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SINGLE-INDEX MODEL

Abstract. The aim of this paper is to establish a nonparametric esti-
mate of some characteristics of the conditional distribution. Kernel type
estimators for the conditional cumulative distribution function and for the
successive derivatives of the conditional density of a scalar response variable
Y given a Hilbertian random variable X are introduced when the observa-
tions are linked with a single-index structure. We establish the pointwise
almost complete convergence and the uniform almost complete convergence
(with rate) of the kernel estimator of this model. Asymptotic properties are
stated for each of these estimators, and they are applied to the estimation
of the conditional mode and conditional quantiles.

1. Introduction. Single-index models are becoming increasingly pop-
ular, and have received considerable attention recently because of their im-
portance in several areas of science, including econometrics, biostatistics,
medicine and financial econometrics. The single-index model, a special case
of projection pursuit regression, has proven to be an efficient way of coping
with high dimensional problems in nonparametric regression. In the present
work we study single-index modeling in the case of a functional explana-
tory variable. More precisely, we consider the problem of estimating some
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characteristics of the conditional distribution of a real variable Y given a
functional variable X when the explanation of Y given X is done through its
projection on one functional direction. The conditional density plays an im-
portant role in nonparametric prediction, because several prediction tools
in nonparametric statistic, such as the conditional mode, conditional me-
dian or conditional quantiles, are based on the preliminary estimate of this
functional parameter.

Nonparametric estimation of the conditional density has been widely
studied when the data is real. The first related result in nonparametric
functional statistic was obtained by Ferraty et al. [15]: the almost complete
consistency in the independent and identically distributed (i.i.d.) random
variables of the kernel estimator of the conditional probability density was
established. The asymptotic normality of this kernel estimator has been
studied for dependent data by Ezzahrioui and Ould Säıd [10]. The single-
index approach is widely applied in econometrics as a reasonable compromise
between nonparametric and parametric models. Such kind of modeling is in-
tensively studied in the multivariate case. We cite for example Härdle et al.
[18] and Hristache et al. [19]. Based on the regression function, Delecroix et
al. [7] studied the estimation of the single-index model and established some
asymptotic properties. The literature is rather limited in the case where the
explanatory variable is functional (that is, a curve). The first asymptotic
properties in the fixed functional single-index model were obtained by Fer-
raty et al. [12], who established the almost complete convergence, in the
i.i.d. case, of the link regression function of this model. Their results were
extended to the dependent case by Aı̈t Saidi et al. [1]. Aı̈t Saidi et al. [2] stud-
ied the case where the functional single-index is unknown. They proposed
an estimator of this parameter, based on the cross-validation procedure.

The goal of this paper is to establish a nonparametric estimate of some
characteristics of the conditional distribution where kernel type estima-
tors for the conditional cumulative distribution function and the successive
derivatives of the conditional density in the functional single-index model
are introduced. We establish the pointwise almost complete convergence and
the uniform almost complete convergence (with rate) of the kernel estimator
of this model. Asymptotic properties are stated for each of these estimators,
and they are applied to the estimation of the conditional mode and condi-
tional quantiles.

Now, let us outline the paper. In Section 2, we present general nota-
tion and some conditions necessary for our study. In Sections 3 we propose
estimators of the conditional cumulative distribution function and of the
conditional density derivatives, and we prove their pointwise almost com-
plete convergence (with rate). In Section 4, we study the uniform almost
complete convergence of the conditional cumulative distribution function
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(resp. the conditional density derivatives) estimator given in Section 3. Sec-
tion 5 is devoted to some applications; we first consider the problem of
estimation of the conditional mode in a functional single-index model, then
we investigate the asymptotic properties of the conditional quantile func-
tion of a scalar response and functional covariate when the observations
are in a functional single-index model and data are i.i.d. We finish our
paper by giving the technical proofs of the lemmas and the the corollary
(Appendix).

2. General notation and conditions. All along the paper, when no
confusion is possible, we will denote by C, C ′ or/and Cθ,x some generic
constants in R∗+; any real function with an integer in brackets as exponent
denotes its derivative of the corresponding order.

Let (Xi, Yi)1≤i≤n be n random variables, identically distributed as the
random pair (X,Y ) with values in H×R, where H is a separable real Hilbert
space with the norm ‖·‖ generated by an inner product 〈·, ·〉. We consider the
semimetric dθ associated to a single index θ ∈ H, defined by dθ(x1, x2) :=
|〈x1 − x2, θ〉| for x1, x2 ∈ H; our aim is to build nonparametric estimates of
several functions related to the conditional cumulative distribution function
(cond-cdf) of Y given 〈X, θ〉 = 〈x, θ〉 for some x ∈ H:

∀y ∈ R, F (θ, y, x) = P(Y ≤ y | 〈X, θ〉 = 〈x, θ〉),

which also shows the relationship between X and Y but is often unknown.

If this distribution is absolutely continuous with respect to the Lebesgue
measure on R, then we will denote by f(θ, ·, x) (resp. f (j)(θ, ·, x)) the con-
ditional density of Y given 〈X, θ〉 = 〈x, θ〉 (resp. its jth order derivative). In
Sections 3 and 4, we will give almost complete convergence (1) results (with
rates of convergence (2)) for nonparametric estimates of both F (θ, ·, x) and
f (j)(θ, ·, x).

In the following, for any x ∈ H and y ∈ R, letNx be a fixed neighborhood
of x inH, SR will be a fixed compact subset of R, and we will use the notation
Bθ(x, h) = {X ∈ H : 0 < |〈x−X, θ〉| < h}. Our nonparametric models will
be quite general in the sense that we will just need the following simple
assumption for the marginal distribution of 〈θ,X〉:

(1) Recall that a sequence (Tn)n∈N of random variables is said to converge almost
completely to some variable T if

∑
n P(|Tn − T | > ε) < ∞ for any ε > 0. This mode of

convergence implies both almost sure convergence and convergence in probability (see for
instance Bosq and Lecoutre [5]).

(2) Recall that a sequence (Tn)n∈N of random variables is said to be of order of almost
complete convergence un if there exists some ε > 0 for which

∑
n P(|Tn| > εun) <∞. This

is denoted by Tn = O(un), a.co. (or Tn = Oa.co.(un)).
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(H1) P (X ∈ Bθ(x, h)) =: φθ,x(h) > 0, φθ,x(h)→ 0, as h→ 0

together with some usual smoothness conditions on the function to be es-
timated. According to the type of estimation problem to be considered, we
will assume that for some b1, b2 > 0 either

(H2) ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ Nx ×Nx,

|F (θ, y1, x1)− F (θ, y2, x2)| ≤ Cθ,x(‖x1 − x2‖b1 + |y1 − y2|b2),

or
(H3) ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ Nx ×Nx,

|f (j)(θ, y1, x1)− f (j)(θ, y2, x2)| ≤ Cθ,x(‖x1 − x2‖b1 + |y1 − y2|b2).

3. Pointwise almost complete estimation. In this section we give
the pointwise almost complete estimate (with rate) of the conditional cu-
mulative distribution and of the successive derivatives of the conditional
density.

3.1. Conditional cumulative distribution estimation. The pur-
pose of this section is to estimate the cond-cdf F x(θ, ·, x). We introduce a

kernel type estimator F̂ x(θ, ·, x) of F x(θ, ·, x) as follows:

(3.1) F̂ (θ, y, x) =

∑n
i=1K(h−1K (〈x−Xi, θ〉))H(h−1H (y − Yi))∑n

i=1K(h−1K (〈x−Xi, θ〉))
,

where K is a kernel, H is a cumulative distribution function (cdf) and
hK = hK,n (resp. hH = hH,n) is a sequence of positive real numbers which
tends to zero as n tends to infinity, and with the convention 0/0 = 0. Note
that a similar estimator was already introduced by Ferraty et al. [11] in the
case where X is valued in some semimetric space which can be of infinite
dimension. In our functional single-index context, we need the following
conditions for our estimate:

(H4) |H(y1)−H(y2)| ≤ C|y1 − y2| for all (y1, y2) ∈ R2 and	
|t|b2H(1)(t) dt <∞,

(H5) K is a positive bounded function with support [−1, 1],

(H6) lim
n→∞

hK = 0 with lim
n→∞

log n

nφθ,x(hK)
= 0,

(H7) lim
n→∞

hH = 0 with lim
n→∞

nα hH =∞ for some α > 0.

Comments on the assumptions. Our assumptions are rather standard for
this kind of model. Assumptions (H1) and (H5) are the same as those given
in Ferraty et al. [12]. Assumptions (H2) and (H3) are regularity conditions
which characterize the functional space of our model and are needed to
evaluate the bias term of our asymptotic results. Assumptions (H4) and
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(H6)–(H7) are technical conditions and are also similar to those in Ferraty
et al. [15].

Theorem 3.1. Under Assumptions (H1), (H2) and (H4)–(H7), for any
fixed y,

(3.2) |F̂ (θ, y, x)− F (θ, y, x)| = O(hb1K + hb2H ) +Oa.co.

(√
log n

nφθ,x(hK)

)
,

Proof. For i = 1, . . . , n, we consider the quantities

Ki(θ, x) := K(h−1K (〈x−Xi, θ〉))

and, for all y ∈ R,

Hi(y) = H(h−1H (y − Yi)),

and define

F̂N (θ, y, x) =
1

nEK1(θ, x)

n∑
i=1

Ki(θ, x)Hi(y),

F̂D(θ, x) =
1

nEK1(θ, x)

n∑
i=1

Ki(θ, x).

The proof is based on the decomposition

F̂ (θ, y, x)− F (θ, y, x) =
1

F̂D(θ, x)
(F̂N (θ, y, x)− E F̂N (θ, y, x))(3.3)

− 1

F̂D(θ, x)
(F (θ, y, x)− E F̂N (θ, y, x))

+
F (θ, y, x)

F̂D(θ, x)
(1− F̂D(θ, x))

and on the following intermediate results.

Lemma 3.2 ([1]). Under Assumptions (H1) and (H5)–(H6),

(3.4) |F̂D(θ, x)− 1| = Oa.co.

(√
log n

nφθ,x(hK)

)
.

Corollary 3.3. Under the hypotheses of Lemma 3.2,

(3.5)

∞∑
n=1

P
(
|F̂D(θ, x)| ≤ 1/2

)
<∞.

Lemma 3.4. Under Assumptions (H1), (H2) and (H4)–(H6),

(3.6) |F (θ, y, x)− E F̂N (θ, y, x)| = O(hb1K + hb2H ).
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Lemma 3.5. Under Assumptions (H1), (H2) and (H4)–(H7),

(3.7) |F̂N (θ, y, x)− E F̂N (θ, y, x)| = Oa.co.

(√
log n

nφθ,x(hK)

)
,

3.2. Estimating successive derivatives of the conditional den-
sity. The main objective of this part is the estimation of the successive
derivatives of the conditional density of Y given 〈X, θ〉 = 〈x, θ〉, denoted by
f(θ, ·, x). It is well known that, in nonparametric statistics, this provides an
alternative approach to studying the links between Y and X and it can also
be used, in single-index modeling, to estimate the functional index θ if it is
unknown.

So, we propose an estimator f̂ (j)(θ, y, x) of f (j)(θ, y, x) as follows:

(3.8) f̂ (j)(θ, y, x) =

∑n
i=1K(h−1K (〈x−Xi, θ〉))H(j+1)(h−1H (y − Yi))

hj+1
H

∑n
i=1K(h−1K (〈x−Xi, θ〉))

, y ∈ R.

A similar estimator was already introduced by Ferraty et al. [11] in the
case where X is valued in some semimetric space which can be of infinite
dimension, and then widely studied (see for instance Attaoui et al. [3] for
several asymptotic results and references). In addition to the conditions
introduced along the previous section, we need the following ones, which
are technical conditions and are also similar to those given in Ferraty et
al. [15]:

(H8)

{∀(y1, y2) ∈ R2, |H(j+1)(y1)−H(j+1)(y2)| ≤ Cθ,x|y1 − y2|,
∃ν > 0, ∀j′ ≤ j + 1, lim

y→∞
|y|1+ν |H(j′+1)(y)| = 0.

(H9) lim
n→∞

hK = 0 with lim
n→∞

log n

nh2j+1
H φθ,x(hK)

= 0.

The next result concerns the asymptotic behavior of the kernel functional
estimator f̂ (j)(θ, ·, x) of the jth order derivative of the conditional density
function.

Theorem 3.6. Under Assumptions (H1), (H3)–(H5), and (H7)–(H9),
and for any fixed y, we have, as n→∞,

(3.9) |f̂ (j)(θ, y, x)− f (j)(θ, y, x)|

= O(hb1K + hb2H ) +Oa.co.

(√
log n

nh2j+1
H φθ,x(hK)

)
.

Proof. This result is based on the same kind of decomposition as (3.3).
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Indeed, we can write

f̂ (j)(θ, y, x)−f (j)(θ, y, x) =
1

F̂D(θ, x)
(f̂

(j)
N (θ, y, x)− E f̂ (j)N (θ, y, x))(3.10)

− 1

F̂D(θ, x)
(f (j)(θ, y, x)− E f̂ (j)N (θ, y, x))

+
f (j)(θ, y, x)

F̂D(θ, x)
(1− F̂D(θ, x))

where

f̂
(j)
N (θ, y, x) =

1

nhj+1
H EK1(θ, x)

n∑
i=1

Ki(θ, x)H
(j+1)
i (y).

Then Theorem 3.6 can be deduced from the two lemmas below, together
with Lemma 3.2 and Corollary 3.3.

Lemma 3.7. Under Assumptions (H1)–(H3), (H5) and (H6),

|f (j)(θ, y, x)− E f̂ (j)N (θ, y, x)| = O(hb1K + hb2H ).

Lemma 3.8. Under Assumptions (H1)–(H7),

|f̂ (j)N (θ, y, x)− E f̂ (j)N (θ, y, x)| = Oa.co.

(√
log n

nh2j+1
H φθ,x(hK)

)
.

The proofs of the above lemmas and corollary are done in the same
manner as in [11], since Lemmas 3.4, 3.5, 3.7 and 3.8, and Corollary 3.3,
are special cases of Lemmas 2.3.2, 2.3.3, 2.3.4 and 2.3.5 and Corollary 2.3.1
of [12]. It suffices to replace f̂ (j)(y, x) (resp. f (j)(y, x)) by f̂ (j)(θ, y, x) (resp.

f (j)(θ, y, x)), and F̂D(x) (resp. FD(x)) by F̂D(θ, x) (resp. FD(θ, x)) with
d(x1, x2) = 〈x1 − x2, θ〉.

4. Uniform almost complete convergence. In this section we derive
the uniform versions of Theorems 3.1 and 3.6. The study of uniform con-
sistency is motivated by the fact that the latter is an indispensable tool for
studying the asymptotic properties of all estimates of the functional index
if it is unknown. In the multivariate case, uniform consistency is a stan-
dard extension of pointwise consistency: however, in our functional case, it
requires some additional tools and topological conditions (see Ferraty and
Vieu [15] for more discussion on uniform convergence in nonparametric func-
tional statistics). Thus, in addition to the conditions introduced previously,
we need the following ones. Firstly, consider

(4.1) SH ⊂
d
SH
n⋃
k=1

B(xk, rn) and ΘH ⊂
d
ΘH
n⋃
j=1

B(tj , rn)
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where xk, tj ∈ H and rn, d
SH
n , dΘH

n are sequences of positive real numbers
which tend to infinity as n→∞.

4.1. Conditional cumulative distribution estimation. In this sec-
tion we propose to study the uniform almost complete convergence of our
estimator (3.1). For this, we need the following assumptions:

(A1) There exists a differentiable function φ(·) such that for all x ∈ SH
and for all θ ∈ ΘH,

0 < Cφ(h) ≤ φθ,x(h) ≤ C ′φ(h) <∞
and there exists η0 > 0 such that φ′(η) < C for all η < η0.

(A2) ∀(y1, y2) ∈ SR × SR,∀(x1, x2) ∈ SH × SH, ∀θ ∈ ΘH,

|F (θ, y1, x1)− F (θ, y2, x2)| ≤ Cθ(‖x1 − x2‖b1 + |y1 − y2|b2).

(A3) The kernel K satisfies (H3) and the Lipschitz condition

|K(x)−K(y)| ≤ C‖x− y‖.
(A4) For rn = O((log n)/n) the sequences dSHn and dΘH

n satisfy

(log n)2

nφ(hK)
< log dSHn + log dΘH

n <
nφ(hK)

log n
,

∞∑
n=1

n1/2b2(dSHn dΘH
n )1−β <∞ for some β > 1.

Remark 4.1. Note that Assumptions (A1) and (A2) are, respectively,
the uniform versions of (H1) and (H2). Assumptions (A1) and (A4) are
linked with the topological structure of the functional variable (see Ferraty
et al. [13]).

Theorem 4.2. Under Assumptions (A1)–(A4) and (H4), as n→∞,

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F̂ (θ, y, x)− F (θ, y, x)| = O(hb1K + hb2H )(4.2)

+Oa.co.

(√
log(dSHn dΘH

n )

nφ(hK)

)
.

In the particular case where the functional single-index is fixed we get
the following result.

Corollary 4.3. Under Assumptions (A1)–(A4) and (H4), as n→∞,

(4.3) sup
x∈SH

sup
y∈SR

|F̂ (θ, y, x)−F (θ, y, x)| = O(hb1K +hb2H )+Oa.co.

(√
log dSHn
nφ(hK)

)
.

Clearly, Theorem 3.5 and Corollary 4.3 can be deduced from the following
intermediate results which are just uniform versions of Lemmas 3.2–3.5 and
Corollary 3.3.
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Lemma 4.4. Under Assumptions (A1), (A3) and (A4), as n→∞,

sup
θ∈ΘH

sup
x∈SH

|F̂D(θ, x)− 1| = Oa.co.

(√
log(dSHn dΘH

n )

nφ(hK)

)
.

Corollary 4.5. Under the assumptions of Lemma 4.4,
∞∑
n=1

P
(

inf
θ∈ΘH

inf
x∈SH

F̂D(θ, x) < 1/2
)
<∞.

Lemma 4.6. Under Assumptions (A1), (A2) and (H4), as n→∞,

(4.4) sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F (θ, y, x)− E F̂N (θ, y, x)| = O(hb1K + hb2H ).

Lemma 4.7. Under the assumptions of Theorem 3.5, as n→∞,

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F̂N (θ, y, x)− E F̂N (θ, y, x)| = Oa.co.

(√
log(dSHn dΘH

n )

nφ(hK)

)
.

4.2. Estimating successive derivatives of the conditional den-
sity. In this part we focus on the study of uniform almost complete con-
vergence of our estimator (3.8). In addition to the conditions introduced in
Section 4, we need the following ones:

(A5) ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ SH × SH, ∀θ ∈ ΘH,

|f (j)(θ, y1, x1)− f (j)(θ, y2, x2)| ≤ Cθ(‖x1 − x2‖b1 + |y1 − y2|b2).

(A6) For some γ ∈ (0, 1), limn→∞ n
γhH =∞, and for rn = O((log n)/n)

the sequences dSHn and dΘH
n satisfy

(log n)2

nh2j+1
H φ(hK)

< log dSHn + log dΘH
n <

nh2j+1
H φ(hK)

log n
,

∞∑
n=1

n(3γ+1)/2(dSHn dΘH
n )1−β <∞ for some β > 1.

Theorem 4.8. Under Assumptions (A1), (A3), (A5)–(A6) and (H8), as
n→∞,

(4.5) sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|f̂ (j)(θ, y, x)− f (j)(θ, y, x)|

= O(hb1K + hb2H ) +Oa.co.

(√√√√ log(dSHn dΘH
n )

nh2j+1
H φ(hK)

)
.

Proof. This result is based on the same kind of decomposition as in
(3.10), so it can be deduced from the two lemmas below, together with
Lemma 4.4 and Corollary 4.5.
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Lemma 4.9. Under Assumptions (A1), (A5) and (H8), as n→∞,

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|f (j)(θ, y, x)− E f̂ (j)N (θ, y, x)| = O(hb1K + hb2H ).

Lemma 4.10. Under the assumptions of Theorem 4.8, as n→∞,

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|f̂ (j)N (θ, y, x)− E f̂ (j)N (θ, y, x)| = Oa.co.

(√√√√ log(dSHn dΘH
n )

nh2j+1
H φ(hK)

)
.

5. Applications

5.1. The conditional mode in a functional single-index model.
In this section we will consider the problem of estimation of the conditional
mode in a functional single-index model. Our main aim here is to establish
the a.co. convergence of the kernel estimator of the conditional mode of Y
given 〈X, θ〉 = 〈x, θ〉, denoted by Mθ(x), uniformly on a fixed subset SH
of H. For this, we assume that Mθ(x) satisfies on SH the following uniform
uniqueness property (see Ould-Säıd and Cai [24] for the multivariate case):

(A7) ∀ε0 > 0, ∃η > 0, ∀ϕ : SH → SR,

sup
x∈SH

|Mθ(x)−ϕ(x)| ≥ ε0 ⇒ sup
x∈SH

|f(θ, ϕ(x), x)−f(θ,Mθ(x), x)| ≥ η.

We estimate the conditional mode M̂θ(x) with a random variable Mθ

such that

(5.1) M̂θ(x) = arg sup
y∈SR

f̂(θ, y, x).

Note that the estimate M̂θ is not necessarily unique, and if this is the

case, all what follows will concern any value M̂θ satisfying (5.1). The dif-
ficulty of the problem is naturally linked with the flatness of the function
f(θ, y, x) around the mode Mθ. This flatness can be controlled by the num-
ber of vanishing derivatives at Mθ, and this parameter will also have a great
influence on the asymptotic rates of our estimates. More precisely, we intro-
duce the following additional smoothness condition:

(A8)


f (l)(θ,Mθ(x), x) = 0 if 1 ≤ l < j,

f (j)(θ, ·, x) is uniformly continuous on SR,
|f (j)(θ, ·, x)| > C > 0.

Theorem 5.1. Under the assumptions of Theorem 4.8 together with
(A7)–(A8),

sup
x∈SH

|M̂θ(x)−Mθ(x)| = O(h
b1/j
K + h

b2/j
H ) +Oa.co.

((
log dSHn

n1−γφ(hK)

)1/2j)
.
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From the above theorem, we obtain the following result.

Corollary 5.2. Under the assumptions of Theorem 5.1, as n→∞,

M̂θ(x)−Mθ(x)→ 0, a.co.

5.2. Conditional quantile in a functional single-index model.
In this part of the paper we investigate the asymptotic properties of the
conditional quantile function of a scalar response and functional covariate
when the observations are from a functional single-index model and data
are i.i.d.

Let (Yi, Xi)1≤i≤n be n random variables, identically distributed as the
random pair (Y,X) with values in R×H, where H is a separable real Hilbert
space with the norm ‖·‖ generated by an inner product 〈·, ·〉. We consider the
semimetric dθ associated to a single index θ ∈ H, defined by dθ(x1, x2) :=
|〈x1 − x2, θ〉| for x1, x2 ∈ H. Under such topological structure and for the
fixed functional θ, we suppose that the conditional distribution function of
Y given X = x, denoted by F x(·), exists and is given by

∀y ∈ R, F xθ (y) := F (y | 〈x, θ〉) = F (θ, y, x).

Clearly, the identifiability of the model is ensured, and we have for all
x ∈ H,

F1(· | 〈x, θ1〉) = F2(· | 〈x, θ2〉) ⇒ F1 ≡ F2 and θ1 = θ2;

for more details see Aı̈t Saidi et al. [2].
We will consider the problem of estimation of conditional quantiles. Here,

we are implicitly assuming the existence of a regular version for the condi-
tional distribution of Y given 〈X, θ〉. Now, let tθ(α) be the α-order quantile
of the distribution of Y given 〈X, θ〉 = 〈x, θ〉. From the cond-cdf F (θ, ·, x),
it is easy to give the general definition of the α-order quantile:

tθ(α) = inf{t ∈ R : F (θ, t, x) ≥ α}, ∀α ∈ (0, 1).

In order to simplify our framework and to focus on the main point of in-
terest of this part (the functional feature of 〈X, θ〉), we assume that F (θ, ·, x)
is strictly increasing and continuous in a neighborhood of tθ(α). This ensures
uniqueness of the conditional quantile tθ(α) which is defined by

(5.2) tθ(α) = F−1(θ, α, x).

In what remains, we wish to stay in a free distribution framework. This
will lead us to make only smoothness restrictions on the cond-cdf F (θ, ·, x)
through nonparametric modeling (see Section 2).

As a by-product of (5.2) and (3.1), it is easy to derive an estimator t̂θ(α)
of tθ(α):

(5.3) t̂θ(α) = F̂−1(θ, α, x).
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As we will see later on, such an estimator is unique as soon as H is an
increasing continuous function.

Naturally, we will estimate this quantile by means of the conditional
distribution estimator studied in the previous sections. Here also, the litera-
ture on (conditional and/or unconditional) quantile estimation is quite vast
when the explanatory variable X is real (see for instance Samanta [26] for
previous results and Berlinet et al. [4] for recent advances and references).
In the functional case, the conditional quantiles for scalar response and a
scalar/multivariate covariate have received considerable interest in the sta-
tistical literature. For completely observed data, several nonparametric ap-
proaches have been proposed; for instance, Gannoun et al. [16] introduced a
smoothed estimator based on double kernel and local constant kernel meth-
ods. Under random censoring, Gannoun et al. [17] introduced a local linear
(LL) regression (see Koenker and Bassett [20] for the definition), and El
Ghouch and Van Keilegom [8] studied the same LL estimator. Ould-Säıd
[23] constructed a kernel estimator of the conditional quantile under i.i.d.
censorship model and established its strong uniform convergence rate. Liang
and De Uña-Álvarez [22] established the strong uniform convergence (with
rate) of the conditional quantile function under the α-mixing assumption.

Recently, many authors are interested in the estimation of conditional
quantiles for a scalar response and functional covariate. Ferraty et al. [14]
introduced a nonparametric estimator of the conditional quantile defined
as the inverse of the conditional cumulative distribution function when the
sample is considered as an α-mixing sequence. They stated its rate of almost
complete consistency and used it to forecast the well-known El Niño time
series and to build confidence prediction bands. Ezzahrioui and Ould-Säıd
[9] established the asymptotic normality of the kernel conditional quantile
estimator under the α-mixing assumption. Recently, and within the same
framework, Dabo-Niang and Laksaci [6] proved the consistency in Lp norm
of the conditional quantile estimator for functional dependent data.

In this work we propose to estimate tθ(α) by t̂θ(α) defined in (5.3) or in

(5.4) F̂ (θ, t̂θ(α), x) = α.

To ensure existence and uniqueness of this quantile, we will assume that

(A9) F (θ, ·, x) is strictly increasing.

Note that because H is a cdf satisfying (H4), such a value t̂θ(α) always exists.
It may not be unique, but if this happens all what follows will concern any
one of the values t̂θ(α) satisfying (5.4).

In order to ensure uniqueness of t̂θ(α) we will make the following, quite
unrestrictive, assumption:

(A10) H is is strictly increasing.
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As for the mode estimation problem discussed before, the difficulty in
estimating the conditional quantile tθ(α) is linked with the flatness of the
curve of the conditional distribution F (θ, ·, x) around tθ(α). More precisely,
we will suppose that there exists some integer j > 0 such that:

(A11)


F (l)(θ, tθ(α), x) = 0 if 1 ≤ l < j,

F (j)(θ, ·, x) is uniformly continuous on SR,
|F (j)(θ, tθ(α), x)| > C > 0.

Theorem 5.3. If the conditions of Theorem 4.8 hold, together with (A9)–
(A11), then

(5.5) sup
x∈SH

|t̂θ(α)− tθ(α)| = O(h
b1/j
K + h

b2/j
H ) +Oa.co.

((
log dSHn
nφ(hK)

)1/2j)
.

Proof. Let us write the Taylor expansion of the function F̂ (θ, ·, x):

F̂ (θ, tθ(α), x)− F̂ (θ, t̂θ(α), x) =

j−1∑
l=1

(tθ(α)− t̂θ(α))l

l!
F̂ (l)(θ, tθ(α), x)

+
(tθ(α)− t̂θ(α))j

j!
F̂ (j)(θ, t∗, x),

where t∗ is some point between tθ(α) and t̂θ(α). We use the first part of
condition (A11) to rewrite this expression as

F̂ (θ, tθ(α), x)− F̂ (θ, t̂θ(α), x)

=

j−1∑
l=1

(tθ(α)− t̂θ(α))l

l!

(
f̂
x,(l−1)
θ (tθ(α))− fx, (l−1)θ (tθ(α))

)
+

(tθ(α)− t̂θ(α))j

j!
f̂ (j−1)(θ, t∗, x),

where f̂
x,(l−1)
θ (tθ(α)) = f̂ (l−1)(θ, tθ(α), x).

If we could establish that

(5.6) ∃τ > 0,

∞∑
n=1

P(f (j−1)(θ, t∗, x) < τ) <∞,

we would have

(5.7) (tθ(α)− t̂θ(α))j

= Oa.co.

(j−1∑
l=1

(tθ(α)− t̂θ(α))l
(
f̂ (l−1)(θ, tθ(α), x)− f (l−1)(θ, tθ(α), x)

))
+O

(
F̂ xθ (tθ(α))− F xθ (tθ(α))

)
.
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By comparing the rates of convergence given in Theorems 3.5 and 4.8,
we see that the leading term on the right hand side of (5.7) is the first one.
So we have

(tθ(α)− t̂θ(α))j = Oa.co.

(
F̂ (θ, tθ(α), x)− F (θ, tθ(α), x)

)
.

Because of Theorem 4.8, this is enough to get the claimed result, and so
(5.6) is the only result that remains to be checked. This will be done directly
by using the uniform continuity of the function f (j−1)(θ, ·, x) given by the
second part of (A11) together with the third part of (A8) and with the
following lemma.

Lemma 5.4. If the conditions of Theorem 3.5 hold, together with (A9)
and (A10), then

(5.8) t̂θ(α)− tθ(α)→ 0, a.co.

6. Appendix

Proof of Lemma 4.4. For all x ∈ SH and θ ∈ ΘH, we set

k(x) = arg min
k∈{1,...,rn}

‖x− xk‖ and j(θ) = arg min
j∈{1,...,ln}

‖θ − tj‖.

Consider the decomposition

sup
x∈SH

sup
θ∈ΘH

|F̂D(θ, x)− E F̂D(θ, x)| ≤ Π1 +Π2 +Π3 +Π4 +Π5,

where

Π1 = sup
x∈SH

sup
θ∈ΘH

|F̂D(θ, x)− F̂D(θ, xk(x))|,

Π2 = sup
x∈SH

sup
θ∈ΘH

|F̂D(θ, xk(x))− F̂D(tj(θ), xk(x))|,

Π3 = sup
x∈SH

sup
θ∈ΘH

|F̂D(tj(θ), xk(x))− E F̂D(tj(θ), xk(x))|,

Π4 = sup
x∈SH

sup
θ∈ΘH

|E F̂D(tj(θ), xk(x))− E F̂D(θ, xk(x))|,

Π5 = sup
x∈SH

sup
θ∈ΘH

|E F̂D(θ, xk(x))− E F̂D(θ, x)|.

ForΠ1 andΠ2, we employ the Hölder continuity ofK, Cauchy–Schwarz’s
and Bernstein’s inequalities to get

(6.1) Π1 = Oa.co.

(√
log(dSH

n dΘH
n )

nφ(hK)

)
, Π2 = Oa.co.

(√
log(dSH

n dΘH
n )

nφ(hK)

)
.

Then, since Π4 ≤ Π1 and Π5 ≤ Π2, we get, for n→∞,

(6.2) Π4 = Oa.co.

(√
log(dSH

n dΘH
n )

nφ(hK)

)
, Π5 = Oa.co.

(√
log(dSH

n dΘH
n )

nφ(hK)

)
.
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Now, we deal with Π3. For all η > 0, we have

P
(
Π3 > η

(√
log(dSH

n dΘH
n )

nφ(hK)

))

≤ dSH
n dΘH

n max
k∈{1,...,dSHn }

max
j∈{1,...,dΘH

n }
P
(
Π ′3 > η

(√
log(dSH

n dΘH
n )

nφ(hK)

))
,

where Π ′3 = |F̂D(tj(θ), xk(x))− E F̂D(tj(θ), xk(x))|.
Applying Bernstein’s exponential inequality to

1

φ(hK)
(Ki(tj(θ), xk(x))− EKi(tj(θ), xk(x))),

under (A8) we get

Π3 = Oa.co.

(√
log(dSH

n dΘH
n )

nφ(hK)

)
.

The conclusion can be easily deduced from the latter together with (6.1)
and (6.2).

Proof of Corollary 4.5. It is easy to see that

inf
θ∈ΘH

inf
x∈SH

|F̂D(θ, x)| ≤ 1/2 ⇒ ∃x ∈ SH, ∃θ ∈ ΘH, 1− F̂D(θ, x) ≥ 1/2

⇒ sup
θ∈ΘH

sup
x∈SH

|1− F̂D(θ, x)| ≥ 1/2.

We deduce from Lemma 4.4 that

P
(

inf
θ∈ΘH

inf
x∈SH

|F̂D(θ, x)| ≤ 1/2
)
≤ P

(
sup
θ∈ΘH

sup
x∈SH

|1− F̂D(θ, x)| ≤ 1/2
)
.

Consequently,
∞∑
n=1

P
(

inf
θ∈ΘH

inf
x∈SH

F̂D(θ, x) < 1/2
)
<∞.

Proof of Lemma 4.6. One has

(6.3) E F̂N (θ, y, x)− F xθ (y) =
1

EK1(x, θ)
E
[ n∑
i=1

Ki(x, θ)Hi(y)
]
− F xθ (y)

=
1

EK1(x, θ)
E
(
K1(x, θ)[E(H1(y) | 〈X1, θ〉)− F xθ (y)]

)
,

where F
(j),ξ
θ (y) = F (j)(θ, y, ξ), for j = 0, 1.

Moreover, we have

E(H1(y) | 〈X1, θ〉) =
�

R

H(h−1H (y − z))f(θ, z,X1) dz.
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Now, integrating by parts and using the fact that H is a cdf, we obtain

E(H1(y) | 〈X1, θ〉) =
�

R

H(1)(t)F (θ, y − hHt,X1) dt.

Thus,

|E(H1(y) | 〈X1, θ〉)− F xθ (y)| ≤
�

R

H(1)(t)|FX1
θ (y − hHt)− F xθ (y)| dt.

Finally, the use of (A2) implies that

(6.4) |E(H1(y) | 〈X1, θ〉)− F xθ (y)| ≤ Cθ
�

R

H(1)(t)(hb1K + |t|b2hb2H ) dt.

Because this inequality is uniform in (θ, y, x) ∈ ΘH × SH × SR and because
of (H4), (4.4) is a direct consequence of (6.3), (6.4) and of Corollary 4.5.

Proof of Lemma 4.7. We keep the notation of Lemma 4.4. Since SR is
compact, we have SR ⊂

⋃zn
m=1(ym − ln, ym + ln) for some t1, . . . , tzn ∈ SR

with ln = n−1/2b2 and zn ≤ Cn−1/2b2 . Take

m(y) = arg min
m∈{1,...,zn}

|y − tm|.

Thus, we have the decomposition

|F̂N (θ, y, x)− E F̂N (θ, y, x)| = Γ1 + Γ2 + Γ3 + Γ4 + Γ5,

where

Γ1 = |F̂N (θ, y, x)− F̂N (θ, y, xk(x))|,

Γ2 = |F̂N (θ, y, xk(x))− E F̂N (θ, y, xk(x))|,

Γ3 = 2|F̂N (tj(θ), y, xk(x))− F̂N (tj(θ), ym(y), xk(x))|,

Γ4 = 2|E F̂N (tj(θ), y, xk(x))− E F̂N (tj(θ), ym(y), xk(x))|,

Γ5 = |E F̂N (θ, y, xk(x))− E F̂N (θ, y, x)|.
Concerning Γ1 we have

|F̂N (θ, y, x)− F̂N (θ, y, xk(x))|

≤ 1

n

n∑
i=1

|Hi(y)|
∣∣∣∣ 1

EK1(θ, x)
Ki(θ, x)− 1

EK1(θ, xk(x))
Ki(θ, xk(x))

∣∣∣∣.
We use the Hölder continuity of K, the Cauchy–Schwarz inequality, the
Bernstein inequality and the boundedness of H (Assumption (H4)) to get

|F̂N (θ, y, x)− F̂N (θ, y, xk(x))|

≤ C

φ(hK)

1

n

n∑
i=1

|Hi(y)| |Ki(θ, x)−Ki(θ, xk(x))| ≤
C ′rn
φ(hK)

.
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Concerning Γ2, the monotonicity of E F̂N (θ, ·, x) and F̂N (θ, ·, x) permits
us to write, for all m ≤ zn, x ∈ SH, and θ ∈ ΘH,

E F̂N (θ, ym(y) − ln, xk(x)) ≤ sup
y∈(ym(y)−ln,ym(y)+ln)

E F̂N (θ, y, x)

≤ E F̂N (θ, ym(y) + ln, xk(x)),

F̂N (θ, ym(y) − ln, xk(x)) ≤ sup
y∈(ym(y)−ln,ym(y)+ln)

F̂N (θ, y, x)

≤ F̂N (θ, ym(y) + ln, xk(x)).

Next, we use the Hölder condition on F (θ, y, x) to show that, for any
y1, y2 ∈ SR and for all x ∈ SH, θ ∈ ΘH,

(6.5) |E F̂N (θ, y1, x)− E F̂N (θ, y2, x)|

=
1

EK1(x, θ)
|E(K1(x, θ)F

X1
θ (y1))− E(K1(x, θ)F

X1
θ (y2))|

≤ C|y1 − y2|b2 .

Now, we have, for all η > 0,

P
(

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|Ξn − EΞn| > η

√
log(dSHn dΘH

n )

nφ(hK)

)

= P
(

max
j∈{1,...,dΘH

n }
max

k∈{1,...,dSH
n }

max
m(y)∈{1,...,zn}

|Ξn − EΞn| > η

√
log(dSHn dΘH

n )

nφ(hK)

)
≤ zndSHn dΘH

n

× max
j∈{1,...,dΘH

n }
max

k∈{1,...,dSH
n }

max
m(y)∈{1,...,zn}

P
(
|Ξn − EΞn|>η

√
log(dSHn dΘH

n )

nφ(hK)

)
≤ 2znd

SH
n dΘH

n exp(−Cη2 log(dSHn dΘH
n ))

where Ξn = F̂N (θ, y, xk(x)). Choosing zn = O(l−1n ) = O(n1/2b2), we get

E
(
|Ξn − EΞn| > η

√
log(dSHn dΘH

n )

nφ(hK)

)
≤ C ′zn(dSHn dΘH

n )1−Cη
2
.

Setting Cη2 = β and using (A4), we get

Γ2 = Oa.co.

(√
log(dSHn dΘH

n )

nφ(hK)

)
.
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Concerning the terms Γ3 and Γ4, using the Lipschitz condition on H,
one can write

|ΥN | ≤ C
1

nφ(hK)

n∑
i=1

Ki(tj(θ), xk(x))|Hi(y)−Hi(ym(y))|

≤ Cln
nhHφ(hK)

n∑
i=1

Ki(tj(θ), xk(x)).

where ΥN = F̂N (tj(θ), y, xk(x))− F̂N (tj(θ), ym(y), xk(x)).
Once again a standard exponential inequality for a sum of bounded vari-

ables allows us to write

F̂N (tj(θ), y, xk(x))− F̂N (tj(θ), ym(y), xk(x))

= O
(
ln
hH

)
+Oa.co.

(
ln
hH

√
log n

nφx(hK)

)
.

Now, the facts that limn→∞ n
γhH =∞ and ln = n−1/2b2 imply that

ln
hHφ(hK)

= o

(√
log(dSHn dΘH

n )

nφ(hK)

)
,

and so

Γ3 = Oa.co.

(√
log(dSHn dΘH

n )

nφ(hK)

)
.

Hence, for n large enough, we have

Γ3 ≤ Γ4 = Oa.co.

(√
log(dSHn dΘH

n )

nφ(hK)

)
.

Concerning Γ5, we have

E F̂N (θ, y, xk(x))− E F̂N (θ, y, x) ≤ sup
x∈SH

|F̂N (θ, y, x)− F̂N (θ, y, xk(x))|.

Then following the proof used for Γ1 and using the same idea as for
E F̂D(θ, xk(x))− E F̂D(θ, x) we get, for n→∞,

Γ5 = Oa.co.

(√
log(dSHn dΘH

n )

nφ(hK)

)
.

Proof of Lemma 4.9. Let H
(j+1)
i (y) = H(j+1)(h−1H (y−Yi)), and note that

(6.6) Ψn(θ, y, x)

=
h−j−1H

EK1(x, θ)
E
(
K1(x, θ)[E(H

(j+1)
1 (y) | 〈X, θ〉)− hj+1

H f (j)(θ, y, x)]
)
,

where Ψn(θ, y, x) = E f̂ (j)N (θ, y, x)− f (j)(θ, y, x).
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Moreover,

(6.7) E(H
(j+1)
1 (y) | 〈X, θ〉) =

�

R

H(j+1)(h−1H (y − z))f(θ, z,X) dz

= −
j∑
l=1

hlH
[
H(j−l+1)(h−1H (y − z))f (l−1)(θ, z,X)

]∞
−∞

+ hjH

�

R

H(1)(h−1H (y − z))f (j)(θ, z,X) dz.

Condition (H8) allows us to cancel the first term on the right side of
(6.7) and we can write

|E(H
(j+1)
1 (y) | 〈X, θ〉)− hj+1

H f (j)(θ, y, x)|

≤ hj+1
H

�

R

H(1)(t)|f (j)(θ, y − hHt,X)− f (j)(θ, y, x)| dt.

Finally, (A5) allows us to write

|E(H
(j+1)
1 (y) | 〈X, θ〉)− hj+1

H f (j)(θ, y, x)|

≤ Cθ,xhj+1
H

�

R

H ′(t)(hb1K + (|t|hH)b2) dt.

This inequality is uniform in (θ, y, x) ∈ ΘH × SH × SR; now to finish the
proof it is sufficient to use (H4).

Proof of Lemma 4.10. Let ln = n−3γ/2−1/2 and zn ≤ Cn−3γ/2−1/2. Con-
sider the decomposition

|f̂ (j)N (θ, y, x)− E f̂ (j)N (θ, y, x)| = ∆1 +∆2 +∆3 +∆4 +∆5,

where

∆1 = |f̂ (j)N (θ, y, x)− f̂ (j)N (θ, y, xk(x))|,

∆2 = |f̂ (j)N (θ, y, xk(x))− E f̂ (j)N (θ, y, xk(x))|,

∆3 = 2|f̂ (j)N (tj(θ), y, xk(x))− f̂
(j)
N (tj(θ), ym(y), xk(x))|,

∆4 = 2|E f̂ (j)N (tj(θ), y, xk(x))− E f̂ (j)N (tj(θ), ym(y), xk(x))|,

∆5 = |E f̂ (j)N (θ, y, xk(x))− E f̂ (j)N (θ, y, x)|.

Concerning ∆1, we have

|f̂ (j)N (θ, y, x)− f̂ (j)N (θ, y, xk(x))|

≤
h−1−jH

n

n∑
i=1

|H(j+1)
i (y)|

∣∣∣∣ 1

EK1(θ, x)
Ki(θ, x)− 1

EK1(θ, xk(x))
Ki(θ, xk(x))

∣∣∣∣.
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We use the Hölder continuity of K, the Cauchy–Schwarz inequality, the
Bernstein inequality and the boundedness of H(j+1) (Assumption (H8)) to
get

|Ψ1
n| ≤

Ch−j−1H

φ(hK)

1

n

n∑
i=1

|H(j+1)
i (y)| |Ki(θ, x)−Ki(θ, xk(x))|

≤
Ch−j−1H

φ(hK)

1

n

n∑
i=1

|H(j+1)
i (y)| |Ki(θ, x)−Ki(θ, xk(x))|

≤ C ′rn

hj+2
H φ(hK)

,

where Ψ1
n = f̂

(j)
N (θ, y, x) − f̂ (j)N (θ, y, xk(x)). From (A6), for n large enough,

we have

∆1 = Oa.co.

(√√√√ log(dSHn dΘH
n )

nh2j+1
H φ(hK)

)
.

Then using the fact that ∆5 ≤ ∆1, we obtain

(6.8) ∆5 = Oa.co.

(√√√√ log(dSHn dΘH
n )

nh2j+1
H φ(hK)

)
.

For ∆2, we follow the same idea as for Γ2 to get

∆2 = Oa.co.

(√√√√ log(dSHn dΘH
n )

nh2j+1
H φ(hK)

)
.

Concerning ∆3 and ∆4, using the Lipschitz condition on H, we get

|f̂ (j)N (tj(θ), y, xk(x))− f̂
(j)
N (tj(θ), ym(y), xk(x))| ≤

ln

hj+2
H φ(hk)

.

Using the fact that limn→∞ n
γhH =∞ and choosing ln = n−3γ/2−1/2 implies

ln

hj+2
H φ(hk)

= o

(√√√√ log(dSHn + log dΘH
n )

nh2j+1
H φ(hK)

)
.

So, for n large enough, we have

∆3 = Oa.co.

(√√√√ log(dSHn dΘH
n )

nh2j+1
H φ(hK)

)
,
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and as ∆4 ≤ ∆3, we also obtain

(6.9) ∆4 = Oa.co.

(√√√√ log(dSHn dΘH
n )

nh2j+1
H φ(hK)

)
.

Finally, the lemma can be easily deduced from (6.8) and (6.9).
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