APPLICATIONES MATHEMATICAE
37,1 (2010), pp. 1-12

JOANNA RENCEAWOWICZ and WOJCIECH M. ZAJACZKOWSKI (Warszawa)

EXISTENCE OF SOLUTIONS TO THE POISSON EQUATION
IN L,-WEIGHTED SPACES

Abstract. We examine the Poisson equation with boundary conditions on
a cylinder in a weighted space of Ly, p > 3, type. The weight is a positive
power of the distance from a distinguished plane. To prove the existence of
solutions we use our result on existence in a weighted Lo space.

1. Introduction. In the paper, we continue the study of the Poisson
equation in weighted spaces formulated in [RZ] but here we consider the
more general situation, i.e. spaces based on L,, p > 2. We consider the
following problem:

~Ap=f" in 2,
n-V =0,
(1.1) n VLS,
90|51 =0,
90|50 =0,

where 2 C R3 is a cylindrical domain, 02’ = SoUS1US, = S (see Fig. 1).

Fig. 1. Domain {2’
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Here, Sy is parallel and 57 and S, are perpendicular to the z3 axis, and
S1 meets the z3 axis at the point x3 = a (while S, meets the z3 axis at the
point x3 = 0).

We assume that f’ € L, ,,(£2') where

1
1y = (§ 1@ Pt ar) ™. pel2o0). ne @)
Q/

The motivation of the problem is the analysis of the inflow-outflow mo-
tion described by the Navier—Stokes equations. In order to avoid some re-
strictions on the boundary inflow for the Navier—Stokes system, we will use
the weighted space estimates derived here. Namely, the proof of global ex-
istence in |Z2] requires that the inflow flux must vanish sufficiently fast as
t — o00. To show the existence of solutions with nonvanishing inflow flux or
of periodic solutions we need estimates in weighted spaces derived in this
paper and in |[RZ].

To proceed, we first reformulate the problem . We extend the so-
lutions ¢ to x3 < 0 using the zero Neumann boundary conditions 2.
Consequently, we construct an even function v by setting:

p(x3)  for z3 >0,
v(r3) =
o(—x3) for z3 < 0.
Then u = v — (0) is a solution to the following problem on 2:
—Au=f in {2,
u|50US1 =0,
where f = f'+ Ap(0), with the domain 2 described by Fig. 2.

(1.2)

Fig. 2. Domain (2

Here 062 = Sy U Sy and f € L, ,(£2), where

/
17y = (§IF@Plzsfdr) " pe 2.00), e (0.1).
k0]
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The technique of weighted Sobolev spaces close the one presented in this
paper was developed in |Z1, Z3, Z4, ZS].

We organize the paper as follows. In Section 2, we collect the definitions
and notation used, as well as some auxiliary facts. In Section 3, we prove the
main estimates and the existence theorem.

2. Notation and auxiliary results. We use the weighted space L, ,
and define the following spaces and norms. We introduce the weighted spaces

V!5(Q), Q CR:

1/
lully: (@) = (Y § do’ deg | DgullaarPH1e-0) 7, ge R, 1€ NU{o},
p,

lo]<l @

where 2/ = (z1,22) and @ = (a1, ag, a3) is a multi-index. We observe

V2s(Q) = Lys(Q),  Vas(Q) = H(Q).

For a function g : R* — R3, we denote by § its (partial) Fourier transform:
g(gv .%'3) = S e_iz/{g(xlv .%'3) d$,7
RQ
where & = (£1,&), ' - &€ = 118 + 12&. We will use the following local
regularity result in Sobolev spaces Wg ([Mol).

PROPOSITION 2.1 (local regularity). Let B, = {2’ € R? : |[2/| < r},
§i = &i(w3), & € CP(R),i = 1,2,6 8 = &1,5upp&a C {z3: 1 < 23] < ca}
Then for a function u € Wp2(BQ x R) the following inequality holds:
16rullwz(axr) < cll€2Aul| L, (Byxr) + [1§2ullL, (B2xR)),

for some py € [1,00] and the constant ¢ independent of u.

We will also need the following Marcinkiewicz—Mikhlin type result (see
DS Part 2, Ch. 11, Theorem 28]).

PROPOSITION 2.2. Let L,(R% H) be the space of functions with the finite
norm

1/p
1y ry = (§ 15l dz) " < o,
R4

where H is a Hilbert space. Let M(€), € € R, be a bounded linear operator
in H. Assume that for s =0,...,d, i, # i,

o°M
[€1° ,,(90)'
0&;, ... 0¢;,
Then, if F' is the Fourier transform in Rd,Fész(gp)FZH§ s a continuous
operator in L,(R%; H).

< const.
H—H
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To prove the main estimates, we will need the construction of some par-
titions of unity. Namely, we introduce the following families of functions.

DEFINITION 2.3 (partitions of unity). Consider families {Cj};“;_oo,
{O'j}?iioo where (j,0; € C*°(R) satisfy
supp ¢j C {z3: 2771 < a3 < 2711},
suppoj C {w3: 2172 < |zg] < 2712},

Cioj = G '
|D(i| + |D%0j| < co 27919 for all multiindices «.

Properties of these partitions make it possible to show the following state-
ment:

LEMMA 2.4. Let B € R. Then for any function
u € VV;(R2 x {2972 < |xg] < 2972}
the following inequality holds:
(2.1) ‘|CjuHVp2”B(R2><R) < CHUJ‘AUHLM(R?xR) + CHUJ'UHLP,B_Q(R%R)-
Proof. We define
B={a":]2'| <2},
B, = {2/ :|2| < 2"},
K:{x3:1<\x3]<2},
K, = {x3: 2" < |zg] < 2°T1.
We can apply Proposition [2.1] with p; = p to obtain
2
Z |D*(Gu)llL,(Bxr) < cllojAullp, s x2k) + cllojullL, 3, x2m)
|a|=0
with 2K = {z3:1/2 < |z3| < 4}.
In view of scaling x — 2*x we have

2
Z 2M(|0‘|_2) HDa(Cju) HLP(BHXKH)
jaf=0

-2
<cllojAullL,(B,.ix2k,) + 2" lojullL, (B, x2K,)-
Now we multiply this formula by 2°# and then raise the resulting inequality

to the power p. Next, we note that p = |x3| ~ 2¥ and we sum over pu to
obtain

2
Z ||pﬂ+|a‘72Da(<ju)HLZ,(]R?’) < CHpﬁUjAUHLP(Ri”) + CHPﬁJUjUHLP(R%
|ar|=0

Applying the definition of the spaces V;fﬁ and L, 3 to this estimate yields

R.1). =
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COROLLARY 2.5. For 8 € R and u as in Lemma
(22) lullyz o) < elldulls, @ +cllulz, , -
Proof. We sum up inequality (2.1) with respect to j to obtain the result. =

We apply Definition to formulate a result on operators in Banach
spaces. Let &(R3),&1(R?) be Banach spaces of functions defined on R3,
closed under pointwise multiplication by functions from C§°(R? x R\ {0}).

Let {(j(z3)}32 _o be the partition of unity described in Definition

Assume that there exist p and ¢, 1 < p < ¢ < oo, such that for all
u € &y, v € & the following inequalities hold:

0 1/q

(2.3) [l ms) < C( Z HCJ’“HZO(W)) ’
J=—00

s » 1/p

(2.4) [0lle, (r3) = C( Z Hijllgl(R:”)) ’
J=—0C

where | - ||¢,(r3) is the norm of Ei(R3).

PROPOSITION 2.6 ([MP], [Z2]). Let O : &(R3?) — & (R?) be a linear
operator defined on functions with compact support such that for some e > 0
and arbitrary p,v € 7,

(2.5) 1€ O] gy (m3y < €_E|”_V|H§vagl(R3)

where v € £ (R3). Assume that (2.3)—(2.4) are satisfied. Then, for v with a
compact support,

(2.6) 10v][gy w3y < cllvlle, ra),
where ¢ does not depend on v.

3. Main estimates. Our goal in this part will be an estimate of the
form

(3.1) lullve, ®s) < cllfllvo, @)

with p > 2 and for u, f defined by .

To show the result, we start with the estimate in Corollary and
next, to estimate the function u on the right hand side of —in another
weighted space—we will need to examine the related functions and equations.
Namely, we need to consider an auxiliary problem and derive an estimate
that is of the form of condition in Proposition The statement of
Proposition [2.6] with a suitably defined operator transforming the auxiliary
problem into the original one will give the desired estimate for u. Then we
collect these facts and obtain the inequality for an appropriate choice of the
weight parameter o.
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Let
POy, 0py) = —A and P(§,04,) = _3%3 +§2-
Let A(&) denote the operator of the problem

A~

P(§7 8£3>a = f in R,
a’a}g::l:a = 07

(3.2)

where g denotes the Fourier transform of g. We show the following simple
property of A:

LEMMA 3.1. For A(&) introduced in (3.2)), ker A(§) = 0.

Proof. We take £ # 0. Every solution of the homogeneous equation ((3.2));
has the form

U = asinh(|¢|z3) + ( cosh(|¢|z3)

and 2 implies
—acsinh(|€|a) 4+ B cosh(|€|a) = 0,
asinh(|{|a) + § cosh([¢]a) = 0,

so that o = 8 = 0.
If £ =0, then any solution to (3.2)); has the form

U= ax3+ 0
and now (3.2))2 gives
ac+p3=0, —aa+pF=0,
so a = 0 = 0. This concludes the proof. =

COROLLARY 3.2. There exists an inverse operator A~Y(€) to problem
(13.2) such that

ﬂ(£7$3) = A_l(g)f(ga 1:3)‘
Next, we prove a useful property of the operator A~".

LEMMA 3.3. For any £ € R2\{0} and for any f € VQ%(]R), v € NU {0},
B#LZ,

2
v -1z - £
(3.3) Z%g 107 A(€) Fllyzsrmy < <€l llve ,z-

Proof. This is a special case of Lemma 7.1 in Chapter 7 of [MP] for a
general operator A. =

LEMMA 3.4. Let the assumptions of Lemma be satisfied. Then the
operator P of the problem

(3.4) POy, 0ps)u = f
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s an isomorphism
P V35(R?) — VP 5(R?).
Proof. The previous lemma and (3.3]) with v = 0 give
lallvz @) = ||A(§)_1f||v2%5(R) < C||f”v2({ﬂ(R)-
To get a similar result in R? we use the Ly-estimates from [RZ]. u

Let us now consider an auxiliary problem. We take functions ¢,, o, with
properties described in Definition and set f, = f(,. We examine the
problem

P(§,05)u= f, in R,
U =0.

u r3=*+a

Then
(3.5) u, = o, A,

where u,, = uo,. For the operator of the above problem we prove the follow-
ing estimate:

LEMMA 3.5. With the assumptions of Lemma[3.3] and & # 0, we have
(3.6) o A€ llvg, my—vp, () < c27 I
for B & Z and e sufficiently small.

Proof. We use the estimate (3.3) and properties of the partition of unity
defined in Definition 2.3 to obtain

lullvz ) < 2% luullvz,  re) <271 follvp, me) < 26‘#_V‘Hf1/”v£ﬁ(R2)'
Since
luwllvg ,m2) 2 Q_QHHUMHVQQB(R?)

we conclude

(3.7) HUMHVQ%(RQ) < 2E|M7V|+2M||fVHVQ()”(;(RQ)'
Taking —e instead of € we get similarly
(3.8) lunllvg m2) < 2_8(”_V)+2”Hfu||v29B(R2)~

From (3.7) and (3.8), we apply (3.5) to derive the desired estimate (3.6)).

This concludes the proof. m

We need to improve this result: we derive an L, estimate using the
Marcinkiewicz—Mikhlin theorem (Proposition[2.2]). We now examine the orig-
inal problem in the form (3.4]) with the right hand side f,.
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LEMMA 3.6. Let the assumptions of Lemma be satisfied and u, €
VQ%/@(]R:&) and

(3.9) POy, Opg)uy = fo.
Then

p/2
(3.10) S(S\I3]25]UM($3)UV(:E/,$3)|2dx3> dz’
R2 R

/2
< vl 2 [ ([ g 291G, () £ g)| P das)
RZ2 R

Proof. We have
Uy = ngx/A(g)_lFllﬁchf

where F' denotes the Fourier transform in R%. On the other hand, we can
apply Proposition to find that F~1M(&)F, where M(€) = 0,A(£)71¢,,
is a continuous operator in L,(R?; VQ%(]RI)). Thus, using estimate 1’ we
will derive the result. m

We work with the bound above to obtain

LEMMA 3.7. Let the assumptions of Lemma be satisfied and u, € V225.
Then for p > 2 and some g1 > 0,

3.11) | |as[PPI2 ¢ (s uy (2, ) |P das da’
R3
< e P g POFDZ2C (23) f (o, 03) P day
R3
Proof. By the Holder inequality we estimate the integral on the right
hand side of (3.10]) as follows:

§ (sl o) o s) P )

R2 R
< P[0T w02 am) ™ (Vs Goa s das) )
R

R2 supp Cv
< § 20002 PG, () (o )P dr o’

R2 R
< e | (a1 D¢, (23) f (2!, s)|P davs da’
R2R

because on supp ¢, we have |z3| € (2v71,2v*1).
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Next, we deal with the left hand side of (3.10). We cover R? with balls Q;
of radius 2*~1. By 2Q; we denote a ball of radius 2041 which contains Q.
By the Holder inequality we have

I = S S’Uﬂuy|d1:’daj‘3§ S ( S 12>1/2(S|O’#u,}!2>1/2dx’
R

QQjR 2Q]~ supp oy
2+1 2 1/2
< S om/2+ (S|0’#ul,] dxg) d' = I,
2Q; R

where we have used the fact that o, C {23 : 272 < |z3] < 2#*2}. Next, we
obtain

1/2
I, <c S 2“/27ﬂ“<s |23]%0 )0y |2 dxg) da’
20, R
where we have applied again the support of o,. Therefore,
(3.12) ()P = ( S S\Uuul,]da:' da:g,)p
2Q, R
1/2
< 02(1/2_ﬁ)“p[ S (S |23 %8| 0 |2 d:vg) da:'r
2Q, R
_ / 1/’
< 2(1/2 3)#17[( S 1P dm’)
2Q;
/2 1/
X < S (X \x;»,]w\auul,]zda;g)p dx’) p}p
2Q; R
< 022 (| ol 2 das)” da
2Q, R

where p' = p/(p — 1), p/p’ = p— 1. In view of the properties of the partition
of unity, we apply the local regularity result (Proposition and scaling
x +— 2Fz to obtain the following inequality for |u — v| > 3:

P
(3.13) S S |Cuuy P da’ dag < 023“(1_”)( S S loyuy| da’ d$3)
Q; R 2Q; R
= 231(1-p) (I)P.
Therefore, combining (3.12)) and (3.13)), for |u—v| >3 we derive the inequality

/2
(3.14) S Cutin [P da’ divg < 2~ HlP(B+1/2)=1] S (S \$3!2ﬂ!fmuy|2dx3>p &

R3 R2 R
Next, we apply the inequality (3.10)) and the bound of the r.h.s. shown above
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to obtain
2,u[p(,873/2)71] S |€uuu‘p dxs dz’ < c2fp8|ﬂ*1/| S ’x3|P(5+1/2)*1KVf|P dxs dz'.
R3 R3

We multiply both sides by 24/2=1) yse the support of Cu on the left hand
side and the support of (, on the right hand side. Therefore, we get

(3.15) S |23[PP=D72|¢, (a3)uy (2, 3)|P dag da’
R3
< c2ln—vl(=petp/2-1) S |23|PPTD=2\¢, (23) f (2, 23) [P das da’.
R3
We note that in the case |p — v| < 3 we add on the r.h.s. of (3.13) the

expression
2?0 \ | [¢, fIP da’ das
2Q,; R
and consequently also on the r.h.s. of (3.14]). Therefore, taking ¢ > 1/2, we
set €1 = —1/2+ 1/p to conclude the proof. =

Let us observe that we have some bounds for wu,, the solution of the
auxiliary problem defined in (3.9)). Now we are going to prove the analogous
result but for the original problem with the functions v and f.

LEMMA 3.8. Let u solve
P(0y, Oy )u = f
and let the assumptions of Lemma[3.3] be satisfied, p > 2. Then
(3.16) | |wslP V2 u(a!, ) P das da’ <c | |wsPPTD 2| f (2!, w3) P das dar’
R3 R3

Proof. To deal with the problem for u and f, we apply Proposition [2.6]
to the situation of Lemma, Namely, we note that estimate (3.11)), which
we recall here:

| 3PP D721 ¢u (25 )uy (2, w3) P davg da’
R3
< 27l g POV Z2IC (2g) (2, 3) P davs
R3
is of the form of condition ([2.5)), i.e.

160Gl g ey < €I ]lg, r3y
with
g=p, ER) =V | 5, R, ER)=V)5 o, (R
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and O = A~ is such that
O: VQO,ﬁ(RB) - %?B(R?))'
Therefore, the conclusion ([2.6) of the form

[0v][gyms) < cllvlle, m3)
yields (3.16)). =

Our final estimate combines the previous result with the local regularity
estimates as follows.

LEMMA 3.9. Let the assumptions of Lemma be satisfied, f € ‘/2(3:‘{ N
Vp%(RQ’), p > 2. Then, for u solving the problem l) and u € VQ%E(R?’),

(3.17) lullve, ®s) < cllfllvo, ®s)-

Proof. We apply the local regularity statement and from (2.2)) with x in
place of § we derive

(3.18) lullve, w3y < el fllvo, re) + ”UHVIQK_Q(R?)))-

Since f € Vp(f,,b we set p(f+ 1) — 2 = pk, so we calculate § =k — 1+ 2/p
and substitute to find that p(8 — 1) — 2 = p(k — 2). Therefore, we apply the

formula l) to derive u € Vp?,{,z and
lullvo ey < 1 Fllvp, ®e)-
We combine this with (3.18) to get (3.17). This concludes the proof. =

LEMMA 3.10. Let the assumptions of Lemma be satisfied, f € VQ% N
V;?K(R?’), p > 2. Then there exists a solution u of the problem such that
u e V2 (R?) and the estimate holds.

Proof. We take a sequence f, of smooth functions with compact support
such that f, — fin V;BH(RS). According to Lemma 3.4, there exists a solution
Uy, € VQQK of the problem with the right hand side f,. Applying the
estimate we infer the convergence of the sequence u, in Vp%ﬂ to the
limit u. m

Using the standard regularizer methods, we apply the above result to
deduce the existence theorem for the problem ((1.2) in {2 and, consequently,

for in 2.

THEOREM 1. Let the assumptions of Lemma be satisfied, f € VZ% N
Vp?u(ﬁ’), p > 2. Then there exists a solution ¢ of the problem such that
= @(0) € V7, (£2) and

I — SO(O)HVZ,%H(Q’) < C”f”vzgu((z')y
where f = '+ Ap(0).
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COROLLARY 1. Denote by Lg’#(ﬁ’) the following space:

12,2 ={u Jullus @y = (3 | IDgulal dz)
|a|=2 £

7 <o)

Then under the assumptions of Theorem 1 we have the inequality

lellz o) < cllfllez,, 2
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