1.1))
in the sense of Definition [3.1]

Proof. STEP 1. Let us introduce the following regularization of the data:
for i =1,2 and € > 0,

(3.8)  bie(w,r) =b(x,T1/e(r)) +er VreR,

(3.9)  ac(z,t,5,8) = a(x,t,Ty/(s),§) ae. (v,t) €Qr, Vs €R, VE € RN,
(3.10)  @ic(z,t,r) = gi(w, 1, Ty /(1)) ae. (x,t) € Qr, Vr € R,
fre(@,s1,82) = fi(z,T1/e(51), T1je(52)) ae. x € 2, Vs, 52 €R,
foe(®,81,82) = fa(x,T1/e(51), T1e(52)) ae. € £2, Vs, 82 € R
Let u; 0. € C5°(§2) be such that

(3.11)

(3.12) bie(2,ui0c) — bi(w,u;0)  strongly in L'(£2).

In view of (3.8)), for i = 1,2, b;¢ is a Carathéodory function and satisfies
(2.1)), so there exists \; > 0 such that

abz e\L)
Oic(x,5) |bic(x,s)| < max |bi(z,s)] ae xe€f2, VseR.

Ai+e< ,
iTes 0s s|<1/e

Let us now consider the regularized problem
8b’t e\L, WUqe . .
7(;;1” - le(aE(l', b, e, vui,e)) + le(¢i75(x, t, ui’€>)
(3.13) = fie(w,ur,uz) — div(F;) in Qr,
uie(z,t) =0 on 912 x (0,T),
bi,e(xa ui,e)(t = 0) = bi@(l‘, ui,Oe) in (2.

In view of (2.7)—(2.8), there exist F ., Fy . € L'(§2) and o, e > 0 such that

| fi,e(x, s1,52)] < F1e(x) + o |m<al>; |bi(z,s)] ae. x€ 2 Vsy,s9 €R,
€

|

|fo,e(x, 51,82)| < Foe() + e |Ifl<ai); |bi(x,s)| ae. x€ 2 Vs1,s9 €R.
s|<1/e

Hence, proving the existence of a weak solution u; . € LP(0,T; I/VO1 P(02)) of

(3.13]) is an easy task (see e.g. [10], []).

STEP 2. The estimates derived in this step rely on standard techniques
for problems of type , and we just sketch their proof (referring the
reader to [4]) for the elliptic version. Let 71 € (0,7") and ¢ fixed in (0, 7).
For i = 1,2, using Tj(uic)Xx (0 as a test function in , we integrate
over (0,71), and by the condition we have
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(3.14) Snyk(x,u@e(t))d:U%— S ae(z,t, uie, Vi) VT (uie) de ds
n Qt
< | el Olus 19Tl )l dvds + § fic (o, us, ) Ti(us,) do ds
Qt _ Qt
+ | By (w,usg) do + || FiVTy(uf) da ds
Qt

where B (x,7) = | Ti(s )8bz <25) js Due to the definition of Bf . we have

Q

(3.15) 0 < | B p(w, uioe) dw < & | [bi e, ui00)| da
2 kP4
= k‘”bl(l' ui,Oe)HLl(Q) vk > 0.

Using (3.14)) and ( and we obtain

| Be (2, ui () dz + o S IV Ty (us o) |P dee ds
? Q:
< | el@, ) us IV T (ui )| ds da
Qr
+ k(”bi(x7ui,0€)HL1(Q) (QT)) + S Fz‘VTk(Ui,e) dx ds.
Q

Qr) T 1bi (2, u Oe)HLl . Note that

Let M; = sup,

. : ob; (x,0 A+ € i
B (2, 5) = Sn(@g do > T|Tk<s>\2 > 2173 (s) 2

0

We deduce from (3.14]) and - ) that

(o

(3.16) 2\ [T(uio)? do +a | [VTh(uie)|P do ds

n Q¢

< M;k + S ci(x, t)|ui || VTk(uie)| do ds + S FiVTy(uie)dzds.
Q¢ Q¢

By the Gagliardo—Nirenberg and Young inequalities we have

(3.17) | cilw, t)|uie VT (ui )| da ds

Q1
< G lei(@ )l ir(@r) sup | |Ti(uie)? de
N +2 ! te O,Tl)Q
N+2- (Lt i) T2
Oy e Doy ((§ IV Tkl dads ) P

Qry
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Since v = (%ii)( — 1), by using (3.16) and (3.17) we obtain
Ai
5 S Ty (uie)|? dz + a S |V (uie)l? da ds
n Q¢

< Mik + Ci— + Sllei(@ )llzr@n,) sup | T (ui o) |? d
te

077-1) 0
—(p-1)
«
#(2) 7 1Rl

N+2—v
+CiN7+2HCi($at)||LT(QTl) | IVTh (i) P da ds
Qry
«
+ = | VT (s )P da ds,
e
t
which is equivalent to
s
<Z—C lei(z, ) 7@, )) sup S T (wie)|? dota S |V (uie) P de ds
2 N+2 tE(O,Tl) 0 QTl

N +2
- (CZN_i_Hcl(x )l (@n) + ) | 19Tk (s o) davds < M.
Qn

If we choose 71 such that

Ai
3 - Gl Dl n) 20
o N+2—
v lWHCZ(fL' (. =0,
then, denoting by C; the minimum of
Ai(N +2) a(N +2)
and )
29llei(@, D)l (@) PN +2=7)lles(x, D)l Lm(@.,)
we obtain
(3.18) sup S Ty (wie)|? do + S VT (uie) P de dt < C;M;k.
te(0,m1) ) Qn

Then, by ( and Lemma 3.1 ([1], [6]), we conclude that Tj(u;.) is
bounded in Lp (0 T; W, P(£2)) independently of € for any k > 0, so there
exists a subsequence stlll denoted by u; . such that

(3.19) Ti(uie) — Hip  weakly in LP(0,T; Wy (£2)).
LEMMA 3.3 (see [1]). We have
(3.20) Uie = ui ae. Qp,  bi(x,ug) € L0, T; L'(£2)),
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where u; is a measurable function defined on Qr for i =1,2. Moreover,

1
(3.21) lim lim sup — S a(x,t,uje, Vi)V e dedt = 0.

n—o0 e—0 n
{lui,e[<n}

STEP 4. In this step we prove that the weak limit X, of a(x,t, Ty (i),
VT (uic)) can be identified with a(x,t, T (u;), VIk(u;)), for ¢ = 1,2. To
prove this we recall the following lemma (see [I]):

LEMMA 3.4. Fori = 1,2, a subsequence of u; satisfies, for any k > 0,

t
lim sup S Sa(x,s,uiye,VTk(ui’g))VTk(ui,g) dsdx dt
e—0
QT o0
<

Qr

Xk VTi(u;) dr ds dt,

O ey o+

lim | | (a2, t, Te(uso), VTk(ui)) — alz,t, Te(uic), V(1))

e—0
Qro0

X (VTk(ui,E) — VTk(uz)) = 0,
(3.22) Xig = a(x,t,Ty(u;), VIL(u;)))  a.e. in Qr,

and as € tends to 0,

(3.23)  a(z,t, Tr(uie), VIk(wie)) VT (wic)
— a(x, t, Tk(ui), VTk(uZ))VTk(ul)

weakly in L*(Qr).

Proof. For i = 1,2, we introduce a time regularization of Ty (u;) for
k > 0 in order to apply the monotonicity method. This regularization was
introduced for the first time by R. Landes [9]. Let v} be a sequence of

functions in L (£2) N W, (£2) such that v || ooy < K for all > 0 and
v}y converges to Ty (up) a.e. in 2 and %”'UgHLp(_Q) converges to 0. For k > 0
and p > 0, we use the sequence (T} (u)), as approximation of Tj(u). We
define the regularization in time of the function Ty (u) by

(Th(w))pu(,t) = p | e DTy (ulw, 5)) ds,

extending Ty (u) by 0 for s < 0. It is differentiable for a.e. t € (0,T) with
(Ti(w)p(a, D] < K(1— M) <k ac.in Q,

AL+ (T~ Tol)) =0 i D),
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Note that (T, (u)), — Tk (u) a.e. in Q7, weakly- in L>°(Q) and strongly in
LP(0,T; W[(£2)) as p — oo and

(T (1)) ol oo (@) S max ([ (T (u))l| oo (@) 196 | oo (2)) < By V>0, Vk > 0.

LEMMA 3.5 (see H. Redwane [12]). Let k& > 0 be fized. Let S be an
increasing C°(R)-function such that S(r) = r for |r| < k, and supp S’ is
compact. Then

lim inf lim
p—o0 €—0

Tt i e T, Uj e /
() 800 (Tt = (), ) = 0.

where (-,-) denotes the duality pairing between L'(£2) + W5 (2) and
L®(2)NWEP(0).
Let S, be a sequence of increasing C*°-functions such that
Sp(r)y=r for|r|<n, suppS, C[-(n+1),n+1],
[Spllzeem) <1 for any n > 1.
For i = 1,2, we use the sequence (T} (u;)),, of approximations of T} (u;), and
plug the test function S}, (ws,c)(Tx (wie) — (T (wi))y) in (3.4) for n, > 0. For
fixed k > 0, let Wj = Ty (ui) — (Tk(ui))u- Upon integration over (0,t) and
then over (0,7") we obtain

Tt (2o
an [Pl

, S,’l(u“)le> ds dt
00

+

ac(z, s, Ui, Vui,e)S;L(ui,e)VWﬁ dsdt dzx

O
}i

ac(x, s, i, Vuiye)ST’{(uive)VumVW; dsdtdx

+
QM
N

|
—

Gie(x, 8, u¢)S), (ui7({)vW; dsdt dz

O
}i

Ot + Ot & Ol o+ O e

Sf{(uz‘,e)sz‘,e(% s, ui,E)Vui,EVle ds dt dx

Q

t t
= | VfieSh(uiaWedudsdt+ | \ FS), (ui ) VW ds dt do
0 Qro

t
+ | VEiS) (ui) Vs VW ds dt da.
0
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We pass to the limit in (3.24)) as € — 0, u — oo and then n — oo for k fixed.
We use Lemma and proceeding as in [4], [12], we conclude that

Tt 8b1 e(l‘ (7% e)
liminflimu T Y WE Ydsdt >0 for any n > k,
p—o0 e—0 00 ot ®

t
lim lim sup lim sup S Sae(a:, t, Wje, Vuiyg)SZ(uLE)Vui’gVW; dsdtdr =0,

n—=00  p—oco e—0

Qro0
t
. . / € —
Jim Tinm |\ ficS (i)W ds dt da = 0,
Qro
t
. / € _
#h_>n010 S S FiSn(ui,e)VW# dsdtdr =0,
Qro0
t
. 1 € —
Jim. V 7Sy (uie) Vs W ds dt da = 0,
Qro
and finally,
t
. . / € —
(3.25) Jim_lim V V@il t,uie) S (ui ) VIV ds dt dz = 0,
Qr0
t
(3.26) lim m | |57/ (ue)ic(@,t, ui ) Vui VWS ds dt dz = 0.
H—+00 e—)OQ o
T

For the proof of (3.25) and (3.26)) the reader is referred to [I]; here ([3.22
and (3.23) are used. Note that, letting ¢ — 0 in (3.21]) and using (3.23
shows that wu satisfies (3.3)).

Now we want to prove that u satisfies (3.4). Let S be a function in
W2(R) such that supp S’ C [—k, k] where k is a positive real number.
Pointwise multiplication of (3.13) by S’(u.) leads to

0B¢ o(x, u;
(3.27) ZS((%”) - div(ae(x, t, Uie, Vui,e)S’(ui,e))
+ S”(Ui,e)a(x’ t,uie, Vi) Ve + div(¢i76(a:, t, uive)S/(ui,e))
- S//(ui,e)¢i,e($’ t, ui,e)vui,e
= fi,esl(uiﬁ) — diV(FiS/(ui,e)) + S”(’LLLG)FiVULG in D/(QT),
where Bf g(z,7) = || %1’573’3)5’(5) ds.

In what follows we let € — 0 in each term of (3.27)). Since ;. converg-
ing to u; a.e. in Qr implies that Bf’s(x,u@e) converges to B; s(x,u;) a.e.
in Qr and weakly-+ in L>°(Qr), it follows that 831-675(1‘,’11@'76)/625 converges
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to 0B; s(z,u;)/0t in D'(Qr). We observe that ac(z,t, u;e, Vu;)S (ui) can
be identified with a(x,t, T (uic), VI (uie))S (uie) for € < 1/k, so using
the pointwise convergence of u; ¢ to u; in @7, and the weak convergence of
Ty (uie) to Ty (u;)in LP(0, T W[)l’p(())), we get

ac(@, t,uie, Vi) S (uie) = ala,t, Te(w;), VI(u)S (w;)  in L (Qr),
and

S”(ui,e)ae(aﬁ,t,um, Vuie)Vug e — S" (ui)a(x, t, Ty, (u;), VI (u;)) Vg (u;)
in L!(Qr). Furthermore, since

¢i,e($7 t7 ui,s)S/(ui,e) = (,bi,e(xa ta Tk(ui,e))sl(ui,e)
a.e. in Qr, by (3.10) we obtain
|Bie(@, b, Th(wie)) S (wie) | < les(@, )|k

It follows that

Gie(x,t, Ti(uie))S (wie) = i, t, T (wi))S (u;)  strongly in Lpl(QT).
In a similar way

S (wie) bie (@, 8, wie) Vuie = S" (Tho(wie)) bie (@, 1, Ti (i) ) VT (wie)
a.e. in Q7. Using the weak convergence of Ty (u; ) in LP(0, T} Wol’p(_Q)) it is
possible to prove that
S"(wi ) e, t,ui ) Vuie = S" (ui)di(w, t,u;)Vu;  in LYQr),
and S”(u; ) F;Vu;e — S"(u;)F;Vu; in L' (Qr). Since |8 (u;e)| < C, it fol-
lows that F;S"(u;.) — F;S"(u;) strongly in L (Qr). Finally by (3.11)) we
deduce that foS"(u;e) — f:5"(wi) in LY (Qr).
Now, it remains to prove that B; s(x,u;) satisfies the initial condition

B; s(x,u;)(t =0) = B; s(,u;0) in 2. To this end, first note that Bg(z, u.)
is bounded in LP(0, T} WO1 P(£2)). Secondly the above consideration of the be-
havior of the terms of this equation shows that B g(z, ui.)/0t is bounded
in L'(Qr) + LY (0, T; W—'%'(£2)). As a consequence, By g(ue)(t = 0) =
By ¢(w,u;0e) converges to B; s(z,u;)(t = 0) strongly in LY(£2) (for a proof
of this trace result see [I1]). Finally, the smoothness of S implies that
Bi s(z,u;)(t = 0) = B; s(x,u;0) in 2. The proof of Theorem 3.1 is com-
plete. m
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