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THE THIRD ORDER SPECTRUM OF THE p-BIHARMONIC

OPERATOR WITH WEIGHT

Abstract. We show that the spectrum of ∆2
pu + 2β · ∇(|∆u|p−2∆u) +

|β|2|∆u|p−2∆u = αm|u|p−2u, where β ∈ RN , under Navier boundary condi-
tions, contains at least one sequence of eigensurfaces.

1. Introduction. We are concerned here with the eigenvalue problem

(1.1)


Find (β, α, u) ∈ RN × R∗+ × (X \ {0}) such that

∆2
pu+ 2β · ∇(|∆u|p−2∆u) + |β|2|∆u|p−2∆u = αm|u|p−2u in Ω,

u = ∆u = 0 on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 1), β ∈ RN , ∆2
p denotes the

p-biharmonic operator defined by ∆2
pu = ∆(|∆u|p−2∆u), X = W 2,p(Ω) ∩

W 1,p
0 (Ω), and m ∈M = {m ∈ L∞(Ω) : meas{x ∈ Ω : m(x) > 0} 6= 0}.

Set Ω+ = {x ∈ Ω : m(x) > 0}; we suppose that |Ω+| 6= 0.
A. Anane, O. Chakrone and J.-P. Gossez [A] have studied the eigenvalue

problem 
Find (β, α, u) ∈ RN × R× (W 1,p

0 (Ω) \ {0}) such that

−∆pu = αm|u|p−2u+ β · |∇u|p−2∇u in Ω,

u = 0 on ∂Ω.

They showed that the spectrum of this problem, denoted by σ1(−∆p,m),
contains at least one sequence of eigensurfaces in RN × R.

Motivated by this work, we define the third-order spectrum for the p-
biharmonic operator, denoted by σ3(∆

2
p,m), to be the set of couples (β, α) ∈

RN × R such that the problem (1.1) has a non-trivial solution u ∈ X. We
will show that this spectrum contains a sequence of eigensurfaces in RN×R.
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In the case where β = 0, the zero order spectrum, denoted by σ0(∆
2
p,m),

is defined to be the set of eigenvalues α ∈ R such that the problem

(1.2)


Find (α, u) ∈ R∗+ × (X \ {0}) such that

∆2
pu = αm|u|p−2u in Ω,

u = ∆u = 0 on ∂Ω,

has a non-trivial solution u ∈ X.

Problem (1.2) was considered by P. Drábek and M. Ôtani [DR] form = 1.
They showed that it has a principal positive eigenvalue which is simple and
isolated.

A. El Khalil, S. Kellati and A. Touzani [E] have studied the spectrum of
the p-biharmonic operator with weight and with Dirichlet boundary condi-
tions. They showed that this spectrum contains at least one non-decreasing
sequence of positive eigenvalues.

In 2007, M. Talbi and N. Tsouli [T] considered the spectrum of the
weighted p-biharmonic operator with weight and showed that the eigenvalue
problem

(1.3)

{
∆(ρ|∆u|p−2∆u) = αm|u|p−2u in Ω,

u = ∆u = 0 on ∂Ω,

where ρ ∈ C(Ω) and ρ > 0, has a non-decreasing sequence of eigenvalues,
and studied the one-dimensional case.

J. Benedikt [B] found the spectrum of the p-biharmonic operator with
Dirichlet and Neumann boundary conditions in the case N = 1, m = 1, and
ρ = 1.

In this article we consider the transformation of the Poisson problem
used by P. Drábek and M. Ôtani. We use Ljusternik–Schnirelmann theory
to prove that the spectrum of (1.1) contains a sequence of eigensurfaces
(G(Γ pn(·,m)))n≥1 such that for all β ∈ RN , Γ pn(β,m)→∞.

2. Preliminaries. Let X = W 2,p(Ω) ∩W 1,p
0 (Ω). We denote by:

• ‖u‖p = (
	
Ω |u|

p dx)1/p the norm in Lp(Ω),

• ‖u‖2,p = (‖∆u‖pp + ‖u‖pp)1/p the norm in X,
• ‖u‖∞ the norm in L∞(Ω),
• 〈·, ·〉 the duality bracket between Lp(Ω) and Lp

′
(Ω), where 1/p+ 1/p′

= 1.

For all f ∈ Lp(Ω) the Dirichlet problem for the Poisson equation,

(2.1)

{−∆u = f in Ω,

u = 0 on ∂Ω,
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is uniquely solvable in X (cf. [G]). We denote by Λ the inverse operator of
−∆ : X → Lp(Ω). In the following lemma we give some properties of the
operator Λ (cf. [AG]).

Lemma 2.1.

(i) (Continuity) There exists a constant Cp > 0 such that ‖Λf‖2,p ≤
Cp‖f‖p for all p ∈ ]1,∞[ and f ∈ Lp(Ω).

(ii) (Continuity) Given k ∈ N∗, there exists a constant Cp,k > 0 such
that ‖Λf‖Wk+2,p ≤ Cp,k‖f‖Wk,p .

(iii) (Symmetry) The identity
	
Ω Λu · v dx =

	
Ω u · Λv dx holds for all

u ∈ Lp(Ω) and v ∈ Lp′(Ω) with p ∈ ]1,∞[.
(iv) (Regularity) Given f ∈ L∞(Ω), we have Λf ∈ C1,α(Ω) for all α ∈

]0, 1[; moreover, there exists Cα > 0 such that ‖Λf‖C1,α ≤ Cα‖f‖∞.
(v) (Regularity and Hopf-type maximum principle) Let f ∈ C(Ω) and

f ≥ 0. Then w = Λf ∈ C1,α(Ω) for all α ∈ ]0, 1[, and w > 0 in Ω,
∂w/∂n < 0 on ∂Ω.

(vi) (Order preserving property) Given f, g ∈ Lp(Ω), if f ≤ g in Ω
then Λf < Λg in Ω.

Remark 2.2.

∀u ∈ X ∀v ∈ Lp(Ω) v = −∆u ⇔ u = Λv.

Let Np be the Nemytskĭı operator defined by

(2.2) Np(v)(x) =

{
|v(x)|p−2v(x) if v(x) 6= 0,

0 if v(x) = 0.

We have

∀v ∈ Lp(Ω) ∀w ∈ Lp′(Ω) Np(v) = w ⇔ v = Np′(w).

Proposition 2.3 (cf. [D], [K]). Let q, r ∈ [1,∞[. If there exist c > 0
and b ∈ Lr(Ω) such that

|f(x, ξ)| ≤ c|ξ|q/r + b(x) a.e. x ∈ Ω, ∀ξ ∈ Rm,
then Nf is well defined from (Lq(Ω))m to Lr(Ω), continuous and bounded.
Moreover, if m = 1 and r = q′ 6= 1, then the functional Ψ : Lq(Ω) → R,
Ψ(u) =

	
Ω F (x, u) dx, where F (x, s) =

	s
0 f(x, t) dt, is well defined, of class

C1 on Lq(Ω), and Ψ ′(u) = f(x, u) for all u ∈ Lq(Ω).

Definition 2.4. Let E be a real Banach space and A be a closed, sym-
metric subset of E \ {0}. We define the genus of A to be the number

γ(A) = inf{m : ∃f ∈ C0(A,Rm \ {0}) ∀u ∈ A, f(−u) = f(u)},
and γ(A) =∞ if no such f exists; γ(∅) = 0 by definition.

Lemma 2.5 (cf. [C], [R]). Let E be a real Banach space and A, B be
symmetric subsets of E \ {0} which are closed in E. Then:
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(a) If there exists an odd continuous mapping f : A → B, then γ(A) ≤
γ(B).

(b) If A ⊂ B, then γ(A) ≤ γ(B).
(c) γ(A ∪B) ≤ γ(A) + γ(B).
(d) If γ(B) <∞, then γ(A−B) ≥ γ(A)− γ(B).
(e) If A is compact, then γ(A) < ∞ and there exists a neighborhood N

of A which is a symmetric subset of E \ {0}, closed in E, and such
that γ(N) = γ(A).

(f) If N is a symmetric and bounded neighborhood of the origin in Rk
and if A is homeomorphic to the boundary of N by an odd homeo-
morphism, then γ(A) = k.

(g) If E0 is a subspace of E of codimension k and if γ(A) > k, then
A ∩ E0 = ∅.

Lemma 2.6 ([L, Corollary 4.1]). Suppose that M is a closed symmetric
C1-submanifold of a real Banach space E and 0 /∈ M . Suppose also that
f ∈ C1(M,R) is even and bounded below. Define

cj = inf
K∈Γj

sup
x∈K

f(x),

where

Γj = {K ⊂M : K is symmetric, compact and γ(K) ≥ j}.
If Γk 6= ∅ for some k ≥ 1 and if f satisfies (PS)c for all c = cj, j = 1, . . . , k,
then f has at least k distinct pairs of critical points.

Lemma 2.7 (cf. [AD]). Let Ω be a domain of class C1 in RN .

(i) If p < N/2, then W 2,p(Ω) ↪→ Lq(Ω) for all q ∈ [1, p∗2[.
(ii) If p = N/2, then W 2,p(Ω) ↪→ Lq(Ω) for all q ∈ [1,∞[.
(iii) If p > N/2, then W 2,p(Ω) ↪→ C(Ω).

The above injections are compact, and

p∗2 =


Np

N − 2p
if p < N/2,

∞ if p ≥ N/2.

3. Third order spectrum of the p-biharmonic operator

Definition 3.1. The set of couples (β, α) ∈ RN × R such that there
exists a solution (β, α, u) of (1.1) is called the third order spectrum of the
p-biharmonic operator.

The couple (β, α) is then called a third-order eigenvalue and u is said to
be the associated eigenfunction.

A set of third-order eigenvalues of the form (β, f(β)), for β ∈ RN and
some function f : RN → R, is called an eigensurface of (1.1).
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Lemma 3.2. The problem (1.1) is equivalent to the problem

(3.1)


Find (α, u) ∈ R∗+ × (X \ {0}) such that

∆2,β
p u = αmeβ·x|u|p−2u in Ω,

u = ∆u = 0 on ∂Ω,

where ∆2,β
p u = ∆(eβ·x|∆u|p−2∆u).

Proof. For all β ∈ RN ,

∆(eβ·x|∆u|p−2∆u) = ∇[∇(eβ·x|∆u|p−2∆u)]

= ∇[∇(eβ·x)|∆u|p−2∆u+ eβ·x∇(|∆u|p−2∆u)]

= eβ·x[∆2
pu+ 2β · ∇(|∆u|p−2∆u) + |β|2|∆u|p−2∆u],

hence (1.1) is equivalent to (3.1).

The operator Λ enables us to transform problem (3.1) to another problem
which we shall study in the space Lp(Ω).

Lemma 3.3. The problem (3.1) is equivalent to the problem

(3.2)

{
Find (α, v) ∈ R∗+ × (Lp(Ω) \ {0}) such that

eβ·xNp(v) = αΛ(eβ·xmNp(Λv)) in Lp
′
(Ω).

A pair (α, u) ∈ R∗+ ×X \ {0} is a solution of problem (3.1) if and only
if (α, v), where v = −∆u, is a solution of problem (3.2).

By using Ljusternik–Schnirelmann theory (cf. [S]), we will give a se-
quence of eigensurfaces of problem (1.1).

We consider the functionals Fβ, Gβ : Lp(Ω)→ R defined

Fβ(v) =
1

p

�

Ω

eβ·x|v|p dx, Gβ(v) =
1

p

�

Ω

eβ·xm|Λv|p dx.

Fβ and Gβ are of class C1 in Lp(Ω) and for all v ∈ Lp(Ω),

F ′β(v) = eβ·xNp(v), G′β(v) = Λ(meβ·xNp(Λv)) in Lp
′
(Ω).

Set

Mβ = {v ∈ Lp(Ω) : pGβ(v) = 1},
Γn = {K ⊂Mβ : K is symmetric, compact and γ(K) ≥ n},

where γ(K) indicates the genus of K.

Since |Ω+| 6= 0, there exists v ∈ Lp(Ω) such that
	
Ωme

β·x|Λv|p dx = 1,
so Mβ 6= ∅. Furthermore Mβ is a C1-manifold.

For all β ∈ RN , define

Γ pn(β,m) = inf
K∈Γn

sup
v∈K

pFβ(v).
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Lemma 3.4.

(i) For all β ∈ RN , F ′β satisfies condition (S+), i.e.

vn ⇀ v in Lp(Ω) and lim sup
n→∞

�

Ω

F ′β(vn)(vn − v) dx ≤ 0

implies vn → v strongly in Lp(Ω).
(ii) For all β ∈ RN , G′β is completely continuous in Lp(Ω).

Proof. (i) Let (vn) be a sequence in Lp(Ω) such that

(3.3) vn ⇀ v in Lp(Ω) and lim sup
n→∞

〈eβ·xNp(vn), vn − v〉 ≤ 0.

We have

lim sup
n→∞

�

Ω

eβ·xNp(vn)(vn− v) dx = lim sup
n→∞

�

Ω

eβ·x(Np(vn)−Np(v))(vn− v) dx.

By the monotonicity of Np and by Hölder’s inequality we obtain
�

Ω

eβ·x(Np(vn)−Np(v))(vn − v) dx

≥ C0(‖vn‖p−1p − ‖v‖p−1p )(‖vn‖p − ‖v‖p) ≥ 0,

where C0 = min{eβ·x : x ∈ Ω}. Hence (3.3) implies that ‖vn‖p → ‖v‖p.
Since vn ⇀ v in Lp(Ω) and Lp(Ω) is uniformly convex, vn → v in Lp(Ω).

(ii) Let (vn) be a sequence in Lp(Ω) such that vn ⇀ v in Lp(Ω). By
Lemma 2.1(i) we obtain Λvn ⇀ Λv in X. Sobolev’s embedding theorem (cf.
Lemma 2.7) and the properties of the Nemytskĭı operator Np (cf. Proposition

2.3) imply that Λvn → Λv in Lp(Ω) and G′β(vn)→ G′β(v) in Lp
′
(Ω).

Lemma 3.5. For all β ∈ RN :

(i) Fβ is C1 in Mβ, even and bounded below.
(ii) For all n ∈ N∗, Γn 6= ∅.

(iii) The functional Fβ satisfies (PS)c on Mβ for every c 6= 0.

Proof. (i) is evident. (ii) Since |Ω+| 6= 0, for all n ∈ N∗ there exist
u1, . . . , un ∈ X which satisfysuppui ∩ suppuj = ∅ if i 6= j,�

Ω

meβ·x|ui|p dx = 1, i, j ∈ {1, . . . , n}.

For all i ∈ {1, . . . , n}, there exists vi ∈ Lp(Ω) such that ui = Λvi.

Let Fn = span{v1, . . . , vn} ⊂ Lp(Ω). Then

∀v ∈ Fn ∃(α1, . . . , αn) ∈ Rn v =

n∑
i=1

αivi
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and
�

Ω

meβ·x|Λv|p =
�

Ω

meβ·x
∣∣∣ n∑
i=1

αiΛvi

∣∣∣p =
n∑
i=1

|αi|p
�

Ω

meβ·x|Λvi|p

=
n∑
i=1

|αi|p > 0.

It follows that the map v 7→ (pGβ(v))1/p defines a norm on Fn. Hence
Sβ = Fn ∩Mβ is the unit sphere of Fn which is homeomorphic to the unit
sphere of RN and this homeomorphism is odd. Then Lemma 2.5(f) yields
γ(Sβ) = n. Therefore Sβ ∈ Γn.

(iii) Let (vn) be a sequence inMβ and (tn) be a sequence in R such that

(3.4) Fβ(vn)→ c and F ′β(vn)− tnG′β(vn)→ 0.

We will show that (vn) has a subsequence which converges strongly in Lp(Ω).
We have (C0/p)‖vn‖pp ≤ Fβ(vn), so (vn) is bounded in Lp(Ω). Hence for a
subsequence still denoted by (vn) we have vn ⇀ v in Lp(Ω). As G′β is

completely continuous, we have G′β(vn)→ G′β(v) in Lp
′
(Ω).

It follows from (3.4) that

〈F ′β(vn)− tnG′β(vn), vn〉 = pFβ(vn)− tn → 0

and tn → pc. So the sequence (F ′β(vn)) is strongly convergent in Lp
′
(Ω).

Hence
lim
n→∞

�

Ω

F ′β(vn)(vn − v) dx = 0.

Since F ′β is of type (S+), we have vn → v in Lp(Ω).

Our main result is the following theorem:

Theorem 3.6. Problem (1.1) has a sequence of positive eigensurfaces
(G(Γ pn(·,m)))n≥1, where G(Γ pn(·,m)) is the graph of the function Γ pn(·,m).
Moreover, we have

(3.5) ∀β ∈ RN Γ pn(β,m) = inf
K∈Bn

sup
u∈K

�

Ω

eβ·x|∆u|p dx

where

Bn = {K ⊂ Nβ : K is compact, symmetric and γ(K) ≥ n},

Nβ =
{
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω) :
�

Ω

meβ·x|u|p dx = 1
}

and

(3.6) Γn(β,m)→∞ as n→∞.
Proof. Lemmas 2.6 and 3.5 enable us to claim that (G(Γ pn(·,m)))n≥1 is

an infinite sequence of positive eigensurfaces of problem (3.2).



254 K. Ben Haddouch et al.

We now prove (3.6). Since Lp(Ω) is separable, there exists a biorthogonal
system (ei, e

∗
j )i,j∈N such that ei ∈ Lp(Ω), e∗j ∈ Lp

′
(Ω). The ei’s are linearly

dense in Lp(Ω) and the e∗j ’s are total in Lp(Ω) (cf. [L]).

For n∈N∗, set Fn = span{e1, . . . , en} and F⊥n = cl span{en+1, en+2, . . .},
where cl denotes closure. From Lemma 2.5(g) we deduce that K ∩F⊥n−1 6= ∅
for any K ∈ Γn.

We claim that

dn = inf
K∈Γn

sup
v∈K∩F⊥n−1

pFβ(v)→∞ as n→∞.

Indeed, if not, there exists M > 0 such that for every n ∈ N∗ there exists
vn ∈ F⊥n−1 with pGβ(vn) = 1 and dn ≤ pFβ(vn) ≤ M. We deduce that (vn)
is bounded in Lp(Ω). Thus for a subsequence still denoted by (vn), vn ⇀ v
in Lp(Ω). Since G′β is completely continuous we get

G′β(vn)→ G′β(v) in Lp
′
(Ω) and lim

n→∞
〈G′β(vn), vn〉 = 〈G′β(v), v〉.

Then pGβ(vn)→ pGβ(v). The fact that pGβ(vn) = 1 implies pGβ(v) = 1.

On the other hand, for every n ≥ j, 〈e∗j , en〉 = 0. Hence vn ⇀ 0, therefore

v = 0 and Gβ(v) = 0, which leads to a contradiction. Since Γ pn(β,m) ≥ dn,
we get (3.6).

Finally we verify (3.5). We know that −∆ : X → Lp(Ω) and Λ :
Lp(Ω) → X are odd homeomorphisms. Consequently, by the properties
of genus we get: K ∈ Γn ⇔ ΛK ∈ Bn. Hence for every n ∈ N∗, Γ pn(β,m) =
infK∈Bn supu∈K

	
Ω e

β·x|∆u|p dx.

Remark 3.7. We can prove that the spectrum of (1.1) is closed and the
set of eigenfunctions associated with the same eigensurface of problem (1.1)
is compact.
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