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ON THE SPECTRUM OF THE p-BIHARMONIC OPERATOR

INVOLVING p-HARDY’S INEQUALITY

Abstract. In this paper, we study the spectrum for the following eigen-
value problem with the p-biharmonic operator involving the Hardy term:

∆(|∆u|p−2∆u) = λ
|u|p−2u
δ(x)2p

in Ω, u ∈W 2,p
0 (Ω).

By using the variational technique and the Hardy–Rellich inequality, we
prove that the above problem has at least one increasing sequence of positive
eigenvalues.

1. Introduction. Let Ω be a regular bounded domain in RN . Consider
the fourth order nonlinear eigenvalue problem

(1.1) ∆(|∆u|p−2∆u) = λ
|u|p−2u
δ(x)2p

in Ω, u ∈W 2,p
0 (Ω),

where λ is a real parameter which plays the role of eigenvalue, 1 < p < N/2
and δ(x) = d(x, ∂Ω).

∆2
pu := ∆(|∆u|p−2∆u) is the operator of fourth order called the p-bihar-

monic operator. For p = 2, the linear operator ∆2
2 = ∆2 = ∆∆ is the iterated

Laplacian that up to a multiplicative positive constant often appears in the
equations of Navier–Stokes as the viscosity term, and its inverse operator
denoted by (∆2)−1 is the celebrated Green operator [L].

Note that the biharmonic equation ∆2u = 0 is a linear partial differential
equation of fourth order which appears in quantum mechanics and in the
theory of linear elasticity modeling Stokes flows.
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This paper is motivated by recent advances in mathematical model-
ing of non-Newtonian fluids and elastic mechanics, in particular, electro-
rheological fluids (smart fluids). This important class of fluids is character-
ized by the change of viscosity which depends on the electric field. These
fluids, also known as ER fluids, have many applications in elastic mechanics,
fluid dynamics etc. For more information, the reader can refer to [H, R].

Recently, El Khalil [E] proved the existence of nontrivial solutions of the
nonlinear eigenvalue problem{

∆(|∆u|p−2∆u) = λρ|u|q−2u in Ω,

u = ∆u = 0 on ∂Ω,

where p, q are real numbers and ρ is an indefinite weight function, by ap-
plying the Mountain Pass Theorem and local minimization. In [EKT], the
authors studied the spectrum of the p-biharmonic operator in the homoge-
neous case p = q. In the present paper, we use a variational technique to
prove the existence of a sequence of positive eigenvalues of problem (1.1).

Notice that we also use some technical setting based on the Hardy–Rel-
lich inequality.

2. Preliminaries. First, we introduce some preliminary results.

Definition 2.1. We say that u ∈W 2,p
0 (Ω) is a weak solution of (1.1) if

�

Ω

|∆u|p−2∆u∆v dx = λ
�

Ω

|u|p−2u
δ(x)2p

v dx for all v ∈W 2,p
0 (Ω).

If u is not identically zero, then we say that λ is an eigenvalue of (1.1)
corresponding to the eigenfunction u.

The main objective of this work is to show that problem (1.1) has
at least one increasing sequence (λk)k≥1 of positive eigenvalues, by using
a variational technique based on Ljusternik–Schnirelmann theory on C1-
manifolds [S]. In fact, we give a direct characterization of λk involving a
mini-max argument over sets of genus greater than k. We set

(2.1) λ1 = inf

{
‖∆v‖pp : v ∈W 2,p

0 (Ω),
�

Ω

|v|p

δ(x)2p
dx = 1

}
,

where ‖∆v‖p = (
	
Ω |∆v|

p)1/p denotes the norm of v ∈ W 2,p
0 (Ω). Let us

notice that W 2,p
0 (Ω) equipped with this norm is a uniformly convex Banach

space for 1 < p <∞. The norm ‖∆ · ‖p is uniformly equivalent on W 2,p
0 (Ω)

to the usual norm of W 2,p
0 (Ω) [GT].
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We see that the value defined in (2.1) can be written as

(2.2) λ1 = inf
u∈W 2,p

0 (Ω), u 6≡0

	
Ω |∆u|

p dx
	
Ω
|u|p
δ(x)2p

dx
.

Finally, by the Hardy–Rellich inequality (see [DH, Mi]), we know that

(2.3)
�

Ω

|u|p

δ(x)2p
dx ≤ 1

λ

�

Ω

|∆u|p dx, ∀u ∈ C∞c (Ω),

where

λ = [N(p− 1)(N − 2p)/p2]p,

hence the problem (1.1) is naturally well defined.

Definition 2.2. LetX be a real reflexive Banach space and letX∗ stand
for its dual with respect to the pairing 〈·, ·〉. We shall deal with mappings
T acting from X into X∗. Strong convergence in X (and in X∗) is denoted
by →, and weak convergence by ⇀. A mapping T is said to belong to the
class (S+) if for any sequence un in X converging weakly to u ∈ X with
lim supn→∞〈∆2

pun, un − u〉 ≤ 0, the sequence un converges strongly to u
in X. We then write T ∈ (S+).

Consider now the following two functionals defined on W 2,p
0 (Ω):

Φ(u) =
1

p

�

Ω

|∆u|p dx and ϕ(u) =
1

p

�

Ω

|u|p

δ(x)2p
dx,

and set

M = {u ∈W 2,p
0 (Ω) : pϕ(u) = 1}.

Lemma 2.3.

(i) Φ and ϕ are even, and of class C1 on W 2,p
0 (Ω).

(ii) M is a closed C1-manifold.

Proof. See [EMT, Lemma 2.3].

Remark 2.4 ([EKT, Remark 3.2]). The functional

J : W 2,p
0 (Ω)→W−2,p

′

0 (Ω)

defined by

J(u) =

{
‖∆u‖2−pp ∆2

pu if u 6= 0,

0 if u = 0,

is the duality mapping of (W 2,p
0 (Ω), ‖∆ · ‖p) associated with the gauge func-

tion t 7→ |t|p−2t.

The following lemma is the key to showing existence.
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Lemma 2.5.

(i) ϕ′ is completely continuous.
(ii) The functional Φ satisfies the Palais–Smale condition on M, i.e.,

for {uk} ⊂ M, if {Φ(uk)}k is bounded and

(2.4) αk := Φ′(uk)− βkϕ′(uk)→ 0 as k →∞,
where βk = 〈Φ′(uk), uk〉/〈ϕ′(uk), uk〉, then {uk}k≥1 has a subse-

quence convergent in W 2,p
0 (Ω).

Proof. (i) First let us prove that ϕ′ is well defined. Let u, v ∈ W 2,p
0 (Ω).

We have

〈ϕ′(u), v〉 =
�

Ω

|u|p−1uv
δ(x)2p

dx.

Thus

|〈ϕ′(u), v〉| ≤
�

{x∈Ω: δ(x)>1}

|u|p−1

δ(x)2p
|v| dx+

�

{x∈Ω: δ(x)≤1}

|u|p−1

δ(x)2p
|v| dx.

Hence

|〈ϕ′(u), v〉| ≤
�

{x∈Ω: δ(x)>1}

|u|p−1|v| dx+
�

{x∈Ω: δ(x)≤1}

1

δ(x)2
|u|p−1

δ(x)2(p−1)
|v| dx.

By applying Hölder’s inequality, we obtain

|〈ϕ′(u), v〉| ≤
( �

{x∈Ω: δ(x)>1}

|u|(p−1)p′ dx
)1/p′( �

{x∈Ω: δ(x)>1}

|v|p dx
)1/p

+

( �

{x∈Ω: δ(x)≤1}

|u|(p−1)p′

δ(x)2(p−1)p′
dx

)1/p′( �

{x∈Ω: δ(x)≤1}

|v|p

δ(x)2p
dx

)1/p

,

and by the Hardy–Rellich inequality (2.3), we have

|〈ϕ′(u), v〉| ≤ ‖u‖p−1p′ ‖v‖Lp(Ω) +
1

(λ)2

( �
Ω

|∆u|(p−1)p′ dx
)1/p′( �

Ω

|∆v|p dx
)1/p

.

Thus

|〈ϕ′(u), v〉| ≤ ‖u‖p−1p′ ‖v‖Lp(Ω) +
1

(λ)2
‖∆u‖p−1p′ ‖∆v‖p,

where p and p′ are conjugate by the equality pp′ = p+ p′. Therefore

|〈ϕ′(u), v〉| ≤ K‖∆u‖p−1p′ ‖∆v‖p +
1

(λ)2
‖∆u‖p−1p′ ‖∆v‖p.

Hence

‖ϕ′(u)‖∗ ≤
(
K +

1

(λ)2

)
‖∆u‖p−1p′ ,
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where K is the constant given by the embedding of W 2,p
0 (Ω) in Lp(Ω). Here

‖ · ‖∗ is the dual norm associated with ‖∆ · ‖p.
The complete continuity of ϕ′ is proved exactly as in [EMT]. This

proves (i).
(ii) By the definition of Φ, ‖∆(uk)‖p is bounded in R. Thus, without loss

of generality, we can assume that uk converges weakly in W 2,p
0 (Ω) to some

function u ∈W 2,p
0 (Ω) and ‖∆uk‖p → c. We distinguish two cases:

If c = 0, then uk converges strongly to 0 in W 2,p
0 (Ω).

If c 6= 0, then let us prove that

lim sup
k→∞

〈∆2
puk, uk − u〉 ≤ 0.

Indeed, notice that

〈∆2
puk, uk − u〉 = ‖∆uk‖pp − 〈∆2

puk, u〉.
Applying αk of (2.4) to u, we have

θk := 〈∆2
puk, u〉 − βk〈ϕ′(uk), u〉 → 0 as k →∞.

Therefore

〈∆2
puk, uk − u〉 = ‖∆uk‖pp − θk − (〈Φ′(uk), uk〉/〈ϕ′(uk), uk〉) · 〈ϕ′(uk), u〉.

That is,

〈∆2
puk, uk − u〉 =

‖∆uk‖pp
〈ϕ′(uk), uk〉

(〈ϕ′(uk), uk〉 − 〈ϕ′(uk), u〉)− θk.

On the other hand, from (i), ϕ′ is completely continuous. Thus

ϕ′(uk)→ ϕ′(u) and 〈ϕ′(uk), uk〉 → 〈ϕ′(u), u〉.
Then

|ϕ′(uk), uk〉−〈ϕ′(uk), u〉| ≤ |ϕ′(uk), uk〉−〈ϕ′(u), u〉|+|〈ϕ′(uk), u〉−〈ϕ′(u), u〉|.
It follows that

|ϕ′(uk), uk〉 − 〈ϕ′(uk), u〉|
≤ |〈ϕ′(uk), uk〉 − 〈ϕ′(u), u〉|+ ‖ϕ′(uk)− ϕ′(u)‖∗‖∆u‖p.

This implies that

〈ϕ′(uk), uk〉 − 〈ϕ′(uk), u〉 → 0 as k →∞.
We deduce that

lim sup
k→∞

〈∆2
puk, uk − u〉 ≤

cp

〈ϕ′(u), u〉
lim sup
k→∞

(〈ϕ′(uk), uk〉 − 〈ϕ′(uk), u〉).

Thus

lim sup
k→∞

〈∆2
puk, uk − u〉 ≤ 0.(2.5)
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We can write ∆2
puk = ‖∆uk‖p−2p J(uk), since ‖∆uk‖p 6= 0 for k large enough.

Therefore

lim sup
k→∞

〈∆2
puk, uk − u〉 = cp−2 lim sup

k→∞
〈Juk, uk − u〉.

According to (2.5), we conclude that

lim sup
k→∞

〈Juk, uk − u〉 ≤ 0.

In view of Remark 2.4, J is the duality mapping. Thus J ∈ (S+). Therefore,

un → u in W 2,p
0 (Ω). This completes the proof of the lemma.

3. Main results. Set

Γj = {K ⊂M : K symmetric, compact and γ(K) ≥ j} ,
where γ(K) = j is the genus of K, i.e., the smallest positive integer j such
that there exists an odd continuous map from K to Rj \ {0}.

Let us now state our first main result using Ljusternik–Schnirelmann
theory.

Main Theorem 3.1. For any integer j ≥ 1,

λj := inf
K∈Γj

max
u∈K

pΦ(u)

is a critical value of Φ restricted to M. More precisely, there exists uj ∈ K
such that

λj = pΦ(uj) = sup
u∈K

pΦ(u)

and uj is a solution of (1.1) associated to the positive eigenvalue λj. More-
over,

λj →∞ as j →∞.
Proof. We only need to prove that Γj 6= ∅ for any integer j ≥ 1, and

the last assertion. Indeed, since W 2,p
0 (Ω) is separable, there exists (ei)i≥1

linearly dense in W 2,p
0 (Ω) such that supp ei ∩ supp en = ∅ if i 6= n. We may

assume that ei ∈M (if not, we take e′i = ei/[pϕ(ei)]
1/p). Let now j ≥ 1 and

denote
Fj = span{e1, . . . , ej}.

Clearly, Fj is a vector subspace with dimFj = j. If v ∈ Fj , then there exist

α1, . . . , αj in R such that v =
∑j

i=1 αiei. Thus

ϕ(v) =

j∑
i=1

|αi|pϕ(ei) =
1

p

j∑
i=1

|αi|p.

It follows that the map

v 7→ (pϕ(v))1/p =: ‖v‖
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defines a norm on Fj . Consequently, there is a constant c > 0 such that

c ‖∆v‖p ≤ ‖v‖ ≤
1

c
‖∆v‖p.

This implies that the set

V = Fk ∩ {v ∈W 2,p
0 (Ω) : pϕ(v) ≤ 1}

is bounded, since V ⊂ B(0, 1/p) where

B(0, 1/c) = {u ∈W 2,p
0 (Ω) : ‖∆u‖ ≤ 1/c}.

Thus, V is a symmetric bounded neighborhood of 0 ∈ Fj . Moreover, Fj ∩M
is a compact set. By [S, Proposition 2.3(f)], we conclude that γ(Fj ∩M)=j
and then we finally obtain Γj 6= ∅. This completes the proof of the first
assertion of the theorem.

Now, we claim that

λj →∞ as j →∞.

Let (ek, e
∗
n)k,n be a bi-orthogonal system such that ek ∈ W 2,p

0 (Ω) and e∗n ∈
W−2,p

′

0 (Ω), the (ek)k are linearly dense in W 2,p
0 (Ω) and the (e∗n)n are total

for the dual W−2,p
′

0 (Ω). For k ≥ 1, set

Fk = span{e1, . . . , ek} and F⊥k = span{ek+1, ek+2, . . . }.
By [S, Proposition 2.3(g)], we have K ∩ F⊥k 6= ∅ for any K ∈ Γk. Thus

tk := inf
K∈Γk

sup
u∈K∩F⊥k−1

pΦ(u)→∞ as k →∞.

Indeed, if not, then for k large, there exists uk ∈ F⊥k−1 with ‖uk‖p = 1 such
that

tk ≤ pΦ(uk) ≤M,

for some M > 0 independent of k. Thus ‖∆uk‖p ≤ M . This implies that

(uk)k is bounded in W 2,p
0 (Ω). Taking a subsequence of uk if necessary, we

can assume that (uk) converges weakly in W 2,p
0 (Ω) and strongly in Lp(Ω).

By our choice of F⊥k−1, we have uk ⇀ 0 in W 2,p
0 (Ω), because 〈e∗n, ek〉 = 0 for

any k ≥ n. This contradicts the fact that ‖uk‖p = 1 for all k. Since λk ≥ tk,
the claim is proved. This completes the proof of the theorem.

Remark 3.2. From the theorem above we have the following statements:

(i) λ1 = inf
{
‖∆v‖pp : v ∈W 2,p

0 (Ω),
	
Ω
|v|p
δ(x)2p

dx = 1
}

;

(ii) 0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞.
(iii) (1.1) has spectrum

Λ = {λ ∈ R : λ is an eigenvalue of (1.1)},
λ1 is the smallest eigenvalue in the spectrum of (1.1).
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