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EXISTENCE RESULTS FOR A CLASS OF

NONLINEAR PARABOLIC EQUATIONS WITH

TWO LOWER ORDER TERMS

Abstract. We investigate the existence of renormalized solutions for some
nonlinear parabolic problems associated to equations of the form

∂(eβu−1)
∂t − div(|∇u|p−2∇u) + div(c(x, t)|u|s−1u) + b(x, t)|∇u|r = f

in Q = Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

(eβu − 1)(x, 0) = (eβu0 − 1)(x) in Ω.

with s = N+2
N+p(p− 1), c(x, t) ∈ (Lτ (QT ))N , τ = N+p

p−1 , r = N(p−1)+p
N+2 , b(x, t) ∈

LN+2,1(QT ) and f ∈ L1(Q).

1. Introduction. Let Ω be a bounded subset of RN , N ≥ 1, and let
T > 0 be a real constant. Let us define the cylinder Q = Ω × (0, T ) and its
lateral surface Γ = ∂Ω× (0, T ). Our main purpose in this paper is to study
the following problem:

(1.1)


∂b(u)
∂t −div(a(x, t, u,∇u))+div(φ(x, t, u))+H(x, t,∇u) = f in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

b(u(x, 0)) = b(u0(x)) in Ω.
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Here b is a strictly increasing C1-function, the data f and b(u0) are in
L1(Q) and L1(Ω) respectively,−div(a(x, t, u,∇u)) is a Leray–Lions operator

defined on W 1,p
0 (Ω) (see assumptions (2.2)–(2.4) of Section 2), and φ(x, t, u)

and H(x, t,∇u) are Carathéodory functions assumed to be continuous on u
(see assumptions (2.5)–(2.9)).

Under our assumptions, problem (1.1) does not admit, in general, a so-
lution in the sense of distributions since we cannot expect to have the field
φ(x, t, u) in (L1

loc(QT ))N and H(x, t,∇u) in L1
loc(QT ). For this reason we

consider the framework of renormalized solutions (see Definition 3.1).
The notion of renormalized solution was introduced in [9], and has been

developed for elliptic problems with L1 data in [6], [12].
The existence of renormalized solution for (1.1) has been proved by R. Di

Nardo [7] for b(u) = u using the symmetrization method, by Y. Akdim et al.
[2] in the case where a(x, t, s, ξ) is independent of s and φ = 0, by D. Blan-
chard et al. [4] for a(x, t, s, ξ) only assumed to be non-strictly monotone, and
φ depending only on s, and by A. Aberqi et al. [1] in the case where H = 0.

It is our purpose to generalize the result of [2], [7], [1] and prove the
existence of a renormalized solution of (1.1).

2. Technical lemma and assumptions on data

2.1. Technical lemma. Throughout, Tk denotes the truncation func-
tion at height k ≥ 0:

Tk(r) = max(−k,min(k, r)).

Lemma 2.1 (see [7]). Assume that Ω is an open subset of RN of finite
measure and 1 < p <∞. Let u be a measurable function satisfying Tk(u) ∈
Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) for every k and such that

sup
t∈(0,T )

�

Ω

|∇Tk(u)|2 +
�

QT

|∇Tk(u)|p ≤Mk + C, ∀k > 0,

where M and C are positive constants. Then

|u|
N(p−1)+p
N+p ∈ L

N+p
N

,∞(QT ) and |∇u|
N(p−1)+p
N+2 ∈ L

N+2
N+1

,∞(QT ).

2.2. Assumptions. Throughout this paper, we assume that the follow-
ing assumptions hold true:

Assumptions (H)

b : R→ R is strictly increasing, C1, b′ > λ > 0, b(0) = 0,(2.1)

|a(x, t, s, ξ)| ≤ ν[h(x, t) + |ξ|p−1] with ν > 0 and h(·, ·) ∈ Lp′(QT ),(2.2)

a(x, t, s, ξ)ξ ≥ α|ξ|p with α > 0,(2.3)

(a(x, t, s, ξ)− a(x, t, s, η))(ξ − η) > 0 if ξ 6= η,(2.4)
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|φ(x, t, s)| ≤ c(x, t)|s|γ ,(2.5)

c(·, ·) ∈ (Lτ (QT ))N , τ =
N + p

p− 1
,(2.6)

γ =
N + 2

N + p
(p− 1),(2.7)

|H(x, t, ξ)| ≤ m(x, t)|ξ|β,(2.8)

m(·, ·) ∈ LN+2,1(QT ), β =
N(p− 1) + p

N + 2
,(2.9)

for almost every (x, t) ∈ QT , for every s ∈ R and every ξ, η ∈ RN . Moreover

f ∈ L1(QT ),(2.10)

u0 ∈ L1(Ω), b(u0) ∈ L1(Ω).(2.11)

3. Existence results for noncoercive operators

Definition 3.1. A measurable function u is a renormalized solution to
problem (1.1) if

b(u) ∈ L∞(0, T ;L1(Ω)),(3.1)

Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)) for any k > 0,(3.2)

lim
n→∞

�

{n≤|u|≤n+1}

a(x, t, u,∇u)∇u dx dt = 0,(3.3)

and if for every function S in W 2,∞(R) which is piecewise C1 and such that
S′ has a compact support,

(3.4)
∂BS(u)

∂t
− div(a(x, t, u,∇u)S′(u)) + S′′(u)a(x, t, u,∇u)∇u

+ div(φ(x, t, u)S′(u))− S′′(u)φ(x, t, u)∇u
+H(x, t,∇u)S′(u) = fS′(u) in D′(QT ),

and

(3.5) BS(u)(t = 0) = BS(u0) in Ω,

where BS(z) =
	z
0 b
′(s)S′(s) ds.

Remark 3.2. We notice that equation (3.4) can be formally obtained
through pointwise multiplication of (1.1) by S′(u) and all terms have a
meaning in L1(Q) + Lp

′
(0, T ;W−1,p′(Ω)). Moreover ∂BS(u)/∂t belongs to

L1(Q) + Lp
′
(0, T ;W−1,p′(Ω)) and BS(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q). It
follows that BS(u) belongs to C0([0, T ];L1(Ω)) so the initial condition (3.5)
makes sense.
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3.1. Existence results

Main Theorem 3.3. Under Assumptions (H) there exists a renormal-
ized solution to problem (1.1).

Proof. Step 1. Approximate problem. For each ε > 0, we consider the
approximate problem

(3.6)


∂bε(uε)
∂t − div(aε(x, t, uε,∇uε))

+ div(φε(x, t, uε)) +Hε(x, t,∇uε) = fε in QT ,

uε(x, t) = 0 on ∂Ω × (0, T ),

bε(uε(x, 0)) = bε(u0ε(x)) in Ω.

where

bε(r) = T1/ε(b(r)) + εr ∀r ∈ R,(3.7)

aε(x, t, s, ξ) = a(x, t, T1/ε(s), ξ) a.e. in Q, ∀s ∈ R, ∀ξ ∈ RN ,(3.8)

φε(x, t, r) = φ(x, t, T1/ε(r)) a.e. (x, t) ∈ QT , ∀r ∈ R,(3.9)

Hε(x, t, ξ) = T1/ε((x, t, ξ)) a.e. (x, t) ∈ QT , ∀ξ ∈ RN ,(3.10)

fε ∈ Lp
′
(QT ), fε → f strongly in L1(QT ),(3.11)

u0ε ∈ D(Ω), bε(u0ε)→ b(u0) strongly in L1(Ω).(3.12)

Then proving existence of a weak solution uε ∈ Lp(0, T ;W 1,p
0 (Ω)) is an easy

task (see [11]).

Step 2. A priori estimates for solutions and their gradients. Let τ1 ∈
(0, T ) and fix t in (0, τ1). Using Tk(uε)χ(0,t) as a test function in (3.6), we
integrate between (0, τ1), and by the condition (2.5) we have

(3.13)
�

Ω

Bε
k(uε(t)) dx+

�

Qt

aε(x, t, uε,∇uε)∇Tk(uε) dx ds

≤
�

Qt

c(x, t)|uε|γ |∇Tk(uε)| dx ds+ k
�

Qt

m(x, t)|∇uε|β dx ds

+
�

Qt

fεTk(uε) dx ds+
�

Ω

Bε
k(u0ε) dx,

where Bε
k(r) =

	r
0 Tk(s)b

′
ε(s) ds. Due to the definition of Bε

k we have

(3.14) 0 ≤
�

Ω

Bε
k(u0ε) dx ≤ k

�

Ω

|bε(u0ε)| dx ≤ k‖b(u0)‖L1(Ω) ∀k > 0.
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Using (3.13) and (2.3) we obtain

(3.15)
�

Ω

Bε
k(uε(t)) dx+ α

�

Qt

|∇Tk(uε)|p dx ds

≤
�

Qt

c(x, t)|uε|γ |∇Tk(uε)| ds dx+ k
�

Qt

m(x, t)|∇uε|β dx ds

+ k(‖b(u0)‖L1(Ω) + ‖fε‖L1(Q)).

We deduce from (3.13)–(3.15) that

(3.16)
λ

2

�

Ω

|Tk(uε)|2 dx+ α
�

Qt

|∇Tk(uε)|p dx ds

≤M1k + k
�

Qt

m(x, t)|∇uε|β dx ds+
�

Qt

c(x, t)|uε|γ |∇Tk(uε)| dx ds

for t ∈ (0, τ1), where M1 = sup ‖fε‖L1(Q) + ‖b(u0)‖L1(Ω).

I Estimate of
	
Qt
c(x, t)|uε|γ |∇Tk(uε)| dx ds. By the Gagliardo–Niren-

berg and Young inequalities we have

(3.17)
�

Qt

c(x, t)|uε|γ |∇Tk(uε)| dx ds

≤ C γ

N + 2
‖c(·, ·)‖Lτ (Qτ1 ) sup

t∈(0,τ1)

�

Ω

|Tk(uε)|2 dx

+ C
N + 2− γ
N + 2

‖c(·, ·)‖Lτ (Qτ1 )

( �

Qτ1

|∇Tk(uε)|p dx ds
)( 1

p
+ Nγ

(N+2)p
) N+2
N+2−γ

.

I Estimate of
	
Qt
m(x, t)|∇uε|β dx ds. By the generalized Hölder in-

equality we have�

Qt

m(x, t)|∇uε|β dx ds ≤ ‖m‖LN+2,1(Qt)‖∇uε‖
β

L
N+2
N+1

(Qt)
.

Since γ = N+2
N+p(p− 1) and β = N(p−1)+p

N+2 , and by using (3.16) and (3.17), we
obtain

λ

2

�

Ω

|Tk(uε)|2 dx+ α
�

Qt

|∇Tk(uε)|p dx ds

≤M1k + C
γ

N + 2
‖c(·, ·)‖Lτ (Qτ1 ) sup

t∈(0,τ1)

�

Ω

|Tk(uε)|2 dx

+ C
N + 2− γ
N + 2

‖c(·, ·)‖Lτ (Qτ1 )

�

Qτ1

|∇Tk(uε)|p dx ds

+ ‖m‖LN+2,1(Qτ1 )‖∇uε‖
β

L
N+2
N+1

,∞
(Qτ1 )

.
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If τ1 satisfies

λ

2
− C γ

N + 2
‖c(·, ·)‖Lτ (Qτ1 ) > 0,(3.18)

α− CN + 2− γ
N + 2

‖c(·, ·)‖Lτ (Qτ1 ) > 0,(3.19)

then we have

C

(
λ

2
sup

t∈(0,τ1)

�

Ω

|Tk(uε)|2 dx+
�

Qt

|∇Tk(uε)|p dx ds
)

≤M1k + ‖m‖LN+2,1(Qτ1 )‖∇uε‖
β

L
N+2
N+1

,∞
(Qτ1 )

.

Using [8, Lemma A.1] we have

‖∇uε‖β
L
N+2
N+1

,∞
(Qτ1 )

= ‖ |∇uε|p−1‖
β
p−1

L
N+2
N+1

,∞
(Qτ1 )

≤ C(M1 + ‖m‖LN+2,1(Qτ1 )‖∇uε‖
β

L
N+2
N+1

,∞
(Qτ1 )

);

then

(1− C‖m‖LN+2,1(Qτ1 ))‖∇uε‖
β

L
N+2
N+1

,∞
(Qτ1 )

< CM1.

If we choose τ1 such that (3.18) and (3.19) hold and 1−C‖m‖LN+2,1(Qτ1 ) > 0,
this leads to

‖∇uε‖β
L
N+2
N+1

,∞
(Qτ1 )

≤ C1

and it follows that

sup
t∈(0,T )

�

Ω

|∇Tk(u)|2 +
�

QT

|∇Tk(u)|p ≤M1k + C1, ∀k > 0.

Then, by Lemma 2.1, we find that Tk(uε) is bounded in Lp(0, T ;W 1,p
0 (Ω))

and m(x, t)|∇uε|β is bounded in L1(QT ), independently of ε and for any
k ≥ 0, so there exists a subsequence still denoted by uε such that

(3.20) Tk(uε) ⇀ σk in Lp(0, T ;W 1,p
0 (Ω)).

Step 3. A.e. convergence of uε and bε(uε). Proceeding as in [3], [4], [1],
we prove that for every nondecreasing function gk ∈ C2(R) such that gk(s) =
s for |s| ≤ k/2 and gk(s) = k for |s| ≥ k,

(3.21)
∂gk(bε(uε))

∂t
is bounded in L1(Q) + Lp

′
(0, T ;W−1,p′(Ω)).

Arguing again as in [5], estimates (3.20) and (3.21) imply that, for a subse-
quence, still indexed by ε,

(3.22) uε → u a.e. in QT ,
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where u is a measurable function defined on QT . Let us prove that b(u)
belongs to L∞(0, T ;L1(Ω)). Taking Tk(bε(uε)) as a test function in (3.6), by
(3.9) we have

(3.23)
�

Ω

Bε
k(uε) dx+

�

QT

aε(x, t, u,∇uε)∇Tk(bε(uε)) dx dt

≤
�

QT

|m(x, t)| |∇T1/ε(uε)|β∇Tk(bε(uε)) dx dt

+
�

QT

|c(x, t)| |T1/ε(uε)|γ |∇Tk(bε(uε))| dx dt

+ k(‖fε‖L1(QT ) + ‖b(u0)‖L1(Ω))

with Bk(r) =
	b(r)
0 Tk(s) ds. On the other hand, we have

(3.24)
�

QT

aε(x, t, uε,∇uε)∇Tk(bε(uε)) dx ds

=
�

{|bε(uε)|≤k}

aε(x, t, uε,∇uε)∇T ′k(bε(uε))b′ε(uε)∇uε dx ds ≥ 0.

Since b′(s) ≥ λ, for 0 < ε < 1/k and for almost t ∈ (0, T ) we have

(3.25)
�

QT

|c(x, t)| |T1/ε(uε)|γ |∇Tk(bε(uε))| dx dt

≤ max
|s|≤k/λ

(b′(s))‖c(·, ·)‖Lτ (QT )

×
(

sup
t∈(0,T )

( �
Ω

|Tk/λ(uε)|2 dx
) p−1
N+p ‖∇Tk/λ(uε)‖

p(N+1)
N+p

Lp(QT )

)
≤ ck

and

(3.26)
�

QT

|m(x, t)| |∇T1/ε(uε)|β|∇Tk(bε(uε))| dx dt

≤ max
|s|≤k/λ

(b′(s))‖m(·, ·)‖LN+2,1(QT )‖∇Tk/λ(bε(uε))‖
L
N+2
N+1

,∞
(QT )

≤ ck.

Using (3.24), (3.25) and (3.26) in (3.23) we have

�

Ω

Bε
k(uε(t)) dx ≤ ck + k(‖fε‖L1(QT ) + ‖b(u0)‖L1(Ω)).
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Passing to liminf as ε→ 0, we obtain�

Ω

Bk(u(t)) dx ≤ ck + k(‖f‖L1(QT )) + ‖b(u0)‖L1(Ω)) for a.e. t ∈ (0, T ).

Due to the definition of Bk, we have

k
�

Ω

|b(u(x, t))| dx ≤
�

Ω

Bk(u(t)) dx+ 3
2k

2 meas(Ω)

≤ k(‖f‖L1(Ω) + ‖b(u0)‖L1(Ω)) + ck + 3
2k

2 meas(Ω).

We conclude that b(u) ∈ L∞(0, T ;L1(Ω)).

Lemma 3.4 (see [1]). A subsequence of uε defined in Step 1 satisfies

lim
n→∞

lim sup
ε→0

�

{n≤|uε|≤n+1}

a(x, t, uε,∇uε)∇uε dx dt = 0.

Step 4. In this step we introduce a time regularization of the Tk(u)
for k > 0 in order to apply the monotonicity method (see [10]). Let vµ0 be

a sequence of functions in L∞(Ω) ∩W 1,p
0 (Ω) such that ‖vµ0 ‖L∞(Ω) ≤ k for

all µ > 0 and vµ0 converges to Tk(u0) a.e. in Ω and 1
µ‖v

µ
0 ‖Lp(Ω) converges

to 0. For k ≥ 0 and µ > 0, let us consider the unique solution (Tk(u))µ ∈
L∞(Q) ∩ Lp(0, T ;W 1,p

0 (Ω)) of the monotone problem

∂(Tk(u))µ
∂t

+ µ((Tk(u))µ − Tk(u)) = 0 in D′(Ω),

(Tk(u))µ(t = 0) = νµ0 in Ω.

Lemma 3.5 (see [5]). Let k ≥ 0 be fixed. Let S be an increasing C∞(R)-
function such that S(r) = r for |r| ≤ k, and suppS′ is compact. Then

lim inf
µ→∞

lim
ε→0

T�

0

t�

0

〈
∂bε(uε)

∂t
, S′(uε)

(
Tk(uε)− (Tk(u))µ

)〉
ds dt ≥ 0,

where 〈·, ·〉 denotes the duality pairing between L1(Ω) + W−1,p′(Ω) and
L∞(Ω) ∩W 1,p(Ω).

Step 5. We prove the following lemma which is the critical point in the
development of the monotonicity method.

Lemma 3.6. A subsequence of uε satisfies, for any k ≥ 0,

lim sup
ε→0

T�

0

t�

0

�

Ω

a(x, t, uε,∇Tk(uε))∇Tk(uε) dx ds dt

≤
T�

0

t�

0

�

Ω

σk∇Tk(u) dx ds dt.
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Proof. Let Sn be a sequence of increasing C∞-functions such that Sn(r)
= r for |r| ≤ n, suppS′n ⊂ [−(n + 1), n + 1] and ‖S′′n‖L∞(R) ≤ 1 for any
n ≥ 1. We use the sequence (Tk(u))µ of approximations of Tk(u), and plug
the test function S′n(uε)(Tk(uε)− (Tk(u))µ) into (3.4) for n > 0 and µ > 0.
For fixed k ≥ 0 let W ε

µ = Tk(uε)− (Tk(u))µ. Upon integration over (0, t) and
then over (0, T ) we obtain

(3.27)

T�

0

t�

0

〈
∂bε(uε)

∂t
, S′n(uε)W

ε
µ

〉
ds dt

+

T�

0

t�

0

�

Ω

aε(x, t, uε,∇uε)S′n(uε)∇W ε
µ dx ds dt

+

T�

0

t�

0

�

Ω

aε(x, t, uε,∇uε)S′′n(uε)∇uε∇W ε
µ dx ds dt

−
T�

0

t�

0

�

Ω

φε(x, t, uε)S
′
n(uε)∇W ε

µ dx ds dt

−
T�

0

t�

0

�

Ω

S′′n(uε)φε(x, t, uε)∇uε∇W ε
µ dx ds dt

+

T�

0

t�

0

�

Ω

Hε(x, t,∇uε)S′n(uε)W
ε
µ dx ds dt

=

T�

0

t�

0

�

Ω

fεS
′
n(uε)W

ε
µ dx ds dt.

Now we pass to the limit in (3.27) as ε→ 0, µ→∞ and then n→∞ for k
real fixed. In order to perform this task we prove below the following results
for any fixed k ≥ 0:

lim inf
µ→∞

lim
ε→0

T�

0

t�

0

〈
∂bε(uε)

∂t
,W ε

µ

〉
ds dt ≥ 0 for any n ≥ k,(3.28)

lim
µ→∞

lim
ε→0

T�

0

t�

0

�

Ω

φε(x, t, uε)S
′
n(uε)∇W ε

µ dx ds dt = 0 for any n ≥ 1,(3.29)

lim
µ→∞

lim
ε→0

T�

0

t�

0

�

Ω

S′′n(uε)φε(x, t, uε)∇uε∇W ε
µ dx ds dt = 0 for any n ≥ 1,

(3.30)
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lim
n→∞

lim sup
µ→∞

lim sup
ε→0

T�

0

t�

0

�

Ω

aε(x, t, uε,∇uε)S′′n(uε)∇uε∇W ε
µ dx ds dt = 0,

(3.31)

lim
µ→∞

lim
ε→0

T�

0

t�

0

�

Ω

Hε(x, t,∇uε)S′n(uε)W
ε
µ dx ds dt = 0,(3.32)

lim
µ→∞

lim
ε→0

T�

0

t�

0

�

Ω

fεS
′
n(uε)W

ε
µ dx ds dt = 0.(3.33)

We adopt the same proof of [1] for (3.28)–(3.31) and (3.33). It remains to
prove (3.32). For any fixed n ≥ 1 and 0 < ε < 1/(n+ 1),

Hε(x, t,∇uε)S′n(uε)W
ε
µ = Hε(x, t,∇Tn+1(uε))S

′
n(uε)W

ε
µ a.e. in QT .

It is possible to pass to the limit for ε → 0 since from ‖W ε
µ‖L∞(QT ) ≤ 2k

for any ε, µ > 0, and W ε
µ ⇀ Tk(u) − (Tk(u))µ a.e. in QT and weakly-∗ in

L∞(QT ), when ε→ 0 we have

Hε(x, t,∇Tn+1(uε))S
′
n(uε)W

ε
µ → H(x, t,∇Tn+1(u))S′n(u)Wµ a.e. in QT .

Since

|H(x, t,∇Tn+1(u))S′n(u)Wµ| ≤ 2k|m(x, t)|(n+ 1)β a.e. in QT

and (Tk(u))µ converges to 0 in Lp(0, T ;W 1,p
0 (Ω)), we obtain (3.32).

Step 6. In this step we prove that the weak limit σk of a(x, t, Tk(uε),
∇Tk(uε)) can be identified with a(x, t, Tk(u),∇Tk(u)). To do so, we recall
the following lemmas proved in [1].

Lemma 3.7. A subsequence of uε defined in Step 1 satisfies, for any
k ≥ 0,

(3.34) lim
ε→0

T�

0

t�

0

�

Ω

(
a(x, t, Tk(uε),∇Tk(uε))− a(x, t, Tk(uε),∇Tk(u))

)
× (∇Tk(uε)−∇Tk(u)) = 0.

Lemma 3.8. For fixed k ≥ 0, we have

(3.35) σk = a(x, t, Tk(u),∇Tk(u))) a.e. in QT ,

and as ε→ 0,

(3.36) a(x, t, Tk(uε),∇Tk(uε))∇Tk(uε) ⇀ a(x, t, Tk(u),∇Tk(u)))∇Tk(u)

weakly in L1(QT ).
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Taking the limit as ε tends to 0 and using (3.36) shows that u satisfies
(3.3). Our aim is to prove that it satisfies (3.4) and (3.5).

First we prove that u satisfies (3.4). Let S ∈ W 2,∞(R) with suppS′ ⊂
[−k, k] where k > 0. Pointwise multiplication of the approximate equation
(3.6) by S′(uε) leads to

(3.37)
∂Bε

S(uε)

∂t
− div

(
aε(x, t, uε,∇uε)S′(uε)

)
+ S′′(uε)a(x, t, uε,∇uε)∇uε

+ div
(
φε(x, t, uε)S

′(uε)
)
− S′′(uε)φε(x, t, uε)∇uε +Hε(x, t,∇uε)S′(uε)

= fεS
′(uε) in D′(Ω).

where

Bε
S(r) =

r�

0

∂bε(s)

∂s
S′(s) ds.

In what follows we let ε→ 0 in each term of (3.37). Since uε converges to
u a.e. in QT , Bε

S(uε) converges to BS(u) a.e. in QT and weakly-∗ in L∞(QT ).
Then ∂Bε

S/∂t converges to ∂BS/∂t in D′(QT ).We observe that the term
aε(x, t, uε,∇uε)S′(uε) can be identified with a(x, t, Tk(uε),∇Tk(uε))S′(uε)
for ε ≤ 1/k, so using the pointwise convergence uε → u in QT , and the weak
convergence Tk(uε) ⇀ Tk(u) in Lp(0, T ;W p

0 (Ω)), we get

aε(x, t, uε,∇uε)S′(uε) ⇀ a(x, t, Tk(u),∇Tk(u))S′(u) in Lp
′
(QT ),

and

S′′(uε)aε(x, t, uε,∇uε)∇uε
⇀ S′′(u)a(x, t, Tk(u),∇Tk(u))∇Tk(u) in L1(QT ).

Furthermore, since

φε(x, t, uε)S
′(uε) = φε(x, t, Tk(uε))S

′(uε) a.e. in QT ,

by (3.9) we obtain

|φε(x, t, Tk(uε))S′(uε)| ≤ |c(x, t)|kγ ,

and it follows that

φε(x, t, Tk(uε))S
′(uε)→ φ(x, t, Tk(u))S′(u) strongly in Lp

′
(QT ).

Similarly, since Hε(x, t,∇uε)S′(uε) = Hε(x, t,∇Tk(uε))S′(uε) a.e. in QT , by
(3.10) we have |Hε(x, t,∇Tk(uε))S′(uε)| ≤ |m(x, t)|kβ, and it follows that

Hε(x, t,∇Tk(uε))S′(uε)→ H(x, t,∇Tk(u))S′(u) strongly in L1(QT ).

In a similar way,

S′′(uε)φε(x, t, uε)∇uε = S′′(Tk(uε))φε(x, t, Tk(uε))∇Tk(uε) a.e. in QT .
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Using the weak convergence of Tk(uε) in Lp(0, T ;W p
0 (Ω)) it is possible to

prove that S′′(uε)φε(x, t, uε)∇uε → S′′(u)φ(x, t, u)∇u in L1(QT ). Finally, by
(3.11) we deduce that fεS

′(uε) converges to fS′(u) in L1(QT ).

It remains to prove that BS(u) satisfies the initial condition BS(t = 0)
= BS(u0) in Ω. To this end, first note that S being bounded, Bε

S(uε) is
bounded in L∞(Q). Secondly the above consideration of the behavior of
the terms of this equation shows that ∂Bε

S(uε)/∂t is bounded in L1(QT ) +

Lp
′
(0, T ;W−1,p′(Ω)). As a consequence, an Aubin type lemma (see e.g. [13])

implies that Bε
S(uε) lies in a compact subset of C0([0, T ];L1(Ω)). Finally,

the smoothness of S implies that BS(t = 0) = BS(u0) in Ω.
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