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EXISTENCE OF SOLUTIONS TO THE POISSON EQUATION
IN Lp-WEIGHTED SPACES

Abstract. We examine the Poisson equation with boundary conditions on
a cylinder in a weighted space of Lp, p ≥ 3, type. The weight is a positive
power of the distance from a distinguished plane. To prove the existence of
solutions we use our result on existence in a weighted L2 space.

1. Introduction. In the paper, we continue the study of the Poisson
equation in weighted spaces formulated in [RZ] but here we consider the
more general situation, i.e. spaces based on Lp, p ≥ 2. We consider the
following problem:

−∆ϕ = f ′ in Ω′,

n̄ · ∇ϕ|S∗ = 0,
ϕ|S1 = 0,
ϕ|S0 = 0,

(1.1)

where Ω′ ⊂ R3 is a cylindrical domain, ∂Ω′ = S0∪S1∪S∗ = S (see Fig. 1).

Fig. 1. Domain Ω′
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Here, S0 is parallel and S1 and S∗ are perpendicular to the x3 axis, and
S1 meets the x3 axis at the point x3 = a (while S∗ meets the x3 axis at the
point x3 = 0).

We assume that f ′ ∈ Lp,µ(Ω′) where

‖f ′‖Lp,µ(Ω′) =
( �

Ω′

|f ′(x)|pxpµ3 dx
)1/p

, p ∈ [2,∞), µ ∈ (0, 1).

The motivation of the problem is the analysis of the inflow-outflow mo-
tion described by the Navier–Stokes equations. In order to avoid some re-
strictions on the boundary inflow for the Navier–Stokes system, we will use
the weighted space estimates derived here. Namely, the proof of global ex-
istence in [Z2] requires that the inflow flux must vanish sufficiently fast as
t→∞. To show the existence of solutions with nonvanishing inflow flux or
of periodic solutions we need estimates in weighted spaces derived in this
paper and in [RZ].

To proceed, we first reformulate the problem (1.1). We extend the so-
lutions ϕ to x3 < 0 using the zero Neumann boundary conditions (1.1)2.
Consequently, we construct an even function v by setting:

v(x3) =
{
ϕ(x3) for x3 ≥ 0,
ϕ(−x3) for x3 < 0.

Then u = v − ϕ(0) is a solution to the following problem on Ω:

−∆u = f in Ω,

u|S0∪S1 = 0,
(1.2)

where f = f ′ +∆ϕ(0), with the domain Ω described by Fig. 2.

Fig. 2. Domain Ω

Here ∂Ω = S0 ∪ S1 and f ∈ Lp,µ(Ω), where

‖f‖Lp,µ(Ω) =
( �

Ω

|f(x)|p|x3|pµ dx
)1/p

, p ∈ [2,∞), µ ∈ (0, 1).
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The technique of weighted Sobolev spaces close the one presented in this
paper was developed in [Z1, Z3, Z4, ZS].

We organize the paper as follows. In Section 2, we collect the definitions
and notation used, as well as some auxiliary facts. In Section 3, we prove the
main estimates and the existence theorem.

2. Notation and auxiliary results. We use the weighted space Lp,µ
and define the following spaces and norms. We introduce the weighted spaces
V l
p,β(Q), Q ⊂ R3:

‖u‖V lp,β (Q) =
( ∑
|α|≤l

�

Q

dx′ dx3 |Dα
xu|p|x3|p(β+|α|−l)

)1/p
, β ∈ R, l ∈ N ∪ {0},

where x′ = (x1, x2) and α = (α1, α2, α3) is a multi-index. We observe

V 0
p,β(Q) = Lp,β(Q), V l

2,β(Q) = H l
β(Q).

For a function g : R3 → R3, we denote by ĝ its (partial) Fourier transform:

ĝ(ξ, x3) =
�

R2

e−ix
′·ξg(x′, x3) dx′,

where ξ = (ξ1, ξ2), x′ · ξ = x1ξ1 + x2ξ2. We will use the following local
regularity result in Sobolev spaces W 2

p ([Mo]).

Proposition 2.1 (local regularity). Let Br = {x′ ∈ R2 : |x′| < r},
ξi = ξi(x3), ξi ∈ C∞0 (R), i = 1, 2, ξ1ξ2 = ξ1, supp ξ2 ⊂ {x3 : c1 < |x3| < c2}.
Then for a function u ∈W 2

p (B2 × R) the following inequality holds:

‖ξ1u‖W 2
p (B×R) ≤ c(‖ξ2∆u‖Lp(B2×R) + ‖ξ2u‖Lp1 (B2×R)),

for some p1 ∈ [1,∞] and the constant c independent of u.

We will also need the following Marcinkiewicz–Mikhlin type result (see
[DS, Part 2, Ch. 11, Theorem 28]).

Proposition 2.2. Let Lp(Rd;H) be the space of functions with the finite
norm

‖f‖Lp(Rd;H) =
( �

Rd
‖f(z, ·)‖pH dz

)1/p
<∞,

where H is a Hilbert space. Let M(ξ), ξ ∈ Rd, be a bounded linear operator
in H. Assume that for s = 0, . . . , d, ik 6= il,

|ξ|s
∥∥∥∥ ∂sM

∂ξi1 . . . ∂ξis
(ϕ)
∥∥∥∥
H→H

≤ const.

Then, if F is the Fourier transform in Rd, F−1
ξ→zM(ϕ)Fz→ξ is a continuous

operator in Lp(Rd;H).
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To prove the main estimates, we will need the construction of some par-
titions of unity. Namely, we introduce the following families of functions.

Definition 2.3 (partitions of unity). Consider families {ζj}∞j=−∞,
{σj}∞j=−∞ where ζj , σj ∈ C∞(R) satisfy

• supp ζj ⊂ {x3 : 2j−1 < |x3| < 2j+1},
• suppσj ⊂ {x3 : 2j−2 < |x3| < 2j+2},
• ζjσj = ζj ,
• |Dαζj |+ |Dασj | ≤ cα2−j|α| for all multiindices α.

Properties of these partitions make it possible to show the following state-
ment:

Lemma 2.4. Let β ∈ R. Then for any function

u ∈W 2
p (R2 × {2j−2 < |x3| < 2j+2})

the following inequality holds:

‖ζju‖V 2
p,β(R2×R) ≤ c‖σj∆u‖Lp,β(R2×R) + c‖σju‖Lp,β−2(R2×R).(2.1)

Proof. We define
B = {x′ : |x′| < 2},
Bµ = {x′ : |x′| < 2µ+1},
K = {x3 : 1 < |x3| < 2},
Kµ = {x3 : 2µ < |x3| < 2µ+1}.

We can apply Proposition 2.1 with p1 = p to obtain
2∑
|α|=0

‖Dα(ζju)‖Lp(B×K) ≤ c‖σj∆u‖Lp(B1×2K) + c‖σju‖Lp(B1×2K)

with 2K = {x3 : 1/2 < |x3| < 4}.
In view of scaling x 7→ 2µx we have

2∑
|α|=0

2µ(|α|−2)‖Dα(ζju)‖Lp(Bµ×Kµ)

≤ c‖σj∆u‖Lp(Bµ+1×2Kµ) + c2−2µ‖σju‖Lp(Bµ+1×2Kµ).

Now we multiply this formula by 2βµ and then raise the resulting inequality
to the power p. Next, we note that ρ = |x3| ∼ 2µ and we sum over µ to
obtain

2∑
|α|=0

‖ρβ+|α|−2Dα(ζju)‖Lp(R3) ≤ c‖ρβσj∆u‖Lp(R3) + c‖ρβ−2σju‖Lp(R3).

Applying the definition of the spaces V 2
p,β and Lp,β to this estimate yields

(2.1).
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Corollary 2.5. For β ∈ R and u as in Lemma 2.4,

‖u‖V 2
p,β(R3) ≤ c‖∆u‖Lp,β(R3) + c‖u‖Lp,β−2(R3).(2.2)

Proof. We sum up inequality (2.1) with respect to j to obtain the result.

We apply Definition 2.3 to formulate a result on operators in Banach
spaces. Let E0(R3), E1(R3) be Banach spaces of functions defined on R3,
closed under pointwise multiplication by functions from C∞0 (R2 × R \ {0}).

Let {ζj(x3)}∞j=−∞ be the partition of unity described in Definition 2.3.
Assume that there exist p and q, 1 ≤ p ≤ q ≤ ∞, such that for all

u ∈ E0, v ∈ E1 the following inequalities hold:

‖u‖E0(R3) ≤ c
( ∞∑
j=−∞

‖ζju‖qE0(R3)

)1/q
,(2.3)

‖v‖E1(R3) ≥ c
( ∞∑
j=−∞

‖ζjv‖pE1(R3)

)1/p
,(2.4)

where ‖ · ‖Ei(R3) is the norm of Ei(R3).

Proposition 2.6 ([MP], [Z2]). Let O : E1(R3) → E0(R3) be a linear
operator defined on functions with compact support such that for some ε > 0
and arbitrary µ, ν ∈ Z,

‖ζµOζνv‖E0(R3) ≤ e−ε|µ−ν|‖ζνv‖E1(R3)(2.5)

where v ∈ E1(R3). Assume that (2.3)–(2.4) are satisfied. Then, for v with a
compact support,

‖Ov‖E0(R3) ≤ c‖v‖E1(R3),(2.6)

where c does not depend on v.

3. Main estimates. Our goal in this part will be an estimate of the
form

‖u‖V 2
p,α(R3) ≤ c‖f‖V 0

p,α(R3)(3.1)

with p ≥ 2 and for u, f defined by (1.2).
To show the result, we start with the estimate (2.2) in Corollary 2.5 and

next, to estimate the function u on the right hand side of (2.2)—in another
weighted space—we will need to examine the related functions and equations.
Namely, we need to consider an auxiliary problem and derive an estimate
that is of the form of condition (2.5) in Proposition 2.6. The statement of
Proposition 2.6 with a suitably defined operator transforming the auxiliary
problem into the original one will give the desired estimate for u. Then we
collect these facts and obtain the inequality for an appropriate choice of the
weight parameter α.
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Let
P (∂x′ , ∂x3) = −∆ and P (ξ, ∂x3) = −∂2

x3
+ ξ2.

Let A(ξ) denote the operator of the problem

P (ξ, ∂x3)û = f̂ in R,
û|x3=±a = 0,

(3.2)

where ĝ denotes the Fourier transform of g. We show the following simple
property of A:

Lemma 3.1. For A(ξ) introduced in (3.2), kerA(ξ) = 0.

Proof. We take ξ 6= 0. Every solution of the homogeneous equation (3.2)1
has the form

û = α sinh(|ξ|x3) + β cosh(|ξ|x3)

and (3.2)2 implies

−α sinh(|ξ|a) + β cosh(|ξ|a) = 0,
α sinh(|ξ|a) + β cosh(|ξ|a) = 0,

so that α = β = 0.
If ξ = 0, then any solution to (3.2)1 has the form

û = αx3 + β

and now (3.2)2 gives

αa+ β = 0, −αa+ β = 0,

so α = β = 0. This concludes the proof.

Corollary 3.2. There exists an inverse operator A−1(ξ) to problem
(3.2) such that

û(ξ, x3) = A−1(ξ)f̂(ξ, x3).

Next, we prove a useful property of the operator A−1.

Lemma 3.3. For any ξ ∈ R2\{0} and for any f ∈ V 0
2,β(R), γ ∈ N ∪ {0},

β 6= Z,
2∑

ν=0

|ξ|ν‖∂γξA(ξ)−1f̂‖V 2−ν
2,β (R) ≤ c|ξ|

−γ‖f̂‖V 0
2,β(R).(3.3)

Proof. This is a special case of Lemma 7.1 in Chapter 7 of [MP] for a
general operator A.

Lemma 3.4. Let the assumptions of Lemma 3.3 be satisfied. Then the
operator P of the problem

P (∂x′ , ∂x3)u = f(3.4)
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is an isomorphism

P : V 2
2,β(R3)→ V 0

2,β(R3).

Proof. The previous lemma and (3.3) with ν = 0 give

‖û‖V 2
2,β(R) = ‖A(ξ)−1f̂‖V 2

2,β(R) ≤ c‖f̂‖V 0
2,β(R).

To get a similar result in R3 we use the L2-estimates from [RZ].

Let us now consider an auxiliary problem. We take functions ζν , σµ with
properties described in Definition 2.3 and set fν = fζν . We examine the
problem

P (ξ, ∂x3)u = fν in R,
û
∣∣
x3=±a = 0.

Then

uµ = σµA
−1fν(3.5)

where uµ = uσµ. For the operator of the above problem we prove the follow-
ing estimate:

Lemma 3.5. With the assumptions of Lemma 3.3 and ξ 6= 0, we have

‖σµA−1(ξ)ζν‖V 0
2,β(R)→V 0

2,β(R) ≤ c2−ε|µ−ν|+2µ(3.6)

for β /∈ Z and ε sufficiently small.

Proof. We use the estimate (3.3) and properties of the partition of unity
defined in Definition 2.3 to obtain

‖uµ‖V 2
2,β(R2) ≤ 2εµ‖uµ‖V 2

2,β−ε(R2) ≤ 2εµ‖fν‖V 0
2,β−ε(R2) ≤ 2ε|µ−ν|‖fν‖V 0

2,β(R2).

Since
‖uµ‖V 2

2,β(R2) ≥ 2−2µ‖uµ‖V 0
2,β(R2)

we conclude

‖uµ‖V 0
2,β(R2) ≤ 2ε|µ−ν|+2µ‖fν‖V 0

2,β(R2).(3.7)

Taking −ε instead of ε we get similarly

‖uµ‖V 0
2,β(R2) ≤ 2−ε(µ−ν)+2µ‖fν‖V 0

2,β(R2).(3.8)

From (3.7) and (3.8), we apply (3.5) to derive the desired estimate (3.6).
This concludes the proof.

We need to improve this result: we derive an Lp estimate using the
Marcinkiewicz–Mikhlin theorem (Proposition 2.2). We now examine the orig-
inal problem in the form (3.4) with the right hand side fν .
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Lemma 3.6. Let the assumptions of Lemma 3.3 be satisfied and uν ∈
V 2

2,β(R3) and

P (∂x′ , ∂x3)uν = fν .(3.9)

Then

(3.10)
�

R2

( �

R
|x3|2β|σµ(x3)uν(x′, x3)|2 dx3

)p/2
dx′

≤ c2−pε|µ−ν|+2µp
�

R2

( �

R
|x3|2β|ζν(x3)f(x′, x3)|2 dx3

)p/2
dx′.

Proof. We have

uν = F−1
ξ→x′A(ξ)−1Fx′→ξζνf

where F denotes the Fourier transform in R2. On the other hand, we can
apply Proposition 2.2 to find that F−1M(ξ)F, where M(ξ) = σµA(ξ)−1ζν ,
is a continuous operator in Lp(R2;V 0

2,β(R1)). Thus, using estimate (3.6) we
will derive the result.

We work with the bound above to obtain

Lemma 3.7. Let the assumptions of Lemma 3.3 be satisfied and uν ∈ V 2
2,β.

Then for p ≥ 2 and some ε1 > 0,

(3.11)
�

R3

|x3|p(β−1)−2|ζµ(x3)uν(x′, x3)|p dx3 dx
′

≤ c2−|µ−ν|ε1p
�

R3

|x3|p(β+1)−2|ζν(x3)f(x′, x3)|p dx3 dx
′.

Proof. By the Hölder inequality we estimate the integral on the right
hand side of (3.10) as follows:
�

R2

( �

R
|x3|2β|ζν(x3)f(x′, x3)|2 dx3

)p/2
dx′

≤
�

R2

[( �

supp ζν

1p/(p−2) dx3

)(p−2)/p
·
( �

R
|x3|pβ|ζν(x3)f(x′, x3)|p dx3

)2/p]p/2
dx′

≤
�

R2

2(ν−1)(p−2)/2
�

R
|x3|pβ|ζν(x3)f(x′, x3)|p dx3 dx

′

≤ c
�

R2

�

R
|x3|p(β+1/2)−1|ζν(x3)f(x′, x3)|p dx3 dx

′

because on supp ζν we have |x3| ∈ (2ν−1, 2ν+1).
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Next, we deal with the left hand side of (3.10). We cover R2 with balls Qj
of radius 2µ−1. By 2Qj we denote a ball of radius 2µ+1 which contains Qj .
By the Hölder inequality we have

I1 ≡
�

2Qj

�

R
|σµuν | dx′ dx3 ≤

�

2Qj

( �

suppσµ

12
)1/2( �

R
|σµuν |2

)1/2
dx′

≤
�

2Qj

2µ/2+1
( �

R
|σµuν |2 dx3

)1/2
dx′ ≡ I2

where we have used the fact that σµ ⊂ {x3 : 2µ−2 < |x3| < 2µ+2}. Next, we
obtain

I2 ≤ c
�

2Qj

2µ/2−βµ
( �

R
|x3|2β|σµuν |2 dx3

)1/2
dx′

where we have applied again the support of σµ. Therefore,

(I1)p =
( �

2Qj

�

R
|σµuν | dx′ dx3

)p
(3.12)

≤ c2(1/2−β)µp
[ �

2Qj

( �

R
|x3|2β|σµuν |2 dx3

)1/2
dx′
]p

≤ c2(1/2−β)µp
[( �

2Qj

1p
′
dx′
)1/p′

×
( �

2Qj

( �

R
|x3|2β|σµuν |2 dx3

)p/2
dx′
)1/p]p

≤ c2(1/2−β)µp+2µ(p−1)
�

2Qj

( �

R
|x3|2β|σµuν |2 dx3

)p/2
dx′

where p′ = p/(p− 1), p/p′ = p− 1. In view of the properties of the partition
of unity, we apply the local regularity result (Proposition 2.1) and scaling
x 7→ 2µx to obtain the following inequality for |µ− ν| > 3:

�

Qj

�

R
|ζµuν |p dx′ dx3 ≤ c23µ(1−p)

( �

2Qj

�

R
|σµuν | dx′ dx3

)p
(3.13)

≡ c23µ(1−p)(I1)p.

Therefore, combining (3.12) and (3.13), for |µ−ν|>3 we derive the inequality

(3.14)
�

R3

|ζµuν |p dx′ dx3 ≤ c2−µ[p(β+1/2)−1]
�

R2

( �

R
|x3|2β|σµuν |2 dx3

)p/2
dx′.

Next, we apply the inequality (3.10) and the bound of the r.h.s. shown above
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to obtain

2µ[p(β−3/2)−1]
�

R3

|ζµuν |p dx3 dx
′ ≤ c2−pε|µ−ν|

�

R3

|x3|p(β+1/2)−1|ζνf |p dx3 dx
′.

We multiply both sides by 2µ(p/2−1), use the support of ζµ on the left hand
side and the support of ζν on the right hand side. Therefore, we get

(3.15)
�

R3

|x3|p(β−1)−2|ζµ(x3)uν(x′, x3)|p dx3 dx
′

≤ c2|µ−ν|(−pε+p/2−1)
�

R3

|x3|p(β+1)−2|ζν(x3)f(x′, x3)|p dx3 dx
′.

We note that in the case |µ − ν| ≤ 3 we add on the r.h.s. of (3.13) the
expression

c22µp
�

2Qj

�

R
|ζνf |p dx′ dx3

and consequently also on the r.h.s. of (3.14). Therefore, taking ε > 1/2, we
set ε1 = ε− 1/2 + 1/p to conclude the proof.

Let us observe that we have some bounds for uµ, the solution of the
auxiliary problem defined in (3.9). Now we are going to prove the analogous
result but for the original problem with the functions u and f .

Lemma 3.8. Let u solve

P (∂x′ , ∂x3)u = f

and let the assumptions of Lemma 3.3 be satisfied, p ≥ 2. Then

(3.16)
�

R3

|x3|p(β−1)−2|u(x′, x3)|p dx3 dx
′≤c

�

R3

|x3|p(β+1)−2|f(x′, x3)|p dx3 dx
′.

Proof. To deal with the problem for u and f, we apply Proposition 2.6
to the situation of Lemma 3.7. Namely, we note that estimate (3.11), which
we recall here:

�

R3

|x3|p(β−1)−2|ζµ(x3)uν(x′, x3)|p dx3 dx
′

≤ c2−|µ−ν|ε1p
�

R3

|x3|p(β+1)−2|ζν(x3)f(x′, x3)|p dx3 dx
′,

is of the form of condition (2.5), i.e.

‖ζµOζνv‖E0(R3) ≤ e−ε|µ−ν|‖ζνv‖E1(R3)

with

q = p, E0(R3) = V 0
p,β−1−2/p(R

3), E1(R3) = V 0
p,β+1−2/p(R

3)
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and O = A−1 is such that

O : V 0
2,β(R3)→ V 0

2,β(R3).

Therefore, the conclusion (2.6) of the form

‖Ov‖E0(R3) ≤ c‖v‖E1(R3)

yields (3.16).

Our final estimate combines the previous result with the local regularity
estimates as follows.

Lemma 3.9. Let the assumptions of Lemma 3.3 be satisfied, f ∈ V 0
2,κ ∩

V 0
p,κ(R3), p ≥ 2. Then, for u solving the problem (3.4) and u ∈ V 2

2,κ(R3),

(3.17) ‖u‖V 2
p,κ(R3) ≤ c‖f‖V 0

p,κ(R3).

Proof. We apply the local regularity statement and from (2.2) with κ in
place of β we derive

‖u‖V 2
p,κ(R3) ≤ c(‖f‖V 0

p,κ(R3) + ‖u‖V 0
p,κ−2(R3)).(3.18)

Since f ∈ V 0
p,κ we set p(β + 1) − 2 = pκ, so we calculate β = κ − 1 + 2/p

and substitute to find that p(β − 1)− 2 = p(κ− 2). Therefore, we apply the
formula (3.16) to derive u ∈ V 0

p,κ−2 and

‖u‖V 0
p,κ−2(R3) ≤ ‖f‖V 0

p,κ(R3).

We combine this with (3.18) to get (3.17). This concludes the proof.

Lemma 3.10. Let the assumptions of Lemma 3.3 be satisfied, f ∈ V 0
2,κ ∩

V 0
p,κ(R3), p ≥ 2. Then there exists a solution u of the problem (3.4) such that
u ∈ V 2

p,κ(R3) and the estimate (3.17) holds.

Proof. We take a sequence fν of smooth functions with compact support
such that fν → f in V 0

p,κ(R3). According to Lemma 3.4, there exists a solution
uν ∈ V 2

2,κ of the problem (3.4) with the right hand side fν . Applying the
estimate (3.17) we infer the convergence of the sequence uν in V 2

p,κ to the
limit u.

Using the standard regularizer methods, we apply the above result to
deduce the existence theorem for the problem (1.2) in Ω and, consequently,
for (1.1) in Ω′.

Theorem 1. Let the assumptions of Lemma 3.3 be satisfied, f ∈ V 0
2,µ ∩

V 0
p,µ(Ω′), p ≥ 2. Then there exists a solution ϕ of the problem (1.1) such that
ϕ− ϕ(0) ∈ V 2

p,µ(Ω′) and

‖ϕ− ϕ(0)‖V 2
p,µ(Ω′) ≤ c‖f‖V 0

p,µ(Ω′),

where f = f ′ +∆ϕ(0).
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Corollary 1. Denote by L2
p,µ(Ω′) the following space:

L2
p,µ(Ω′) =

{
u : ‖u‖L2

p,µ(Ω′) =
(∑
|α|=2

�

Ω′

|Dα
xu|px

pµ
3 dx

)1/p
<∞

}
.

Then under the assumptions of Theorem 1 we have the inequality
‖ϕ‖L2

p,µ(Ω′) ≤ c‖f‖L2
p,µ(Ω′).
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