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A QUASISTATIC CONTACT PROBLEM WITH ADHESION
AND FRICTION FOR VISCOELASTIC MATERIALS

Abstract. We consider a mathematical model which describes the con-
tact between a deformable body and a foundation. The contact is frictional
and is modelled by a version of normal compliance condition and the asso-
ciated Coulomb’s law of dry friction in which adhesion of contact surfaces
is taken into account. The evolution of the bonding field is described by a
first order differential equation and the material’s behaviour is modelled by
a nonlinear viscoelastic constitutive law. We derive a variational formula-
tion of the mechanical problem and prove the existence and uniqueness of
a weak solution if the friction coefficient is sufficiently small. The proof is
based on time-dependent variational inequalities, differential equations and
the Banach fixed point theorem.

1. Introduction. Contact problems involving deformable bodies are
quite frequent in industry as well as in daily life and play an important role
in structural and mechanical systems. Because of the importance of these
processes a considerable effort has been made in their modelling and nu-
merical simulations. A first study of frictional contact problems within the
framework of variational inequalities was made in [6]. The mathematical,
mechanical and numerical state of the art can be found in [16]. The qua-
sistatic contact problem with normal compliance and friction for viscoelastic
materials was studied in [13].

In this paper we continue the study of this model in which moreover
the adhesion of contact surfaces is taken into account. Models for dynamic
or quasistatic process of frictionless adhesive contact between a deformable
body and a foundation have been studied in [3, 4, 15, 16, 18]. In [2] a model
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of a contact problem with adhesion and friction was studied in which β
represents a continuous transition between total adhesive and pure frictional
states. Also in [5] a quasistatic unilateral contact problem with local friction
and adhesion for elastic materials was studied and an existence result for a
friction coefficient small enough was established.

As in [8, 9], we use the bonding field as an additional state variable β,
defined on the contact surface of the boundary. The variable is restricted to
values 0 ≤ β ≤ 1. When β = 0 all the bonds are severed and there are no
active bonds; when β = 1 all the bonds are active; when 0 < β < 1 it mea-
sures the fraction of active bonds and partial adhesion takes place. We refer
the reader to the extensive bibliography on the subject in [10, 12, 14–18].
In this work we derive a variational formulation of the mechanical problem
for which we prove the existence and uniqueness of a weak solution if the
friction coefficient is sufficiently small, and obtain a partial regularity result
for the solution.

The paper is structured as follows. In Section 2 we present some notations
and give the variational formulation. In Section 3 we state and prove our
main existence and uniqueness result, Theorem 2.1.

2. Problem statement and variational formulation. Let Ω ⊂ Rd

(d = 2, 3) be a domain initially occupied by a viscoelastic body. Ω is sup-
posed to be open, bounded, with a sufficiently regular boundary Γ parti-
tioned into three measurable parts, Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3, where Γ1, Γ2, Γ3 are
disjoint open sets and measΓ1 > 0. The body is acted upon by a volume
force of density ϕ1 on Ω and a surface traction of density ϕ2 on Γ2. On Γ3

the body is in adhesive and frictional contact with a foundation.
Thus, the classical formulation of the mechanical problem is as follows.

Problem P1. Find a displacement field u : Ω × [0, T ] → Rd and a
bonding field β : Γ3 × [0, T ]→ [0, 1] such that

div σ + ϕ1 = 0 in Ω × (0, T ),(2.1)
σ = Aε(u̇) +Bε(u) in Ω × (0, T ),(2.2)
u = 0 on Γ1 × (0, T ),(2.3)
σν = ϕ2 on Γ2 × (0, T ),(2.4)
−σν = p(uν)− cνβ2Rν(uν) on Γ3 × (0, T ),(2.5) 
|στ + cτβ

2Rτ (uτ )| ≤ µp(uν)

|στ + cτβ
2Rτ (uτ )| < µp(uν)⇒ u̇τ = 0

|στ + cτβ
2Rτ (uτ )| = µp(uν)⇒

∃λ ≥ 0 : u̇τ = −λ(στ + cτβ
2Rτ (uτ )),

on Γ3 × (0, T ),(2.6)
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β̇ = −[β(cν |Rν(uν)|2 + cτ |Rτ (uτ )|2)− εa]+ on Γ3 × (0, T ),(2.7)
u(0) = u0 in Ω,(2.8)
β(0) = β0 on Γ3.(2.9)

We denote by u the displacement field, by σ the stress field and by ε(u) the
linearized strain tensor. Equation (2.1) is the equilibrium equation. Equa-
tion (2.2) represents the viscoelastic constitutive law of the material in which
A and B are given nonlinear constitutive functions. Here and below, a dot
above a variable represents a time derivative. We recall that in linear vis-
coelasticity the stress tensor σ = (σij) is given by

σij = aijkhεkh(u̇) + bijkhεkh(u),

where A = (aijkh) is the viscosity tensor and B = (bijkh) is the elasticity
tensor, for i, j, k, h = 1, . . . , d. (2.3) and (2.4) are the displacement and
traction boundary conditions, respectively, in which ν denotes the unit
outward normal vector on Γ, and σν represents the Cauchy stress vec-
tor. Condition (2.5) represents the normal compliance condition with ad-
hesion and (2.6) is the associated Coulomb’s law of dry friction on the
contact surface Γ3. Here p is a given function, µ is the friction coeffi-
cient and the parameters cν , cτ and εa are adhesion coefficients which
may depend on x ∈ Γ3. As in [18], Rν , Rτ are truncation operators de-
fined by

Rν(s) =


L if s < −L,

−s if −L ≤ s ≤ 0,

0 if s > 0,

Rτ (v) =
{
v if |v| ≤ L,

Lv/|v| if |v| > L,

where L > 0 is a characteristic length of the bonds. Equation (2.7) is an
ordinary differential equation which describes the evolution of the bonding
field and it was already used in [17]; here [s]+ = max(s, 0) for s ∈ R. Since
β̇ ≤ 0 on Γ3 × (0, T ), once debonding occurs, bonding cannot be reestab-
lished. Also we wish to make it clear that from [11] it follows that the model
does not allow for a complete debonding field in finite time. Finally, (2.8)
and (2.9) represent respectively the initial displacement field and the ini-
tial bonding field. We recall that the inner products and the corresponding
norms on Rd and Sd are given by

u.v = uivi, |v| = (v.v)1/2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)1/2 ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3).
Here and below, the indices i and j run between 1 and d and the summation
convention over repeated indices is adopted.
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Now, to proceed with the variational formulation, we need the following
function spaces:

H = (L2(Ω))d, H1 = (H1(Ω))d,
Q= {τ = (τij); τij = τji ∈ L2(Ω)}, Q1 = {σ ∈ Q; div σ ∈ H}.

Note that H and Q are real Hilbert spaces endowed with the respective
canonical inner products

〈u, v〉H =
�

Ω

uivi dx, 〈σ, τ〉Q =
�

Ω

σijτij dx.

The linearized strain tensor is

ε(u) = (εij(u)) =
1
2

(ui,j + uj,i);

div σ = (σij,j) is the divergence of σ. For every element v ∈ H1 we denote by
vν and vτ the normal and tangential components of v on the boundary Γ,
given by

vν = v.ν, vτ = v − vνν.
Similarly, for a regular function σ ∈ Q1, we define its normal and tangential
components by

σν = (σν).ν, στ = σν − σνν
and we recall that the following Green’s formula holds:

〈σ, ε(v)〉Q + 〈div σ, v〉H =
�

Γ

σν.v da ∀v ∈ H1,

where da is the surface measure element. Let V be the closed subspace of
H1 defined by

V = {v ∈ H1; v = 0 on Γ1}.
Since measΓ1 > 0, the following Korn’s inequality holds [6]:

(2.9) ‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V,
where the constant cΩ > 0 depends only on Ω and Γ1. We equip V with the
inner product

(u, v)V = 〈ε(u), ε(v)〉Q
and ‖·‖V is the associated norm. It follows from Korn’s inequality (2.9) that
the norms ‖ · ‖H1 and ‖ · ‖V are equivalent on V. Then (V, ‖ · ‖V ) is a real
Hilbert space. Moreover by Sobolev’s trace theorem, there exists dΩ > 0
which depends only on the domain Ω, Γ1 and Γ3 such that

(2.10) ‖v‖(L2(Γ3))d ≤ dΩ‖v‖V ∀v ∈ V.
For p ∈ [1,∞], we use the standard norm of Lp(0, T ;V ). We also use the

Sobolev space W 1,∞(0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).
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For every real Banach space (X, ‖ · ‖X) and T > 0 we use the notation
C([0, T ];X) for the space of continuous functions from [0, T ] to X; recall
that C([0, T ];X) is a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

We suppose that the body forces and surface tractions have the regularity

(2.11) ϕ1 ∈ C([0, T ];H), ϕ2 ∈ C([0, T ]; (L2(Γ2))d),

and we denote by f(t) the element of V defined by

(2.12) (f(t), v)V =
�

Ω

ϕ1(t).v dx+
�

Γ2

ϕ2(t).v da ∀v ∈ V, t ∈ [0, T ].

Using (2.11) and (2.12) we obtain

f ∈ C([0, T ];V ).

Also we define the functional j : V × V → R by

j(v, w) =
�

Γ3

µp(vν)|wτ | da ∀v, w ∈ V,

where the normal compliance p is assumed to satisfy

(2.13)



(a) p : Γ3 × R→ R+;
(b) there exists Lp>0 such that |p(x, r1)−p(x, r2)|≤Lp|r1−r2|

for all r1, r2 ∈ R and a.e. x ∈ Γ3;
(c) x 7→ p(x, r) is measurable on Γ3 for any r ∈ R;
(d) p(x, r) = 0 for all r ≤ 0 and a.e. x ∈ Γ3.

µ is the friction coefficient and we assume that

(2.14) µ ∈ L∞(Γ3) and µ ≥ 0 a.e. on Γ3.

In the study of problem P1 we assume that the viscosity operator A satisfies

(2.15)



(a) A : Ω × Sd → Sd;
(b) there exists MA > 0 such that
|A(x, ε1)−A(x, ε2)| ≤MA|ε1 − ε2|
for all ε1, ε2 in Sd and a.e. x in Ω;

(c) there exists mA > 0 such that
(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA|ε1 − ε2|2

for all ε1, ε2 in Sd and a.e. x in Ω;
(d) x 7→ A(x, ε) is Lebesgue measurable on Ω

for any ε in Sd;
(e) x 7→ A(x, 0) ∈ Q.
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The elasticity operator B satisfies

(2.16)



(a) B : Ω × Sd → Sd

(b) there exists MB > 0 such that

|B(x, ε1)−B(x, ε2)| ≤MB|ε1 − ε2|,
for all ε1, ε2 in Sd and a.e. x in Ω;

(c) x 7→ B(x, ε) is Lebesgue measurable on Ω

for any ε in Sd;

(e) x 7→ B(x, 0) ∈ Q.

As in [18] we suppose that the adhesion coefficients cν , cτ and εa satisfy

(2.17) cν , cτ ∈ L∞(Γ3), εa ∈ L∞(Γ3), cν , cτ , εa ≥ 0 a.e. on Γ3.

We assume that the initial data satisfy

(2.18) u0 ∈ V,
(2.19) β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3.

Next, we define the functional r : L2(Γ3)× V × V → R by

r(β, u, v) =
�

Γ3

(p(uν)vν − cνβ2Rν(uν)vν + cτβ
2Rτ (uτ ).vτ ) da.

Finally, we need the following set for the bonding fields:

O = {θ : [0, T ]→ L2(Γ3); 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3}.
Now, assuming the solution to be sufficiently regular, and using Green’s
formula, we see that Problem P1 has the following variational formulation.

Problem P2. Find a displacement field u ∈ C1([0, T ];V ) and a bonding
field β ∈W 1,∞(0, T ;L2(Γ3)) ∩ O such that

(2.20) 〈Aε(u̇(t)), ε(v)− ε(u̇(t))〉Q + 〈Bε(u(t)), ε(v)− ε(u̇(t))〉Q
+ j(u(t), v)− j(u(t), u̇(t)) + r(β(t), u(t), v − u̇(t))

≥ (f(t), v − u̇(t))V ∀v ∈ V, t ∈ [0, T ],

(2.21) β̇(t) = −[β(t)(cν |Rν(uν(t))|2

+ cτ |Rτ (uτ (t))|2)− εa]+ a.e. t ∈ (0, T ),

(2.22) u(0) = u0 in Ω,

(2.23) β(0) = β0 on Γ3.

Our main result, which will be established in the next section, is the following
theorem.
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Theorem 2.1. Let T > 0 and assume that (2.11) and (2.13)–(2.19)
hold. Then there exists a constant µ0 > 0 such that if

‖µ‖L∞(Γ3) < µ0,

then Problem P2 has a unique solution.

3. Existence and uniqueness result. The proof of Theorem 2.1 will
be carried out in several steps. In the first step, for given η ∈ C([0, T ];V )
and g ∈ C([0, T ];V ) we consider the following variational problem.

Problem Pηg. Find vηg : [0, T ]→ V such that

(3.1) 〈Aε(vηg(t)), ε(w)− ε(vηg(t))〉Q + (η(t), w − vηg(t))V + j(g(t), w)
−j(g(t), vηg(t)) ≥ (f(t), w − vηg(t))V ∀w ∈ V, t ∈ [0, T ].

We show the following result.

Lemma 3.1. Problem Pηg has a unique solution and the solution satisfies
vηg ∈ C([0, T ];V ).

Proof. We define the operator C : V → V by

(Cv,w)V = 〈Aε(v), ε(w)〉Q ∀v, w ∈ V.
It follows from assumption (2.15) that C is a strongly monotone and Lip-
schitz continuous operator. Next, let t ∈ [0, T ]. The functional j(g(t), ·) is a
continuous seminorm on V, so by a classical argument of elliptic variational
inequalities [1], there exists a unique element vηg(t) ∈ V such that

(3.2) 〈Aε(vηg(t)), ε(w)− ε(vηg(t))〉Q + j(g(t), w)− j(g(t), vηg(t))
≥ (f(t)− η(t), w − vηg(t))V ∀w ∈ V.

Thus, we use (3.2) to see that vηg(t) is the unique element which solves
(3.1), for each t ∈ [0, T ]. Now, let t1, t2 ∈ [0, T ]. We write (3.2) for t = t1
and w = vηg(t2). Then for t = t2 and w = vηg(t1), by adding the resulting
inequalities we obtain

〈Aε(vηg(t1))−Aε(vηg(t2)), ε(vηg(t1))− ε(vηg(t2))〉Q
≤ (f(t1)− f(t2), vηg(t1)− vηg(t2))V − (η(t1)− η(t2), vηg(t1)− vηg(t2))V

+ j(g(t1), vηg(t2))− j(g(t1), vηg(t1))+ j(g(t2), vηg(t1))− j(g(t2), vηg(t2)).

Using (2.15)(c), (2.13)(b), (2.17), and (2.10), we see that

mA‖vηg(t1)− vηg(t2)‖2V ≤ d2
Ω‖µ‖L∞(Γ3)‖vηg(t1)− vηg(t2)‖2V

+ ‖η(t1)− η(t2)‖V ‖vηg(t1)− vηg(t2)‖V
+ d2

Ω‖g(t1)− g(t2)‖V ‖vηg(t1)− vηg(t2)‖V
+ ‖f(t1)− f(t2)‖V ‖vηg(t1)− vηg(t2)‖V .
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Then, if we take
µ0 = mA/d

2
Ω,

it follows that if ‖µ‖L∞(Γ3) < µ0, there exists a constant c1 > 0 such that

‖vηg(t1)− vηg(t2)‖V
≤ c1(‖f(t1)− f(t2)‖V + ‖g(t1)− g(t2)‖V + ‖η(t1)− η(t2)‖V ).

As f ∈ C([0, T ];V ), g ∈ C([0, T ];V ) and η ∈ C([0, T ];V ), we deduce that
vηg ∈ C([0, T ];V ).

Now, let us consider the operator Λη : C([0, T ];V )→ C([0, T ];V ) defined
by
(3.3) Ληg = gη, g ∈ C([0, T ];V ),

where

(3.4) gη(t) = u0 +
t�

0

vηg(s) ds for t ∈ [0, T ].

We have

Lemma 3.2. The operator Λη has a unique fixed point g∗η ∈ C([0, T ];V ).

Proof. We refer the reader to [13, Proposition 4.2].
Next, for η ∈ C([0, T ];V ), we denote by g∗η the fixed point given in

Lemma 3.2. Let vη ∈ C([0, T ];V ) be the function defined by

(3.5) vη = vηg∗η .

Using (3.3) and (3.4), let uη : [0, T ]→ V be the function

(3.6) uη(t) = g∗η(t) = u0 +
t�

0

vη(s) ds for t ∈ [0, T ].

Now, we consider the following problem.

Problem Pηβ. Find a bonding field βη : [0, T ]→ L2(Γ3) such that

(3.7) β̇η(t) = −[βη(t)(cν |Rν(uην(t))|2

+ cτ |Rτ (uητ (t))|2)− εa]+ a.e. t ∈ (0, T ),
(3.8) βη(0) = β0 on Γ3.

We have the following result.

Lemma 3.3. There exists a unique solution to Problem Pηβ and it satis-
fies

βη ∈W 1,∞(0, T ;L2(Γ3)) ∩ O.
Proof. Let k > 0 and let

X = {β ∈ C([0, T ];L2(Γ3)); sup
t∈[0,T ]

[exp(−kt)‖β(t)‖L2(Γ3)] < +∞}.
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X is a Banach space with the norm

‖β‖X = sup
t∈[0,T ]

[exp(−kt)‖β(t)‖L2(Γ3)],

which is equivalent to the standard norm ‖ · ‖C([0,T ];L2(Γ3)). Consider the
mapping T : X → X defined by

Tβ(t) = β0 −
t�

0

[β(s)(cν |Rν(uην(s))|2 + cτ |Rτ (uητ (s))|2)− εa]+ da.

Using that |Rr(uηr)| ≤ L, r = ν, τ , it follows that there exists a constant
c2 > 0 such that

‖Tβ1(t)− Tβ2(t)‖L2(Γ3) ≤ c2
t�

0

‖β1(s)− β2(s)‖L2(Γ3) ds.

Since
t�

0

‖β1(s)− β2(s)‖L2(Γ3) ds =
t�

0

eks(e−ks‖β1(s)− β2(s)‖L2(Γ3)) ds

≤ ‖β1 − β2‖X1

ekt

k
,

this inequality implies that

(3.9) ‖Tβ1 − Tβ2‖X ≤
c2
k
‖β1 − β2‖X .

The inequality (3.9) shows that for k > c2, T is a contraction. Thus, by
the Banach fixed point theorem, T has a unique fixed point βη which
satisfies (3.7) and (3.8). The regularity βη ∈ O is a consequence of (3.8)
and (2.19); see [18] for details.

Moreover, using the Riesz representation theorem we define the function
Λ : [0, T ]→ V by

(3.10) (Λη(t), w)V = 〈Bε(uη(t)), ε(w)〉Q + r(βη(t), uη(t), w),
∀w ∈ V, t ∈ [0, T ].

Lemma 3.3. For each η ∈ C([0, T ];V ) the function Λη : [0, T ] → V
belongs to C([0, T ];V ). Moreover, there exists a unique η∗ ∈ C([0, T ];V )
such that Λη∗ = η∗.

Proof. Let η ∈ C([0, T ];V ) and t1, t2 ∈ [0, T ]. Using (3.10), it follows
that there exists a constant C1 > 0 such that
‖Λη(t1)−Λη(t2)‖V ≤ ‖Bε(uη(t1))−Bε(uη(t2))‖Q

+ C1(‖β2
η(t1)Rτ (uητ (t1))−β2

η(t2)Rτ (uητ (t2))‖L2(Γ3)

+ ‖p(uην(t1))− p(uην(t2))‖L2(Γ3))

+ C1‖β2
η(t1)Rν(uην(t1))−β2

η(t2)Rν(uην(t2))‖L2(Γ3).
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Using the properties (see [16]) of the operators Rν , Rτ such that

|Rr(uηr)| ≤ L, r = ν, τ, |Rν(a)−Rν(b)| ≤ |a− b| ∀a, b ∈ R,

|Rτ (a)−Rτ (b)| ≤ |a− b| ∀a, b ∈ Rd,

(2.13)(b), (2.16), and that 0 ≤ βη(t) ≤ 1 for all t ∈ [0, T ], it follows that
there exists a constant C2 > 0 such that

(3.11) ‖Λη(t1)− Λη(t2)‖V
≤ C2(‖uη(t1)− uη(t2)‖V + ‖βη(t1)− βη(t2)‖L2(Γ3)).

Since uη ∈ C1([0, T ];V ) and βη ∈W 1,∞(0, T ;V ) we deduce from inequality
(3.11) that Λη ∈ C([0, T ];V ).

Let now η1, η2 ∈ C([0, T ];V ). For t ∈ [0, T ] we integrate (3.7) with the
initial condition (3.8) to obtain

βηi(t) = β0 −
t�

0

[βηi(s)(cν |Rν(uηiν(s))|2 + cτ |Rτ (uηiτ (s))|2)− εa]+ da.

Hence there exists a constant C3 > 0 such that

‖βη1(t)− βη2(t)‖L2(Γ3)

≤ C3

t�

0

‖βη1(s)|Rν(uη1ν(s))|2 − βη2(s)|Rν(uη2ν(s))|2‖L2(Γ3) ds

+ C3

t�

0

‖βη1(s)|Rτ (uη1τ (s))|2 − βη2(s)|Rτ (uη2τ (s))|2‖L2(Γ3) ds.

We use the definition of the truncation operators Rν , Rτ and write

βη1(s) = βη1(s)− βη2(s) + βη2(s).

After some elementary calculations we find that there exists a constant
C4 > 0 such that

‖βη1(t)− βη2(t)‖L2(Γ3) ≤ C4

t�

0

‖βη1(s)− βη2(s)‖L2(Γ3) ds

+ C4

t�

0

‖uη1ν(s)− uη2ν(s)‖L2(Γ3) ds+ C4

t�

0

‖uη1τ (s)− uη2τ (s)‖(L2(Γ3))d ds.

Using (2.10), it follows that

‖βη1(t)− βη2(t)‖L2(Γ3) ≤ C4

t�

0

‖βη1(s)− βη2(s)‖L2(Γ3) ds

+ 2C4dΩ

t�

0

‖uη1(s)− uη2(s)‖V ds.
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Using a Gronwall-type inequality, we deduce that there exists a constant
C5 > 0 such that

(3.12) ‖βη1(t)− βη2(t)‖L2(Γ3) ≤ C5

t�

0

‖uη1(s)− uη2(s)‖V ds.

On the other hand, using arguments similar to those in the proof of (3.12),
we find that there exists a constant C6 > 0 such that

‖Λη1(t)− Λη2(t)‖V ≤ C6(‖uη1(t)− uη2(t)‖V + ‖βη1(t)− βη2(t)‖L2(Γ3)).

Hence, by (3.12) we have

(3.13) ‖Λη1(t)− Λη2(t)‖V

≤ C6‖uη1(t)− uη2(t)‖V + C5C6

t�

0

‖uη1(s)− uη2(s)‖V ds.

On the other hand, the function uηi satisfies the inequality

(3.14) 〈Aε(vηi(t)), ε(w − vηi(t))〉Q + (ηi(t), w − vηi(t))V + j(uηi(t), w)
− j(uηi(t), vηi(t)) ≥ (f(t), w − vηi(t))V ∀w ∈ V,

where i = 1, 2 and t ∈ [0, T ]. It follows from (3.14) and the estimate in the
proof of Lemma 3.1 that there exists a constant C > 0 such that

‖uη1(t)− uη2(t)‖V ≤
t�

0

‖vη1(s)− vη2(s)‖V ds

≤ C
t�

0

‖η1(s)− η2(s)‖V ds+ C

t�

0

‖uη1(s)− uη2(s)‖V ds for t ∈ [0, T ].

Using now a Gronwall-type inequality we get

(3.15) ‖uη1(t)− uη2(t)‖V ≤ C
t�

0

‖η1(s)− η2(s)‖V ds ∀t ∈ [0, T ].

From (3.13) and (3.15) it follows that there exists a constant C ′ > 0 such
that

(3.16) ‖Λη1(t)− Λη2(t)‖V ≤ C ′
t�

0

‖η1(s)− η2(s)‖V ds.

Let now k > 0, and denote

‖η‖k = sup
t∈[0,T ]

[exp(−kt)‖η(t)‖V ] ∀η ∈ C([0, T ];V ).

Clearly ‖ · ‖k defines a norm on the space C([0, T ];V ) which is equivalent
to the standard norm ‖ · ‖C([0,T ];V ). Using (3.16) and arguments similar to
those in the proof of (3.9), after some calculations we find that there exists
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a constant c > 0 such that

‖Λη1 − Λη2‖k ≤
c

k
‖η1 − η2‖k ∀η1, η2 ∈ C([0, T ];V ).

So for k > c, the operator Λ is a contraction on the space C([0, T ];V )
endowed with the norm ‖ · ‖k. Then by the Banach fixed point theorem,
Λ has a unique fixed point η∗ ∈ C([0, T ];V ), which concludes the proof.

Now, we have all the ingredients to prove Theorem 2.1.

Proof of Theorem 2.1. Existence. Let η∗ ∈ C([0, T ];V ) be the fixed point
of Λ and let vη∗ and uη∗ be the functions given by (3.5) and (3.6) for η = η∗.
Let βη∗ the solution of Problem Pηβ for η = η∗. We show that (uη∗ , βη∗)
is a solution of Problem P2. Indeed, choosing η = η∗, g = g∗η∗ in (3.1) and
using (3.5), we obtain

(3.17) 〈Aε(vη∗(t)), ε(w)−ε(vη∗(t))〉Q+(η∗(t), w−vη∗(t))V + j(g∗η∗(t), w)
− j(g∗η∗(t), vη∗(t)) ≥ (f(t), w − vη∗(t))V , ∀w ∈ V, t ∈ [0, T ].

Let β denote the solution of Problem Pηβ for η = η∗, i.e., β = βη∗ . As η∗ =
Λη∗, the inequality (2.20) follows from (3.4), (3.6) and (3.17), since vη∗ = u̇η∗

and g∗η∗ = uη∗ . The equality (2.22) follows from (3.6), and the regularity
uη∗ ∈ C1([0, T ];V ) is a consequence of Lemma 3.1, (2.18) and (3.6). Clearly,
equalities (2.21) and (2.23) hold by Problem Pηβ. Also the regularity of the
bonding field β ∈W 1,∞(0, T ;L2(Γ3)) ∩ O follows from Lemma 3.3.

Uniqueness. Let (u, β) ∈ C1([0, T ];V ) × W 1,∞(0, T ;L2(Γ3)) ∩ O be a
solution of Problem P2 and denote by η ∈ C([0, T ];V ) the function defined
by

(3.18) (η(t), w)V = 〈Bε(u(t)), ε(w)〉Q+r(β(t), u(t), w) ∀w ∈ V, t ∈ [0, T ],

and let

(3.19) v = u̇.

Using (2.20) we infer that v is a solution of the variational problem Pηu and
since this problem has a unique solution vηu ∈ C([0, T ];V ), we conclude
that

(3.20) v = vηu.

Hence, from (2.22), (3.19) and (3.20) we obtain

u(t) = u0 +
t�

0

vηu(s) ds, t ∈ [0, T ],

i.e., u is a fixed point of Λη. It follows from Lemma 3.1 that u = g∗η and by
(3.20) we have

(3.21) v = vηg∗η .
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Then (3.5) and (3.21) imply

(3.22) v = vη.

So, it follows from (2.22), (3.6), (3.19) and (3.22) that

(3.23) u = uη.

Next, (2.21) and the initial condition β(0) = β0 imply that β is a solution
of Problem Pηβ, and since this problem admits a unique solution βη, we
conclude that

(3.24) β = βη.

Using now (3.10), (3.18), (3.23), and (3.24) we deduce that Λη = η, and as
the operator Λ admits a unique fixed point guaranteed by Lemma 3.3, it
follows that

(3.25) η = η∗.

The uniqueness of the solution is now a consequence of (3.23)–(3.25).

References
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