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SOLVABILITY OF THE STATIONARY STOKES SYSTEM
IN SPACES H?, p € (0,1)

Abstract. We consider the stationary Stokes system with slip boundary
conditions in a bounded domain. Assuming that data functions belong to
weighted Sobolev spaces with weights equal to some power of the distance
to some distinguished axis, we prove the existence of solutions to the problem
in appropriate weighted Sobolev spaces.

1. Introduction. We consider the following problem for the Stokes sys-
tem:

—Av+Vp=f in 2,
(1.1) dive =g in £2,

v-n=0, ntD(v)7, =0, «a=1,2, on Jf2,
where v = v(z) = (vi(x),v2(z),v3(x)) is the velocity and p = p(x) is the
pressure, 2 = 2, N D, D = {x = (z1,22,23) : 0 < r < 00,0 < ¢ < 27,
x3 € R}; r, ¢, x3 are cylindrical coordinates, i.e. 1 = 7 cos¢, xa = 7sin ¢;
2, C R? is a bounded domain with boundary 92, 92 = 012, \ Y0, Y0 =
002, N{(x1,z2,23) : 0 <7 < 00, » = 0, x3 € R}. Moreover, 7 is the unit
outward vector normal to 0f2 and 7,, @ = 1,2, is a unit tangent vector
to 012.

We add to the system (1.1) the following conditions:

U‘Fo = V|1,

ﬁT(vﬂpNFo = —nT(v,p)|rs,,

where Iy = 2, N {(x1,22,23) : 0 <1 < 00,0 =0,23 € R}, Ior = 2,N
{(z1,22,23) : 0 < r < 00, ¢ =27, x3 € R}, T(v,p) = D(v) — pI, D(v) =
{Ui,xj + Uj,mi}i,j:I,Q,Sa I is the unit matrix.

(1.2)

2010 Mathematics Subject Classification: 35Q35, 35J99, 76D07.
Key words and phrases: stationary Stokes system, weighted Sobolev spaces, existence in
weighted Sobolev spaces, slip boundary conditions.

DOI: 10.4064/am37-1-2 [13] © Instytut Matematyczny PAN, 2010



14 E. Zadrzynska and W. M. Zajaczkowski

We assume that

(1.3) gdx = 0.

QD —

We also assume the following conditions on (2:
(1.4)  £2, contains a distinguished axis L which is perpendicular to 9f2,;
L={x:r=0}
(1.5)  there exist neighbourhoods of points =M, z(2) € L N 8%, in 92,

which are flat, i.e. they are contained in the tangent planes at z(®,
i =1,2, to 082,.

The aim of the paper is to prove the solvability of problem (1.1)—(1.2) in
weighted Sobolev spaces H2 ,(£2), i € (0,1). To formulate the main result
we introduce a global Cartesian system (z1, 22, x3) in R? such that L is the
x3 axis.

Let £2 C R3 be a domain. Then we define the spaces:

1/2

Lo () = {us Jullp, o) = ([l de) ™ < oo},
(0}

1/2
HY(2) = {u i o) = | § (212172 + 2’720 0) da| < oo,

o=
2
H2,(2) = {u: Jullgz () = | § (ala’ |7+ ufa/| 205D
9]

1/2
+ u?|z!| 722 d:c} < oo}, peR.

In the above definitions x = (x1, 72, 23) € R3, 2’ = (21, 22). Moreover, we
do not distinguish vector and scalar-valued functions. Let u = (uq, ..., uy).
2 _ 2,2 _ 3,2 2 _ 3 2

Then u® = Z?:l Uiy Up = Z?:l Zj:l Uiz Wpr = Z?:l Zj,k:l Ui iy,
Let V be the closure of the set {g € H(£2) : g vanishes in a neighbour-
hood of L and {, gdz =0} in H! ,(12).
Now, we can formulate the main result of the paper.

MAIN THEOREM. Let u € (0,1), 02 € C?, f € Ly_,(2), g € V.
Moreover, let conditions (1.3)—(1.5) be satisfied. Then there exists a unique
solution v € HE#(Q), pE Hl“(Q) of problem (1.1)—(1.2) and

(1.6) [olle2 @) + Pl (@) < el fllLa @) + 9l (2)-

We prove the Main Theorem in several steps. First, in Section 3 we
consider the problem
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~Av+Vp=f inR¥\Cs,

(1.7) divv=yg in R\ Cs,,
v=20 on 0Cy,,
v—0 as |z| — oo,

where Cj, = {z € R?: 0 < |2/] < do}, 6o < R/2, R >0, f € Lo, (R3\ Cy,),
g € HEH(R“?’ \ Cs,), suppg C (R3\ Cs,) N Cra(2?), Cra(2) = {x € R3:
l2/| < R, |zs — 23| < a}, 2° = (0,0,29) € L is a point. We show that
under the assumption that (v,p) € HEM(R?’ \ Cs,) X HE#(]R?’ \ Cs,) with
suppv C (R3\ Cs,) N Cra(xY), suppp C (R?\ Cs,) N Cra(23) is a solution
to system (1.7), the following estimate holds:

(1.8)  vlla2, @y + P ®e65)
< [ f s, - wavesy) + 19llmr , ®2\Gsy))»

where ¢ > 0 does not depend on Jg.

Estimate (1.8) is derived by applying the Fourier transform with respect
to the variable x3 and by using the properties of two-dimensional equations
with a parameter (see Section 2).

In Section 4 we first consider problem (1.1) in 2\ Cj with slip boundary
conditions on (£2\ Cs) and with data f5 € Ly _,(£2\ Cs) and gs € HEM((Z\
Cs) such that their extensions by zero to {2, fs € Lo _,,(£2) and gs € Hiu(_Q),
approximate f and g in Lo _,(f2) and HE”(Q), respectively. For a solution
(vs,ps) € H2(£2\ Cs) x HY(2\ Cs) of such a problem we prove the estimate

(1.9) l[vsllm2 (oves) + IPsllir vcp) < sl 65 + 195l m1 (2\65)

with a constant ¢ > 0 independent of §.

To derive estimate (1.9) we localize the problem in neighbourhoods of
four types of points:

(a) near an interior point of L;

(b) near a point where L meets 0(2;

(c) near an interior point of {2 but at a positive distance from L;
(d) near a point of 92 at a positive distance from L.

In cases (a) and (b) solutions of localized problems satisfy estimate (1.8). In
cases (c) and (d) we obtain similar estimates to (1.8) by using the results in
non-weighted Sobolev spaces (see [6]) and the equivalence of H¥ and H* L
norms (k =1,2).

As a consequence of the above four cases and using a partition of unity
we get (1.9).
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Next, we show that (vs,ps) € HEL(Q) X Hl#(()) where 5 and ps are the
extensions by zero of vs and ps to {2 and (vs, ps) satisfies

H@tSHHEM(Q) + Hﬁéquu(Q) < C(”J?JHLQ,_,L(Q) + ngSHHiu(Q))-

The above inequality implies the convergence of (05, ps) to a function (v,p) €
H?2,(2) x HL (£2) which is a solution to problem (1.1)-(1.2) and satisfies
estimate (1.6).

A slight modification of the proof suffices to obtain the Main Theorem
in the case of {2 being a cylinder with a lateral surface of class C?.

Now, we will review previous results concerning the solvability of the
stationary Stokes system in different function spaces.

The stationary three-dimensional Stokes system has been treated before
in the usual Sobolev and Hoélder spaces in the papers [4, €, [8, @, [10] and in
the book [2]. More precisely, in |4} [6] it is proved that there exists a solution
v € WIH2(0), Vp € WH£2), 7 > 1,1 > 0, of system (1.1) with g = 0 in a
bounded domain 2 C R3 and with the boundary condition u|s, = a under
the assumptions that f € W/(£2) and a € ﬁ”fl/r(ﬁﬁ).

Analogous solvability results in Holder spaces C'T%2(§2),1>0, 0<a <1,
can be found in [4} [6 [10]. In [5] the solvability of the nonstationary Stokes
system with nonhomogeneous Dirichlet boundary conditions was proved in
the case of nonzero g. In 7] the nonstationary system (1.1) with the Neumann
boundary condition T(v, p)n|an = 0, where T(v,p) = {T;;(v,p)}ij=123 =
{—0ijp+v(vie; +vj2;) }ij=1,2,3, is considered. The existence of solutions (v, p)
either with v € W2(£2), Vp € La(£2) under the assumption that f € La(£2),
or v € C?T¥(2), Vp € C%$2) under the assumption that f € Lo(£2) N
C“(42), is obtained.

Solvability results in the space W2({2) in the case of some other bound-
ary conditions and in the case of an unbounded domain 2 were given by
Solonnikov and Schadilov [9).

In contrast to the proof of the Main Theorem, the proofs of the above
mentioned existence results base on the technique of potentials.

In [8] Solonnikov examines the solvability of (1.1) in weighted Sobolev
spaces Hg, p € (0,1), in a domain Dy = dp x R, where dg = {z € R? : 0 <
¢ < 0} is an angle such that 6 € (0, 27). Boundary conditions imposed on the
boundary of Dy correspond to the boundary conditions assumed for a free
boundary problem for the stationary Navier—Stokes equations. Moreover, the
weight in [§] is the distance from the edge of Dy.

The only paper concerning the solvability of both the stationary and
nonstationary Stokes system in the weighted Sobolev spaces with p € R\ Z
is [11], where the two-dimensional Stokes system is considered; we use the
results of [11] in Sections 3 and 4.
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Moreover, the results of [I1] are used in [13]|, where the estimate and the
existence for solutions of the initial-boundary value problem to the nonsta-
tionary Stokes system with slip boundary conditions are proved.

The present paper is divided into four sections. In Section 2 some auxil-
iary lemmas are formulated. Section 3 is devoted to deriving estimate (1.3),
and Section 4 contains the proof of the Main Theorem.

2. Auxiliary lemmas. In Section 3 (see Corollary 3.5) we derive some
inequality for a solution (v, p) € H2 M(R?’) x H! M(Rg’) of the problem

—Av+Vp=f in R3,
dive =g in R?,
(2.1) v—0 as |z| — oo,

U‘Fo = U|F27r7
AT (v,p)|r, = —0T(v, D)1y,
Let us denote
(2, &) = Fu(a,€) = S e 8y (x! | x3) dus.
R
Then applying the transform F' to problem (2.1) we get

AV +Vp=f - =K inR?forae £ ER,

(2.2) div'v' = —ifo3+ g =k in R? for a.e. £ € R,
=0 as |2/ — oo
and
(2.3) N—A’@g = f3— 203+ ifp=hs in R? for ae. £ €R,
03 — 0 as |z'| — oo,
where A" = 92 + 02,, V' = (04, 0s,), @ = (11, 8ia), 4 € {¥, f,h}, div/ & =

U1z, + V2,2, We treat (2.2) and (2.3) as two-dimensional problems with a
parameter &.

LEMMA 2.1 (see |[IT, Lemma 2.4). Let u € R\Z, 8o > 0, h' € Ly, (R?),
ke H' (R%). Let #/(-,€) € H? ,(R?), p(-,€) € H,(R?) be for almost all § €
R a solution of problem (2.1). Moreover, assume that v € Lo(R; HzM(RZ)),
p € Ly(R; H! ,(R?)). Then

24) Ny momz, w2y + 1Bl Ly, r2)) < (1B | 1, (o) + |“;?HH1#(R3))-
Similarly, we have

LEMMA 2.2. Let p € R\ Z, g > 0, hy € La_,(R?). Let 3(¢,") €
HEM(RQ) be for almost all £ € R a solution of problem (2.3). Moreover, let
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03 € Lo(R; H? ,(R?)). Then

193]l £, ;12 , (R2) < cllhsllz, @)
In the proof of Lemma 3.4 we consider the following auxiliary equation:
Ap =divh in R3,
(2.5) ¢
$»—0 as |z| — oo.

LEMMA 2.3. Let h € Ly ,(R3), u € (0,1). Then there exists a solution to
(2.5) such that V¢ € Lo, (R3) and

(2.6) IVOlLs,. 3y < cllhllL,,, m3)-

Proof. As h € Ly, (R?), there exists a sequence hs € C§°(R?) such that
supp hs C R?\ Cs and
(2.7) hs —h in Ly, (R?) as § — 0.
Consider the problem
Aps =divhs in R?,
¢s — 0 as |z| — oco.
Let E = E(z — y) be the fundamental solution to equation (2.8). Then

a solution of (2.8) can be written in the form

¢s(x) = | B(x —y)divyhs(y)dy = — | VyE(x — y)hs(y) dy.
R3 R3

(2.8)

Hence

Vads(x) = — | VaVyE(z — y)hs(y) dy.

R3
From [1] we have the estimates
IVslLs, o) < cllhsllis sy I19sllLs,. @) < cllhsllL, ,@s)-
Hence
(2.9) psllws sy < cllsllLy,, @s):
where

WAR) = {u: ulwyes)

= (| WP o) de + | 1o/ (Vo) ) < o0},

R3 R3
The solution ¢; of (2.8) satisfies the identity
(2.10) | VosVipde = — | hsVpda
R3 R3

for all ¢ with Vi € Ly _,(R).
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By estimate (2.9) there exists ¢ € W} (R?) such that
¢s — ¢ inWLR?) as§— 0

and ¢ satisfies identity (2.10). Therefore, ¢ is a solution of (2.5) such that
V¢ € Ly ,(R3). Moreover, ¢ satisfies (2.6). =

Now, let (v,p) be a solution of problem (1.7). Introduce the functions
{ w in R?\ Cy,,
0 in Cj,,

Where w E {U’p’ f’g}’ /Ll_) 6 {/177}37‘]‘7"@}'

In Sections 3 and 4 we use

LEMMA 2.4. Let pu € (0,1) and let (v,p) € H? ,(R3\Cs,) x H! ,(R*\ Cj,)
such that suppv C (R®\ Cs)) N Cra, suppp C (R*\ Cs,) N Cra be a
solution of problem (1.7) with f € Ly _,(R*\ Cs,), g € HL (R*\ Cs,)
such that supp f C (R3\ Cs,) N Cra, suppg C (R3\ Cs,) N Crq. Then
(v,p) € HEH(R?’) X Hiﬂ(]Rg) and (v,p) satisfies (2.1) with f,g replaced by
f9

Proof. Set 0, =v-e,, Uy =v- ey, U3 =v-e3, p(r,¢,x3) = p(x1, 22, T3),
f?‘ — f €r, f¢ - f €op, f3 - f €3, g (T ¢7x3) = g(x17x27$3)7 €r =

(cos ¢,sin¢,0), ey = (—sin¢, cos ¢,0), e3 = (0,0,1), where 7, ¢, x3 are the
cylindrical coordinates.

’u_}:

Next, introducing the new variable 7 = —Inr we denote
ur (7,9, 23) = 0p (€77, B, x3), ug (7, ¢, w3) = dg(e”", §, x3),
u3(7, ¢, 3) = 03(e77, ¢, 3), q(t,¢,x3) = ple”7, ¢, x3),
he(T, 0, 23) = e 2 fr(e™™, b, 3),  ho(T,¢,33) = € 7 fy(e ", b, x3),
hs(r,¢,23) = e 7 fa(e T, b, x3),  k(r,¢,73) =€ "g(eT, ¢, 3).
The problem (2.1) rewritten in the variables 7, ¢, x3 takes the form

(U rr + Ur g+ € U gy — Up — U+ G+ q) = Dy

n (—oo, A) x (0,27) x R,
~(Ugrr + Up gy + €Uz, — Up + 2ung — q8) = hy

in (—oo, A) x (0,27) x R,

(211)  —(urr + Uz.pp + € U 23z — € T Qg) = h3

n (—oo, A) x (0,27) x R,
—Upr + Upgp+ € ULy U =k in (—o0, A) x (0,27) x R,
Ulp=0 = Ulp=2r in (—00,A) xR
(=g + Urg — Ugp)lp=0=(—Upr + trg — ug)|p=ar in (—00, A)xR,
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2(ug,p + ur) — qllg=0 = [2(up,¢ + ur) — q]lp=2r in (—00,4) X R,

2.11)  (Uozs T usg)lo=0 = (Ugzs + U3,9)ls=0r in (o0, 4) x R,
[cont.] U|T:A =0 in (0, 27’[‘) x R,
u—0 as T — —00,

where A = —In dg.
Let us extend the functions wu,, ug, us, hr, hy, h3, g, k by zero to functions
Uy, Ug, U3, hr, hg, h3, @, k defined in (—oo, +00) x (0,27) x (—00, +00), i.e.
_ w in (—oo, A) x (0,27) x R,
w =
0 in (A,400) x (0,27) x R,
where w € {'LLT, Ugp, U3, hr, h¢, hs, q, k}, w € {ﬂr, Ug, U3, BT, ibd), Eg, q, E} From
the assumptions it easily follows that @, iig, u3 € H*(R x (0,27) x R), ¢ €
HY(R x (0,27) x R) and (iy, iiq, Uiy, q) satisfies problem (2.11)1 2345679 in
R x (0,27) x R.
Therefore, by the equivalence of HF , and H ¥ norms in this case, the
assertion of the lemma follows. =

3. Estimates. The aim of this section is to prove the following theorem.

THEOREM 3.1. Let p € (0,1) and let (v,p) € H2,(R*\ Cs,) x HL ,(R*\
Cs,) such that suppv C (R?\ Cs,) N Cra, suppp C (R?\ Cs,) N Cra be
a solution to problem (1.7) with f € Ly _,(R*\ Cy,), g € HL (R*\ Cs,),
supp f C (R*\ Cs,) N Croa, suppg C (R*\ Cs,) N Cra. Then

B1) ol @6y, T Pl ®2\G,)

< cllfllzs,_@3\G5y) + HgHHiu(Rfi\ééO))v
where ¢ > 0 is independent of dg.
To prove Theorem 3.1 we need some auxiliary estimates for solutions of
problem (2.1) which will be derived in Lemmas 3.2-3.4 below.
In Lemmas 3.2-3.4 below we assume that (v, p) is a solution to problem

(2.1) such that suppv C (R3\ Csy) N Croas suppp C (R3\ Cs,) N Cr,4 and
supp f C (R*\ Cs,) N CRra, suppg C (R3\ Cs,) N Cra.

LEMMA 3.2. Let pn € (0,1), e € (0,1) and let ©,p, f,§ denote the Fourier
transforms with respect to x3 of the functions v, p, f,g (see Section 2). More-
over, assume that

Ve | 21pP)a’| ™ da' + [ | |02 2 da’ < oo,
R R2 R R2

Sdé S |f‘2|$/|_2ud$/+gd€ S €2|§|2|$,‘_2Md$/ < 0.
R R2 R R2
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Then solutions (v,p) of (2.1) satisfy the inequality
(32)  {de | (VP + &) a’| 7 do’

R R2
1
<elde | €p*la’| 7 dx’+c<> Jdg § €202 da!
R R2 /R me
1 = - _
we( ) Ve JU7P + g’ o
R R2
where ¢ = ¢(1/¢) is an increasing function.

Proof. Differentiate problem (2.1) with respect to x3 and apply the Fou-
rier transform F' to get

—iEAY +i€30 +iEV'p=iff  in D,
(3.3) i€ (01ay + U20y) = —E*03+14€§  in D,
—iANDy + 16355 = Ep+iffs  in D.
Multiplying (3.3); by —i€d'|2’|72*, and (3.3)3 by —i&ws|a’|~2#, and then

integrating the results with respect to 2’ and £ we obtain

Vde | (V0P + &)%) 2’| da’

R R2
=2u\d¢ | &€V'5- o]/ |77V /| do’
R R2
—op\dg | &pv - | |7V 2| da’ + \ dg | 2 F - bl da!
R R2 R R2
— e | &gpla’| =2 da
R R2
Hence
Ve | (V0P + o)) ||~ da’
R R2
IS - . _ 9 ~ _
< 5 Va6 Y ENVOl + o' da’ + 2 [ de | €21l o' da’
R R2 R R2

+c<1> Sdﬁg 52’ﬁ|2‘1‘”—2ﬂ—2 d;c’+c<1> Sdgg (|f|2 —1-52@‘2)‘:6,’_2“ A’
&) n me e) )

For sufficiently small € estimate (3.2) follows. m

Now, we have to estimate the first two terms on the r.h.s. of (3.2). In the
next lemma we estimate the first term.
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LEMMA 3.3. Let u € (0,1) and
Jag | &(oPla’) 7% da’ < oo,

R R2
Ve § 1F1712'| 72 da’ + { de § €21g1%[a’| 7% da’ + { |gll% (ge) dE < oo.
R R2 R R2 R

Then solutions of (2.1) satisfy the inequality

(3-4) S(HﬁH%{EM(R?) + Hﬁ”?{lu(RZ)) dg

R
+ e | (V0 + EoD)a’| 2 ar!
R R2
+ [ de | elpPla’| 2 da
R R2
< cﬂidﬁ | €alo’| 2 do’ + (11, o) +ﬂ§”§”§““(R2) ).
R

Proof. First, we will derive an estimate for {5, d¢ {5, £2|p|?|2’| 2 da’. To
do this we use the system

—Ap+Vn=0 inR3
(3.5) dive = plz/|™*  in R3,
$p—0 as |z| — oo.

Solutions of (3.5) satisfy the estimate

(3.6) VN7, msy < cllplZ, o)

Substituting ¢ = ¢|2’| 7 in (3.6) we get

(3.7) VIV (@l + oy [P |72 de < e | [pl?a’| 72 da”
R3 R3

Differentiating system (3.5) with respect to x3 we obtain, instead of (3.7),

§ 19 (o )P+ g P! 2] i < [pag 1|2
R3 R3

Next, applying the Fourier transform F' yields
(3:8) Ve § [V (Dl T)P + €191’ | 2] da’ < e\ dg | €15’ do
R R2 R R2
Let ¢ € C§°(R4) be a function such that 0 < ((¢) < 1 for t € Ry,
C(t)=0fort <a/2, ((t)=1fort>aand (] <c/a,a>0.

Multiplying (2.1)1 by ¢'['|-2¢([¢] [2']) and (2.2) by dsla’| -2 (l¢] |2'])
and then integrating the result with respect to =’ we get
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J (—2%+€%0) - 0’| 24Cda’ + § (paytht + D ayths — i€i0s) |2/ |72C da’
R2 R2

= | Jola/| ¢ da'.
R2
Hence

(3.9) | [B(d1la’| ) 0y + Blala!| ) y + Biks|2’|HC) da’
R2

+ § Bl | (12| 7C) oy + Dol | (2| 7C) ) de’
R2
= [ V- V'@l 72¢) + €5 - o2 da’ — § -4

o' |72¢ da
R2

RQ

Inserting ¢ = |2’| 7 in (3.5)2 and next applying the Fourier transform with
respect to x3 gives

div’ (9| 7) — igusfa| 7 = pla’| .
Therefore (3.9) implies

{2 ag | [pPla’| ¢ da!
R R2

< e\ &de | [P (1|72 + |27 J¢)) da

R R2
+e | &de V[IV'a||V/ (2| 7)] 2| 7¢
R R2
+ V0] 9] [ 727N+ (V1B [ 2] 72 I€IC
+ (0] || 2|72 da’ + ¢ | 2dg | [ F] 1] |2/ |72¢ da”.
R R2
Using the properties of the function ¢ we obtain

V2 ag | [pl 1’| da' < ey [ €2dg | [p*[2'|%¢ da’

R R2 R R2
+<1) [ e2de | 621/ |722¢ da! + 25 | € de | [[2]a'|72(C] da
1/ r R2 R R?
+<51> Ve2de | 1pPla’ |72 () da
2/ R R2

+es | e V[V @la’ |77 + [ Pla/| 2] da’
R R2
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<1> V&2 de | V0|2’ ¢ da
3/ R

RZ

ea|etde | 0PI 2R da' +c( )sgzdg [ 19322 ~2¢| da’
R R2 R2

+e5 | €hde | \zﬁﬂx’r—zﬂwch(l) [ ¢tag | 1o/ | ¢ da?
R R2 &5/ Rk R2

+ c<€15) Hi de | [F1P12'| 72 do.

R2

Notice that |2/| 7! < (2/a)|¢| for (a/,€) such that |2'| |¢] € supp ¢. Therefore,
assuming that e; = 1/2 and adding % { €2 d€ (. [B*[2']72#(1 — () da’ to
both sides of the above inequality gives

1 1
5 V&2 de | P’ | da’ < 5 S §2dg | |p?|a'| 7 (1 = () do
R R2 R2

1)1 -
+ (c<) + 2y cs5> [ et de | 1017 |2 da’
R

2
g1/ a a R2

beea [ de [ VP o ) 3§ de | Il
R

R R2 R2

—l—C(l i 1) Sg d¢ S ’V,l~1|2|x/|_2“d$l

€3 64 a R2

~121 1—2 / 1 120 =2 /
+c(€5> gg de | |9)%|2'] Mdm+c(€5>ﬂid5g|f| 2|72 da'.

R? R2

Since 1 — ¢ # 0 for (&, ') such that |[¢]| < a|2’|, in view of (3.8) we get, for
sufficiently small ¢; (i = 2,...,5) and for sufficiently large a,

(3.10) (&g | |p]*|2'| " da’ < e\ de | [p*[af| 77 do’
R R2 R R2
+e§ €dg | (V0] +€(5) /|72 da’ + ¢ [ dg | |F1P)'| 7 da.
R R2 R R2
Using (3.10) in (3.2) we obtain, for sufficiently small e,
B11)  [dg | &V + &)/ | 72 da’ < e\ dg | [p*[a’] 22 da
R R2 R R2
+elde | 2Pl 2 da’ + e[ de [ (117 + €291’ 72 da.
R R2 R R2



Solvability of the stationary Stokes system 25

Now, Lemmas 2.1-2.2 yield the estimates

(312)  §(192 o) + 1Al me)) d€ < e §EITI3, o
R R

+§2H173H§{3u(u@2) + 112, @2 + ”§H§{;(R2)) dg
and

(3.13)  Jl5slle (geyd€ < eN(E€NTI1Z, @) + P, @) dE
R R

By (3.11)-(3.13) we have, for sufficiently small ¢,

(3.14) S(Hﬁ/”iﬁ“(n@) + Hﬁ”fqiu(]m) d§ < C(Hf”%zfu(R?’)
R

+ S HQH%Q (R2) d¢ + S d¢ S 52‘®/|2’x/’72u72 da:/).
R g R R2

Inequalities (3.10), (3.11), (3.13) and (3.14) yield (3.4). This ends the proof. m

In the last step of the proof of Theorem 3.1 we need to estimate the
integral { d¢ 5, €2|0]?|2/| =272 da’. In order to do this we define

Q1 ={(a,6) e R* xR : [¢]]2'] < a1},
Q2 ={(2',&) e R* x R : [¢] |2/| > as},
Q3 = {(x/,f) ER?xR:aq < €] ]a:'\ < as},

where a1, ay are positive numbers.

LEMMA 3.4. Let p € (0,1) and
Vdg | (o712 da’ + { dg | '[0]a’| 7 da’ < o0,

R R2 R R2
Ve § 1F112/|72 da’ + { de § (1V'g + 2|g[?) do’ < oo.
R R2 R R2

Moreover, assume that the assumptions of Theorem 3.1 concerning the sup-
ports of v,p, f and g are satisfied. Then solutions of (2.1) satisfy

(3.15)  {dg | &)’ 722 da’ < 207 dg | )%’ 2 da
R R2 R R2

2 N _

5 Vde | &Pl da

2R RQ

+c(ar,az) Vg | (IF17 + [V'g° + €2(g*)[a’| > da.
R R2

_|_

Q
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Proof. In view of the definitions of (); we have

3
(3.16)  ag | P’ 2 da’ =) | S0P’ de da!
R R2 i=1Q;
- o 1 5 _ 1 -
<at | ol [7H T da! + | ol dal + oy | [olPe do
Q1 2.Q2 a Qs

To examine the last term on the r.h.s. of (3.16) we introduce the sets

di () = {2’ € R* : [¢][a'| < a1},

da(€) = {a' € R* : [¢][a'| > an},

d3(€) = {2’ € R* : ax < [¢][2'| < aa},
and for A > 0 we define

O = {(¢,€) € (R) x R e |o/] < 1},

w(€) = {a' € R*: Mg |2/ <1}

Notice that Q3 C £2* for A € (0,&51]. Next, we introduce a function y €
C*(R4) with the properties: x(t) = 1 for t < 1, x(t) = 0 for t > 2,
0<x(t) <1lforteR; and x'(t) <2forteRy.

Denote ya(2',€) = x(M¢]]2']). Then xa(2',€) = 1 for |¢]]2'] < A7! and
xa(e',€) =0 [¢]]z'] > 2A7

Let ¢ be a solution of the equation
(3.17) div'(V'6 — 0'x3) — i(—ikd — 53x}) =0 in R?,
¢—0 as|z| — oo
Multiplying (2.2); by v'x3 — V’(Z, (2.3) by D3x3 + ifqg, adding the results,

integrating over R? (by using integration by parts) and using (3.17) together
with the assumption about the supports of v and p we obtain

| Vo' V(@3 = Vo) da' + | €004 - V'9) do’

R2 R2
+ | Vo - V(@03 +i€) da’ + | 038503 — i€d) da’
R2 R2
= [ @3 - V') + fa(@sx3 + i€)) da’.
RQ

Hence by (2.2)2 we have
VUV + 21023 do’ = | V'oi - 2Vxaxnda’ + | (F 7 + fads)3 da’
R2 R2 R2
~ (7 Vo + ficd)da' + | V'g-V'oda' — | 250 da’.
R2 R2 R2
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Continuing, we get
(318) [ (VP + &P de’ < 2 | (V823 do!
R2 2 R2
2 5 €9 -
+ = [ BRIVl da’ + 5§ 1Pl g da!
£1 R2 R2
1 1 ~
+— o | P12 o
2e9 |€]2H20 RSQ
€3 ~ ~
+ 5 VIEPPRIVGP + €210/ ' da’
R2

1 1 -
— —— \ (If? + |V'3]* + €2|g})|2'| 2 do’.
23 |€[*H2H ]R§2

For (2/,&) such that || |2’| € supp x» we have

(3.19) [ |PIE P < (2/ 0.

Therefore, taking e1 = 1, €2 = (A/2)*" in (3.18) and then multiplying (3.18)
by |£|>*2* and integrating with respect to ¢ yields

(320) [ delePr [ (Vo + o)} o’

R R2
<2 e g | PV
R2
+ 55 (e g § (VB + €213 o' o
R R2
1
o (A) [ de § (1712 + 1952 + 1)’ da,

RQ

To examine the term

Jg gl Y (VI + €161 ' [ da’ = | |07V [ |’ [P da
R R2 R3
(where 021%" is the fractional derivative) we rewrite equation (3.17) in the

form

Ap =div(vx F71x3)  in R,

where * denotes convolution with respect to x3. Then 8%;2“ ¢ satisfies the
equation

AGZH ¢ = div 922 (v + F71x3).
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Therefore, by Lemma 2.3,
| IO o2la! 2 de < o1 | 02520« PN el
R3 R3

and the Parserval identity together with (3.19) implies

Ve § 1 (V9P + 2101’ P da’ < eq [ de | 1€)X | da’
R R2 R R2

2 2 442 2.2 /
gq(A) [ de | et pa3 da,
R R2

where we also used the inequality Xi <1
Assuming that (e3/2)c1(2/))?* = 1/4, inequality (3.20) gives

1 - -
(321) o Jdgle § (V0 + €2[0")x3 da’
R R2
< 2{ag gl | 5P|V xal* da’
R R2

1 _
we(3) e SR+ 193 + ClaP e’ ao'
R R2

Using in (3.21) the inequality |Vxa| < 2A|¢] and assuming that A < 2 we
obtain

Jdclere | o’ da’ <322 fage™ | &P de’
R w(§) R w2 (€)\w(€)
1 ~ - - _
ve((5) Ve 077 + 195 + 2laP e’ do'
R R2

Multiplying by (A\/2)%*2 we get

)\ 2/.L+2
(3.22) (2) Vg le* 2 | &)of daf
R wA(E)
2pu+2
<2-43+MA2<A2/2) Vagjgpr> | &) d’

R wh/2(6)\w (€)

+e) §de § (TP + V'3 + 21| da.
R R2

Let 2 - 43t#)2 < 1/2. Then iterating (3.22) k times we obtain
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A 2u+2
(3.23) (2) JagleP2 | &2)of da’
R w(£)
1 (22822
e I U B
R

w2 (€)\wH/2 ()

1 = - - _

we(bg ) Ve JUTP + 9737 + €3 1) 2 a
R R2

where

w)‘/2k+1(§) \wk/Qk(é‘) = {aj e R?: )\/2k < |2'[[¢] < A/Qllwl}

Since |¢| < (2K /N)|2/|7! for (2, €) such that o/ € w2 (€) \ w2 (€),
the first term on the r.h.s. of (3.23) is estimated by

1 A 2p+2 B 2k+1 2p+2 o
2k<2k+1> | dee? | Iv\2<A) || 7212 da!
R w /2 (©)\wh/2" (¢)
1
= o5 )& | [0 |72 da
R w /2 (©)\wr/2" (€)

1 - oy
< o Vde € | [0 a7 da

R R2
Hence
) 1 92 2u+2 3 o
20 [delP | @il < g (3) 0 Jase § Pl e
R wh(E) R R2

+e(A k) Vg V(1P + Vg1 + €11l | 2 da'.
R R
Let k be so large that k > 2 + 2u and 1/(2F273#\204242424) < 1 /2 Then
by (3.16) and (3.24) inequality (3.15) follows. m

As a consequence of Lemmas 3.2-3.4 we can formulate

COROLLARY 3.5. Let p € (0,1) and let (v,p) € H? ,(R?) x H? (R?) be
such that suppv C (R3\Cs,)NCrq, suppp C (R*\Cs,)NCr,q be a solution to
problem (2.1) with f € Ly _,(R%), g € H' ,(R?), supp f C (R*\ Cs,) NCRr.a,
suppg C (R3\ Cs,) N Cryq. Then

(3.25) [0l may + 1Pl mey < el fllLs ey + l9llmn @)

Proof. Using (3.15) in (3.4) and assuming that a; is sufficiently small and
ay is sufficiently large, we obtain inequality (3.25). This ends the proof. =
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Proof of Theorem 3.1. Estimate (3.1) holds by Lemma 2.4 and Corollary
3.5. =

4. Existence of a solution to problem (1.1). Let C5 = {z € R? :
0<|z'| <6},0<d<R/2, R>0.Let pe(0,1), f € Lo_,(12). Then we
introduce the functions fs = f in 2\ Cs. Let g € V. Then there exists a
sequence gs € H'(f2) with gs = 0 in Cs and § s dz = 0 such that

. Q —~
(4.1) gs—g in H',(2), where g5= {f)” in 2 Cs,
in Cs.
Now, we consider the auxiliary problem
—Avs +Vps = fs in 2.\ Cs,
(4.2) divvs = gs in 2, \ Cs, /
v =0 on {x € 2, : |2'| =},

n-D) -7a=0, v-a=0, a=1,2 ondf\Cs.

In view of the assumptions on {2 (see (1.3)-(1.4)) there exists a unique
solution vs € H%(2\ Cs), ps € H' (02 \ Cs) with SQ\C‘(S ps dx = 0 of problem
(4.2).
LEMMA 4.1. For the solution (vs,ps) satisfying the condition
2N\Cs
we have the estimate
(4.4)  psllzoncs) T lvsllmranes) < elllfsll Loy + 19sllmrone))
where ¢ > 0 does not depend on 6.
Proof. First, notice that (vs, ps) satisfies the identity
45) | Dus:Dypde+ | psdivede= | fs-vpde— | Vgs-vda
NGy NGy NCs NGy
for every v € HY(2\ Cs) with ) = 0 on {z € 2 : |2/| = §}. Inserting 1 = vs
in (4.5) and using the Korn inequality we get
(4.6) HUcSH?ql(Q\éé) < 51(””6”%2(9\05) + HPciH%Q(Q\C*&))
+ 6(1/51)(||f5||%2(9\06) + ”%H?{I(Q\@))-
Now, let ¢ be a solution of the problem
div ¢ = ps in 2, \ Cs,
Plao.cs) =0
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By [3], ¢ satisfies

(4.7) ol (ncs) < cllpsllLyoncy)s
where ¢ > 0 does not depend on §. Inserting ¥ = ¢ to (4.5) we get

1
2 2 2
(4.8) ”p5||L2(Q\C‘6) < 82||¢”H1(_Q\C‘6) + C<52> (Hf&”LQ(Q\@)
+ 195l i (e IV Vs 1T, (05
Therefore, assuming that 1, ey are sufficiently small, by (4.6)—(4.8) and the

Poincaré inequality, the estimate (4.4) follows. m

Let pu € (0,1). Since (vs, ps) € H?(£2\C5) x H' (£2\C5), we have (v, ps) €
HgM(Q\C(;) X HEM(Q\C’(g). Now, our aim is to prove that for some solution
(vs, ps) of (4.2), where ps may differ by a constant from ps satisfying (4.3),

4.9)  vsllaz e Tlpslar v,y < ellfollr, _uoncs) Fllgslla,@ve5):

where ¢ > 0 is a constant independent of §.
To do this we need to localize problem (4.2) in neighbourhoods of four
types of points:

(a) near an interior point of L;

b) near a point where L meets 0f2;
near an interior point of {2 but at a positive distance from L;
)

(
()
(d) near a point of 92 at a positive distance from L.

Localization of problem (4.2) near an interior point of L. Let
2% = (0,0,29) be an arbitrary point of L N 2, and let ¢ € C$°(£2) be a
function with the properties: 0 < {(z) < 1 for x € £2; supp( C 0= CRa =
{z:|2'| < R, |z3 — 23| < a}, where R > 0, a > 0 are such that Cr, C {2;
((x) = 1for x € CRyaqse; |D¥C(7)] < cay~ %, v = min(R,a). Then the
function (05, ps) = (vsC, psC) is a solution of the problem

—Abs + Vs = f5 — 2VvsV( — v AC + ps V¢ = Fy

in 2N (2.\ Cs),
div o5 = §s + vs - V¢ = Gy in 2N (02,\Cy),
5 =0 on 9121 (2. Cy).

(4.10)

where fs = f5¢, g5 = gsC.

LEMMA 4.2. Let € (0,1), 6 < 8o < R/2, fs € Ly, (2\ Cs), g5 €
HL ,(2\ C5), gs = 0 on d(2\ Cj), 89\05 gsdx = 0. Then the solution
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(0s,Ds) of problem (4.10) satisfies the estimate

(A1) %l 2 (an@coy T 1Pl @n@ves)
do
<c 5 (Ipsllzy, v vcs) + IVVsllL, ey T Ivsllz, o nines)
+ el fsllzy, - nes) +M95llme (2vé5))s
where ¢ > 0 is independent of J.
Proof. Let us extend the functions @5, ps, Fs, §s by zero on R3\ (Cr.q\Cjs)

to functions still denoted by ﬁg,ﬁg,ﬁg, gs such that 05 and ps satisfy the
problem

—Abs + Vps = F(; in R? \ 65,

s~ A . 3\ A
(4.12) divis = Gs in R”\ Cs,

’55 :0 on acﬁ,

05 — 0 as |x| — oo,

where C5 = {z € R® : 0 < [2/| < §}. Since (05,p5) € H?,(R®\ Cs) x
HEM(R?’ \ Cs), by Theorem 3.1 we have the estimate

(4.13) o5l g2 ro\G5) + D5l 1 menc)
< cIF5 L, @ncy) + 1Gollmr mevcy)
< eI fslls_morcy) + 195111, revcs) + IVVsVCIL, (0 6)
+ vs ACll Ly nc5) T 1PVl Ly nés) + 106V L,y (0E5)-
Consider the third term on the r.h.s. of (4.13). We have
VsVl Ly nes) = IVUsVC L, _ L (supp ven(\Cs))
< IVUsVClI L, supp ven@nésy)) T IVUsVEIlL, — supp ven(cs, \Gs))
First, using Lemma 4.1 we get
VUVl L, supp ven(nGsy)) < Vsl Ly a\¢5)
< c(fsll Locnes) + 11981l o \05))-
Next, we obtain
do
IVUsVClI L, supp ven(Cs,\Cs)) < ¢ IVUsliz, oy (\Gs)-
Hence

do
||VU6VC”L2’_“(Q\C—’5) S C; Hv/UJHLZ’_u_l(Q\C_'é)

+ el fsll o cnes) + 1951y nE5))-
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The terms [[vsACl L, _,(2\¢5) 105V Clla\cy) and [PsVCIL, 2165 are
estimated in the same way.

Taking into account the above estimates and inequality (4.13) we obtain
(4.11). This ends the proof. =

Localization of problem (4.2) near a point where L intersects
002,. Let LN a2, = {z(M 231 We localize problem (4.2) in neighbour-
hoods of the points (") and z(?). Consider for example (1) and let () e
Q2N 0%, where 2 = Cr, = {x € R : |2/| < R, |23 — xél)\ < a}, and
diam 2 = \. Next, introduce a function ¢ € C§°(£2) such that 0 < ¢(z) < 1
forze 2,((z)=1forzew= CRy2,a/2- Since vs = 0 on 942, the functions
o5 = v¢ and ps = psC satisfy in 2N (£2, \ Cs) the same problem as in the
previous case, i.e. problem (4.10).

LEMMA 4.3. Let the assumptions of Lemma 4.2 be satisfied. Then the
solution (Us,ps) of problem (4.10) in 2N (£2,\ Cs) satisfies estimate (4.11).

Proof. By conditions (1.3)—(1.4) we can assume that the neighbourhood
2N 090, of 2z is flat, i.e. we can introduce a local Cartesian coordinate
system y = (y1,y2,y3) with origin at W) such that the y3 axis is directed
opposite to the outward vector normal to 962, and 21862, lies in the plane
y3 = 0. Problem (4.10) is described in some coordinates x = (z1,x2,x3).
Thus, passing to the coordinates y can be made by a rotation and translation.
Denote this mapping by y = Y (z). Then extending appropriately by zero
the functions o5, s, Fs, §s we see that problem (4.10) takes the form

—Abs + Vps = Ej in R? \ Cys,

div s = G in Ri \ Cys,

05 =0 on {y e R3: |¢/| = 6},
O0s;

3y =0, i=12 053=0 on{ycR®:y3=0}\{yecR?:|y|<d},
3

where R = {y € R® : g3 > 0}, Cy5 = {y € R} : |y/| < 6}, ay) =
w(YNy)), u € {5, b5, F5, Gs}.

Now, set
w(y', —y3) for yz <0,
W(y/7y3) = { /
(¥',ys)  forys >0,
u(y', —y3) for yz <0,
vt ={
u(y', y3) for y3 > 0,

where w € {d51, 52, D5, 95, Fo1, Fsa}, W € {Vi1, Via, P, K5, Hs1, Hya}, u €
{053, Fs3}, U € {Vs3, Hs3}. Then (Vs, P5) € HZ,(R*\ C5) x HL, (R*\ Cs)
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satisfies the problem

—AVs+VP;=Hs; in R3 \C’g,

div Vs = K in R*\ Cs,
Vs=0 on 0Cs,
Vs —0 as || — oo.

Using Theorem 3.1 and repeating the argument from the proof of Lemma
4.2 we obtain

H175||H2 (2n(2\Cy)) + ||]56HH1((”20(Q\C'5))
< C(||U<5HH2 L&) T Pslla ®3\eys))
< Vsl wencs) + 1Bsllmn , mevcy))

< sz, wavcy) + 185l ®evcy)

| /\

(HFJHLQ —u(R3\Cy5) +HG6HH1 ]R3\C+5))

IN

do
c (sl ey F IVVsll, s nes) + vsllzy _,oncs)

+ el fsllzy, - unes) + 195llme (on65)-
This ends the proof. =

Localization of problem (4.2) near a point lying at some distance
from L. Let 2° € (2, be such that dist(z°, L) > R/2. We can assume that
29 € 2, where 2 C (2, is a cylinder such that 2N Cs = 0, and We choose a
function ¢ € C§°(£2) with the same properties as in the case of z° € LN §2,.

Let 05 = vsC, ps = psC. Then (s, ps) satisfies problem (4 10) in 2 =
(12, \ Cs) N £2. By extending by zero the data and s, ps to R?, the problem
is reduced to a problem in R3.

LEMMA 4.4. Let the assumptions of Lemma 4.2 be satisfied. Then the
solution (Us,ps) of problem (4.10) in (2 satisfies the estimate
(4.14)  NOsll gz () + 15l () < el fsllLars) + 19512, (2065))-
where ¢ > 0 is independent of §.

Proof. Assume that dist(£2, L) > R/4. Then estimate (4.14) follows im-
mediately as a consequence of the equivalence of H* , and H F(k=1,2)
norms in this case and the regularity theory for the Stokes system in the
usual Sobolev spaces (see [2,[6]) as well as Lemma 4.1. =

The case of 2° € 92, 2 € L can be treated as the previous case, i.e.
straightening 0f2, in a neighbourhood of 2% we can reduce the problem to a
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problem in the halfspace R‘}_. Then using the same argument as in the proof
of Lemma 4.4 we can formulate the lemma below.

LEMMA 4.5. Let the assumptions of Lemma 4.3 hold. Then the solu-
tion (0s,ps) of problem (4.11) in a domain 2 N §2,, where 2 N 082, # 0,

dist(2,L) > R/4 and diam 2 = X\ (X is sufficiently small) satisfies the
estimate

H%HH{H(QnQ) + Hﬁé”ng(fzmQ) <c(lfsllpy_,nes) + H%”H{M(Q\C‘é))a
where ¢ > 0 is independent of 6.

As a consequence of Lemmas 4.2-4.5 we get

COROLLARY 4.6. There is a solution (vs,ps) € H2(2\ Cs) x HY(£2\ Cs)
satisfying inequality (4.9) with ¢ > 0 independent of §.

Proof. Let {¢;} be a partition of unity associated with a covering {(2;}
of £2, by cylinders and assume that sup, diam 2; = \, where ) is sufficiently
small.

Let (%,p5) = (vsCi,ps¢i) (where ps satisfies (4.3)) be one of the four
localized problems. Then vs = ) .05, ps = Y, Ps is the solution of (4.2)
satisfying the inequality

sl 2, (nGs) + D5l En (065
do
<c 5 (sl s nes) + IVOsl L, vy + 101l 2s__orc5))

el fsllzs, - nes) T 195llme (on65)-
Therefore, assuming that Jg is sufficiently small we get inequality (4.9). =
Now, we can finish the proof of the Main Theorem.

Proof of the Main Theorem. Let (vs, ps) be a solution of (4.2) satisfying
(4.9). In particular, (vs,ps) is a weak solution satisfying the identities

S Dog : Dy dx + S ps div i dox = S fs -1 dx — S Vs -1 dx
NCs 2N\Cs NGy N\Cs
for every 11 € H*(£2\ Cs) with ¢1 = 0 on {z € 2 : |2'| = 6} and
| divesyode= | gsvoda
Q\ég Q\éé
for every ¢y € HY (22 \ Cs) with ¢ = 0 on {z € 2 : |2/| = §}. Extending
the functions wvg, ps, f5,9s by zero to the functions 75 € Hlu—l(Q) with
175,:27;‘%3 € LQ,—M(‘Q)7 1= 172737 ps € LQ,—N—I(QZ Wl};h p&,xg € LQ,—M(‘Q)a
Js € HEM(Q), next extending 1,9 by zero to 11,19 and assuming that
Y1 = ¢1]a’| 7, g = ¢ola’| 7% where ¢1 € HY(2), ¢p1 = 0 on {z € 2 :
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2’| = 6}, o € HY(2), ¢ =0 on {z € 2 : |2/| = 6} (¢1 and ¢ vanish in
Cs) we find that the following identities hold:

(4.15) | Dos : D(1]2’| ") da + | ps div ¢a|a’| " da
2 2
—2u\ psor - V|| || de =\ fs - dula! |7 dw — | Vgs - dala! |7 dp
(0] 2 2

for every function ¢ € H!({2) vanishing in Cs and

(4.16) S div oo |’ |72 da = S Gsola! |7 dx
02 N
for every ¢o € H'(§2) vanishing in Cj.
Moreover, by estimate (4.9) the function (vs, ps) satisfies

(4.17) o5l

—p—1

o+ Z 106,255 | Lo, o (2) + 1P6 | Lo, o1 (52)

12625 | 2 —u(2) T 10112 (2 ) + P8l a2 (021))
< c(I1fsll () + 19511t ,(2))s

where ¢ > 0 does not depend on d, g/ = {z € 2 : dist(x, L) > R/2}.

Now, our aim is to show that (5, ps) € ng(Q) X HEM(Q) and the norm
of (95, ps) is bounded by the right-hand side of (4.17).

Let 2 € LN {2, be an arbitrary point and consider the localized problem
(4.10). Next, let (0s,ps) be the solution of problem (4.12) and denote by
(s p5) the extension of (95, ps) by zero onto R3. Then 95 = vs¢ = U5¢ = v,
ps = psC = psC = ps and by using the same argument as in the proof of
Lemma 2.4 we conclude that (v5,ps) € L2(R; H2,(R?)) N Ly(R; HL ,(R?))
and (g, ps) satisfies the following two-dimensional system for a.e. x3 € R:

AT+ Vs = [ = T gy — 2VOGVC
— DG AC + psV'C = F} in R2,
(4.18) Bstan + D500 = —Vs30 + 6 + 05 V(=G5 inR?,
—Altgg = s — V53,2325 — Do,as — 2V 053V

— 053¢ + D5y = Frs,

where A = 02, + 02, V' = (041, Oy ), W = (ha, ha), h € {05, 05, Fs}.
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Moreover, by Lemmas 2.1-2.2,
(4.19) 1105l 2y 2, w2y + D6 l| ot (2
< ol il g, o) + 1Gslln )
< e1f5ll Lo (2) + 105 2g Lo () + 1V 1o 2) + 1051l Ls_u2)
D5l Ly — () + 195l (2))
and
(420)  NFsll o, ey < ell Frallr, ce9)
< | f53ll L, u(2) + 1063 2525 1 Lo _ . (2)

+ 19525 | Lo . (2) + IV V831 Ly, (2) + 1083l L, (2) + 11P5 | Lo (2))

where ¢ > 0 does not depend on 6.
Using estimate (4.17) in (4.19)—(4.20) we get

(4.21) H7:)6||L2(R;HEH(R2))+H56||L2(R;H1H(R2)) < C(H.ﬁs”Lz,_u(9)+”g5||Hlu(Q))’

In the case of z° € LNAS2, we also consider problem (4.18) but for almost
all x3 = y3 € R4. Then, by using the same argument as above we get

(4.22) ‘|7:)5HL2(R+;HEM(R2)) + \\56|’L2(R+;H1H(R2))
< cfsll o) + 195l mr (2))-
Now, estimates (4.17) and (4.21)—(4.22) yield the inequality
19512 () + 1Psll ) < el follLa i) + 196l ()
Hence, by the completeness of H! ,(£2) and Ly, (£2) there exists (v,p) €
2 1
HZ,(£2) x HZ ,(£2) such that
vs — v in H?,(£2),
p(g — D in HEN(Q)

By (4.1) and the definition of fs the functions v and p satisfy identities
(4.15)-(4.16) for every ¢; € HEM(Q) and ¢y € HEM(Q), respectively. More-
over, inequality (1.5) holds. This ends the proof. =
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