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THE THIRD ORDER SPECTRUM OF THE p-BIHARMONIC
OPERATOR WITH WEIGHT

Abstract. We show that the spectrum of AZu + 2 - V(|Au[P~? Au) +
|B12| Au|P~2 Au = am|u|P~2u, where 8 € R under Navier boundary condi-
tions, contains at least one sequence of eigensurfaces.

1. Introduction. We are concerned here with the eigenvalue problem
Find (8, a,u) € RV x R% x (X \ {0}) such that
(1.1) A%u + 28 - V(|Au[P~2 Au) + |B2|AulP~2 Au = am|u[P~%u  in £2,
u=Au=0 on 0f2,
where (2 is a bounded domain in RY (N > 1), 8 € RY, Ag denotes the
p-biharmonic operator defined by AZu = A(|Au[P~?Au), X = W?P(£2) N
Wol’p(Q), and m € M = {m € L>®(12) : meas{x € £2: m(z) > 0} # 0}.
Set 27 = {z € 2:m(x) > 0}; we suppose that [2F] £ 0.
A. Anane, O. Chakrone and J.-P. Gossez [A] have studied the eigenvalue
problem
Find (8, a,u) € RY x R x (Wg’p(ﬂ) \ {0}) such that
—Apu = am|ulP~2u + B+ |[VulP2Vu in £,
u=0 on 0f2.
They showed that the spectrum of this problem, denoted by o1(—A4,,m),
contains at least one sequence of eigensurfaces in RY x R.
Motivated by this work, we define the third-order spectrum for the p-
biharmonic operator, denoted by Ug(AZZJ, m), to be the set of couples (3, ) €

RY x R such that the problem 1) has a non-trivial solution v € X. We
will show that this spectrum contains a sequence of eigensurfaces in R x R.
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In the case where 8 = 0, the zero order spectrum, denoted by O'Q(AI%, m),
is defined to be the set of eigenvalues o € R such that the problem

Find (a,u) € R% x (X \ {0}) such that
(1.2) AZu = am|ulP~?u in £2,

u=Au=0 on 02,

has a non-trivial solution u € X.

Problem was considered by P. Drabek and M. Otani [DR] for m = 1.
They showed that it has a principal positive eigenvalue which is simple and
isolated.

A. El Khalil, S. Kellati and A. Touzani [E] have studied the spectrum of
the p-biharmonic operator with weight and with Dirichlet boundary condi-
tions. They showed that this spectrum contains at least one non-decreasing
sequence of positive eigenvalues.

In 2007, M. Talbi and N. Tsouli [T] considered the spectrum of the
weighted p-biharmonic operator with weight and showed that the eigenvalue
problem

(1.3) {MmAu%%mo=ammP*u in 0,

u=Au=0 on 0f2,

where p € C(£2) and p > 0, has a non-decreasing sequence of eigenvalues,
and studied the one-dimensional case.

J. Benedikt [B] found the spectrum of the p-biharmonic operator with
Dirichlet and Neumann boundary conditions in the case N =1, m = 1, and
p=1

In this article we consider the transformation of the Poisson problem
used by P. Drabek and M. Otani. We use Ljusternik—Schnirelmann theory
to prove that the spectrum of contains a sequence of eigensurfaces
(G(IF(-,m)))n>1 such that for all 3 € RN, I'F(8,m) — oo.

2. Preliminaries. Let X = W2P(2) N Wol’p(Q). We denote by:

ull, = (§¢ [ul? dz)'/P the norm in LP(£2),

a2 = (| Aul + [[a]5)"/7 the norm in X,

||u]|oo the norm in L*°(S2),

(-,-) the duality bracket between LP(£2) and LP (£2), where 1/p+1/p’
=1

For all f € LP(£2) the Dirichlet problem for the Poisson equation,
{ —Au=f in {2,

(2.1)
u=0 on 9f2,
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is uniquely solvable in X (cf. [G]). We denote by A the inverse operator of
—A: X — LP(£2). In the following lemma we give some properties of the
operator A (cf. [AG]).

LEMMA 2.1.

(i) (Continuity) There exists a constant C, > 0 such that ||Af]|2, <
Cyllfllp for all p € ]1,00[ and f € LP(£2).

(ii) (Continuity) Given k € N*, there exists a constant Cpj, > 0 such
that | Aflw+2e < Cprll fllwss-

(iii) (Symmetry) The identity {, Au-vdx = §,u- Avdx holds for all
w e LP(2) and v € L (2) with p € ]1,00].

(iv) (Regularity) Given f € L*(§2), we have Af € C1¥(§2) for all a €
10, 1[; moreover, there exists Cy, > 0 such that | Af]|cre < Call flloo-

(v) (Regularity and Hopf-type maximum principle) Let f € C(£2) and
f>0. Then w= Af € CH*(82) for all @ €10,1[, and w > 0 in (2,
Ow/on < 0 on 0f2.

(vi) (Order preserving property) Given f,g € LP(£2), if f < g in 2
then Af < Ag in (2.

REMARK 2.2.

Vue X YoeLP(2) v=—-Au & u= Av.

Let N, be the Nemytskil operator defined by
v(z)|P~2u(z) if v(x) £ 0,
) Noe) = { [P e) e 20

0 if v(x)
We have

Yo e LP(2) Yw € LF (2)  N,y(v) = w < v = Ny(w).
ProrosiTION 2.3 (cf. [D], [K]). Let q,r € [1,00[. If there exist ¢ > 0
and b € L"(12) such that

1F(@,6)] < €| + b(z)  ae xe 2, VEER™,

then Ny is well defined from (L(£2))™ to L"(§2), continuous and bounded.
Moreover, if m =1 and r = ¢’ # 1, then the functional ¥ : L1(2) — R,
U(u) =\, F(x,u)dz, where F(x,s) = ) f(x,t)dt, is well defined, of class
Cl oon L4(02), and V' (u) = f(z,u) for all u € LI(S2).

DEFINITION 2.4. Let E be a real Banach space and A be a closed, sym-
metric subset of £\ {0}. We define the genus of A to be the number

¥(A) = inf{m : 3f € CO(A,R™\ {0}) Yu € A, f(~u) = f(u)},

and y(A) = oo if no such f exists; v() = 0 by definition.

LEMMA 2.5 (cf. [C], [R]). Let E be a real Banach space and A, B be
symmetric subsets of E'\ {0} which are closed in E. Then:
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(a) If there exists an odd continuous mapping f : A — B, then y(A) <
v(B).

(b) If A C B, then v(A) < ~(B).

(c) Y(AUB) <~(A) +~(B).

(d) I 2(B) < oo, then (A= B) > 1(4) — 1(B).

(e) If A is compact, then v(A) < oo and there exists a neighborhood N
of A which is a symmetric subset of E \ {0}, closed in E, and such
that y(N) = ~v(A).

(f) If N is a symmetric and bounded neighborhood of the origin in R¥
and if A is homeomorphic to the boundary of N by an odd homeo-
morphism, then v(A) = k.

(g) If Eo is a subspace of E of codimension k and if v(A) > k, then
ANEy= 0.

LeEMMA 2.6 ([L Corollary 4.1]). Suppose that M is a closed symmetric
Ct-submanifold of a real Banach space E and 0 ¢ M. Suppose also that
f € CY(M,R) is even and bounded below. Define

c; = inf su T
J Kesze[gf( )7

where
I's ={K C M : K is symmetric, compact and v(K) > j}.
If I, # O for some k > 1 and if f satisfies (PS), forallc=c¢j, j=1,...,k,
then f has at least k distinct pairs of critical points.
LEMMA 2.7 (cf. [AD]). Let 2 be a domain of class C* in RY.
(i) If p < N/2, then W2P(82) — L4(£2) for all g € [1,p}[.
(ii) If p = N/2, then W*P(£2) — L4(R2) for all q € [1,00].
(iii) If p > N/2, then W2P(§2) — C(12).
The above injections are compact, and

Np
. if p< N/2,
=4 N_2 if p /

00 if p> NJ/2.

3. Third order spectrum of the p-biharmonic operator

DEFINITION 3.1. The set of couples (3,a) € RY x R such that there
exists a solution (3, a,u) of is called the third order spectrum of the
p-biharmonic operator.

The couple (f, «) is then called a third-order eigenvalue and w is said to
be the associated eigenfunction.

A set of third-order eigenvalues of the form (3, f(3)), for € RY and
some function f : RY — R, is called an eigensurface of
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LEMMA 3.2. The problem s equivalent to the problem
Find (o, u) € R% x (X \ {0}) such that
(3.1) Ag’ﬂu = amePTuP~2u  in 02,
u=Au=0 on 9012,
where A%’ﬁu = AP AuP~2 Au).
Proof. For all g € RV,
AP AuP~2 Au) = V[V (7| AulP~2 Au)]
= V[V(e?®)|Au|P72 Au + €72V (| Au|P 2 Au)]
= " [Alu + 28 - V(| AulP~? Au) + || AufP ™2 Au],
hence is equivalent to (3.1]).

The operator A enables us to transform problem (3.1)) to another problem
which we shall study in the space LP(§2).

LEMMA 3.3. The problem (3.1)) is equivalent to the problem

{Find (a,v) € R x (LP(£2) \ {0}) such that
PN, (v) = ad(ePFmN,(Av)) in LP (2).

A pair (a,u) € R% x X \ {0} is a solution of problem (3.1)) if and only
if (o, v), where v = —Auw, is a solution of problem ({3.2)).

By using Ljusternik—Schnirelmann theory (cf. [3]), we will give a se-

quence of eigensurfaces of problem (|L.1J).
We consider the functionals Fg, Gg : LP(§2) — R defined

(3.2)

1 1
Fg(v) = — S AP de,  Galv) =~ S P Tm| Av|P dzx.
p 2 p 9]
Fj and G are of class Ct in LP(2) and for all v € LP(£2),

Fiv) = P Ny(v),  Gh(v) = AmeP*Ny(Av))  in LV (92).
Set
Mg ={v € LP(£2) : pGp(v) = 1},
Iy = {K C Mg : K is symmetric, compact and y(K) > n},

where v(K) indicates the genus of K.

Since |£27| # 0, there exists v € LP(£2) such that |, me””|Av|P dz = 1,
so Mg # ). Furthermore Mg is a Cl-manifold.

For all B € RY, define

I(8,m) = inf nggpFﬁ(v)-
n
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LEMMA 3.4.
(i) For all B € RV, F} satisfies condition (S4), i.e.

v, = v in LP(2) and limsup S Fi(vp)(vn —v)dz <0
n—oo N
implies v, — v strongly in LP(£2).
(i) For all 3 € RY, i is completely continuous in LP({2).

Proof. (i) Let (v,) be a sequence in LP({2) such that
(3.3) v, — v in LP(2) and limsup (e’ *N,(v,), v, — v) < 0.

n—oo

We have
lim sup S P TNy (vp) (vn, — v) dz = limsup S P (Ny(vpn) — Np(v)) (v, — ) dax.

n—00 n—00
N N

By the monotonicity of N, and by Hélder’s inequality we obtain

§ 7% (Np(vm) = Np(v)) (v — v) da
n
> Co(llvallp™" = IlvlIE~) (lvallp = llvllp) >0,

where Cy = min{e#* : z € 2}. Hence (3.3) implies that |[v,|l, — [|v[,-
Since v, — v in LP({2) and LP({2) is uniformly convex, v, — v in LP(£2).

(ii) Let (v,) be a sequence in LP({2) such that v, — v in LP({2). By
Lemma [2.1|i) we obtain Av, — Av in X. Sobolev’s embedding theorem (cf.
Lemma and the properties of the Nemytskii operator N, (cf. Proposition
imply that Av, — Av in LP(£2) and G(v,) — Gj(v) in LY (0).

LEMMA 3.5. For all B € RV:

(i) Fp is C' in Mg, even and bounded below.
(ii) For alln € N*, I, # 0.
(i) The functional Fg satisfies (PS),. on Mg for every c¢ # 0.
Proof. (i) is evident. (ii) Since |27| # 0, for all n € N* there exist
Ui, ..., Uy € X which satisfy

supp u; Nsuppu; =0 if i # 7,
Smeﬁ~x|ui’pdx:1, Z,]E{l,...7n}.
Q

For all i € {1,...,n}, there exists v; € LP(2) such that u; = Av;.
Let F,, = span{vi,...,v,} C LP(§2). Then

n
Yo € F, Iaq,...,an) ER" v = Z%Uz’
i=1



Third order spectrum 253

and
n

P Z |a; [P S meﬁ"”\/lvi]p

S meﬁ'“’\/lv|p = S me’®
Q i=1 17,

n

n
Z ai/lvi
i=1
n
=> i’ > 0.
=1

It follows that the map v + (pGgs(v))'/? defines a norm on F,. Hence
Sg = F, N Mg is the unit sphere of F},, which is homeomorphic to the unit
sphere of RY and this homeomorphism is odd. Then Lemma (f) yields
v(Sp) = n. Therefore Sg € I5,.

(iii) Let (vy) be a sequence in Mg and (t,) be a sequence in R such that

(3.4) Fg(vp) = ¢ and  Fg(vy) — tnGg(vy) — 0.

We will show that (v, ) has a subsequence which converges strongly in LP((2).
We have (Co/p)|lvnllh < Fz(vs), so (v,) is bounded in LP({2). Hence for a
subsequence still denoted by (v,) we have v, — v in LP(£2). As G} is
completely continuous, we have G(v,) — G5(v) in LY ().

It follows from that

(Fé(vn) — tntg(vn),vn> = pFg(vy) —t, =0

and t, — pe. So the sequence (Fj(vy)) is strongly convergent in LY ().
Hence

lim S Ff(vn)(vn —v) dx = 0.

n—00

Since Fé is of type (S4), we have v, — v in LP(£2).
Our main result is the following theorem:

THEOREM 3.6. Problem (L.1) has a sequence of positive eigensurfaces
(G(IE(-,m)))n>1, where G(LE(-,m)) is the graph of the function Iy (-, m).
Moreover, we have

(3.5) VB eRY IP(B,m)= inf sup S % AulP dx
KGBn UGKQ

where
B, ={K C N3 : K is compact, symmetric and v(K) > n},
N = {u € W2P(Q) N WiP(0) : | me|ul? do = 1}
2
and

(3.6) I(B,m) = o0 asn — oo.

Proof. Lemmas [2.6{ and [3.5] enable us to claim that (G(I}(-,m)))n>1 is
an infinite sequence of positive eigensurfaces of problem ([3.2)).
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We now prove (3.6)). Since LP({2) is separable, there exists a biorthogonal
system (e;,e}); jen such that e; € LP(£2), €] € L7 (£2). The e;’s are linearly
dense in LP({2) and the €}’s are total in LP(£2) (cf. [L]).

For n€N*, set F,, = span{eq,...,e,} and Fi = cl span{eni1,enia;- .-},
where cl denotes closure. From Lemma [2.5(g) we deduce that K N E- | # ()
for any K € I,.

We claim that

d, = inf  sup pFz(v) >o00 asn — oo.
Keln yexnFt

Indeed, if not, there exists M > 0 such that for every n € N* there exists
vy, € Fi- | with pGg(v,) = 1 and d,, < pFs(v,) < M. We deduce that (v,,)
is bounded in LP({2). Thus for a subsequence still denoted by (v,,), v, — v
in LP({2). Since G is completely continuous we get

Gs(vn) = Gj(v) in LV (£2) and 7}1_}1{)10<G/'3(vn),vn> = (G(v),v).

Then pGg(vn) — pG(v). The fact that pGg(v,) = 1 implies pGg(v) = 1.

On the other hand, for every n > 7, <e;'7, en) = 0. Hence v, — 0, therefore
v =0 and Gg(v) = 0, which leads to a contradiction. Since I} (8,m) > d,
we get .

Finally we verify (3.5). We know that —A : X — LP(2) and A :
LP(f2) — X are odd homeomorphisms. Consequently, by the properties
of genus we get: K € I, & AK € B,,. Hence for every n € N*, I'(3,m) =
inf e, Supyex § o €7%| AulP da.

REMARK 3.7. We can prove that the spectrum of (1.1)) is closed and the
set of eigenfunctions associated with the same eigensurface of problem ([1.1))
is compact.
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