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A STUDY OF A UNILATERAL AND ADHESIVE CONTACT
PROBLEM WITH NORMAL COMPLIANCE

Abstract. The aim of this paper is to study a quasistatic unilateral con-
tact problem between an elastic body and a foundation. The constitutive
law is nonlinear and the contact is modelled with a normal compliance con-
dition associated to a unilateral constraint and Coulomb’s friction law. The
adhesion between contact surfaces is taken into account and is modelled
with a surface variable, the bonding field, whose evolution is described by
a first-order differential equation. We establish a variational formulation of
the mechanical problem and prove an existence and uniqueness result in the
case where the friction coefficient is small enough. The technique of proof is
based on time-dependent variational inequalities, differential equations and
the Banach fixed-point theorem. We also study a penalized and regularized
problem which admits at least one solution and prove its convergence to the
solution of the model when the penalization and regularization parameter
tends to zero.

1. Introduction. Contact problems involving deformable bodies are
quite frequent in industry as well as in daily life and play an important
role in structural and mechanical systems. Contact processes involve com-
plicated surface phenomena, and are modelled by highly nonlinear initial
boundary value problems. Taking into account various contact conditions
associated with more and more complex behavior laws leads to the intro-
duction of new and nonstandard models, expressed with the aid of evolution
variational inequalities. An early attempt to study contact problems within
the framework of variational inequalities was made in [10]. The mathemati-
cal, mechanical and numerical state of the art can be found in [23] where we
find detailed mathematical and numerical studies of adhesive contact prob-
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lems. Unilateral frictional contact problems involving Signorini’s condition
with or without adhesion were studied by several authors: see for instance
the references in [1, 2, 5, 6, 8, 11, 17, 20, 27, 30, 32, 31].

In this paper, we study a mathematical model which describes a fric-
tional unilateral contact problem with adhesion between a nonlinear elastic
body and a deformable foundation. Following [16, 28] the contact is mod-
elled with a normal compliance condition associated to unilateral constraint,
where the penetration is limited. Recall that models for dynamic or qua-
sistatic processes of frictionless adhesive contact between a deformable body
and a foundation have been studied in [3, 4, 12, 17, 22, 23, 24, 28]. Also
recently dynamic or quasistatic frictional contact problems with adhesion
were studied in [7, 29]. Here as in [13, 14] we use the bonding field as an
additional state variable β, defined on the contact surface of the boundary.
The variable is restricted to values 0 ≤ β ≤ 1; when β = 0 all the bonds
are severed and there are no active bonds, when β = 1 all the bonds are
active; when 0 < β < 1 it measures the fraction of active bonds and partial
adhesion takes place. We refer the reader to the extensive bibliography on
the subject in [2, 12, 14, 20, 22, 23].

In this work we extend the result established in [27] to the unilateral con-
tact problem with a normal compliance condition associated to Coulomb’s
friction law. We establish a variational formulation of the mechanical prob-
lem for which we prove the existence of a unique weak solution if the friction
coefficient is small enough and obtain a partial regularity result for the so-
lution. We also consider a penalized and regularized problem which has at
least one solution and prove its convergence to the solution of the model
when the parameter of penalization and regularization tends to zero.

The paper is structured as follows. In Section 2 we present some notations
and give the variational formulation. In Section 3 we state and prove our
main existence and uniqueness result, Theorem 3.1. In Section 4 we establish
a convergence result, Theorem 4.6.

2. Problem statement and variational formulation. We consider
a nonlinear elastic body which occupies a domain Ω ⊂ Rd (d = 2, 3) and
assume that its boundary Γ is regular and partitioned into three measurable
and disjoint parts Γ1, Γ2, Γ3 such that meas(Γ1) > 0. The body is acted
upon by a volume force of density ϕ1 on Ω and a surface traction of density
ϕ2 on Γ2. On Γ3 the body is in unilateral and adhesive contact following
Coulomb’s friction law with a foundation.

Thus, the classical formulation of the mechanical problem is as follows.

Problem P1. Find a displacement u : Ω × [0, T ] → Rd and a bonding
field β : Γ3 × [0, T ]→ R such that
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div σ + ϕ1 = 0 in Ω × (0, T ),(2.1)
σ = Fε(u) in Ω × (0, T ),(2.2)
u = 0 on Γ1 × (0, T ),(2.3)
σν = ϕ2 on Γ2 × (0, T ),(2.4)

uν ≤ g, σν + p(uν)− cνβ2Rν(uν) ≤ 0

(σν + p(uν)− cνβ2Rν(uν))(uν − g) = 0

}
on Γ3 × (0, T ),(2.5)

|στ + cτβ
2Rτ (uτ )| ≤ µp(uν)

|στ + cτβ
2Rτ (uτ )| < µp(uν)⇒ uτ = 0

|στ + cτβ
2Rτ (uτ )| = µp(uν)⇒

∃λ ≥ 0, µp(uν) = −(στ + cτβ
2Rτ (uτ ))

 on Γ3 × (0, T ),(2.6)

β̇ = −[β(cν(Rν(uν))2 + cτ |Rτ (uτ )|2)− εa]+ on Γ3 × (0, T ),(2.7)
β(0) = β0 on Γ3.(2.8)

Equation (2.1) represents the equilibrium equation. Equation (2.2) repre-
sents the elastic constitutive law of the material in which F is a given func-
tion and ε(u) denotes the strain tensor; (2.3) and (2.4) are the displacement
and traction boundary conditions, respectively, in which ν denotes the unit
outward normal vector on Γ and σν represents the Cauchy stress vector.
The condition (2.5) represents the unilateral contact with adhesion in which
p and −cνβ2Rν(uν) are the normal contact functions. Here cν is a given
adhesion coefficient and Rν is a truncation operator defined by

Rν(s) =


L if s < −L,
−s if −L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which the bond
has no additional traction (see [23]) and p is a normal compliance function
which satisfies assumption (2.16) below. We denote by g ≥ 0 the maximum
value of the penetration. When uν < 0, i.e. when there is separation be-
tween the body and the foundation, then the condition (2.5) combined with
hypotheses (2.16) on the function p shows that σν = cνβ

2Rν(uν) and by
assumption (2.17) below, σν does not exceed the value Lg. When g > 0, the
body may interpenetrate into the foundation, but the penetration is limited,
that is, uν ≤ g. In this case of penetration (i.e. uν ≥ 0), when 0 ≤ uν < g then
−σν = p(uν), which means that the reaction of the foundation is uniquely
determined by the normal displacement and σν ≤ 0. Since p is an increasing
function, the reaction of the foundation increases with the penetration, and
when uν = g, then −σν ≥ p(g) and σν is not uniquely determined. When
g > 0 and p = 0, condition (2.5) becomes the Signorini contact condition
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with adhesion with a gap function,

uν ≤ g, σν − cνβ2Rν(uν) ≤ 0, (σν − cνβ2Rν(uν))(uν − g) = 0.

When g = 0, (2.5) combined with assumption (2.16) becomes the Signorini
contact condition with adhesion with a zero gap function, given by

uν ≤ 0, σν − cνβ2Rν(uν) ≤ 0, (σν − cνβ2Rν(uν))uν = 0.

This contact condition was used in [6, 23, 24, 27, 28, 30]. The condition (2.6)
represents the frictional contact in which cτβ2Rτ (uτ ) is an adhesive where
cτ is an adhesion coefficient and Rτ is a truncation operator defined by

Rτ (v) =

{
v if |v| ≤ L,
L
v

|v|
if |v| > L,

where L > 0 is the characteristic length of the bonds. Equation (2.7) is the
ordinary differential equation which describes the evolution of the bonding
field, where εa is an adhesion coefficient and β+ = max(0, β). Since β̇ ≤ 0
on Γ3× (0, T ), once debonding occurs bonding cannot be reestablished and,
indeed, the adhesive process is irreversible. Also from [18] it must be pointed
out that condition (2.7) does not allow for complete debonding in finite time.
Finally, (2.8) is the initial condition, in which β0 denotes the initial bonding
field. In (2.7) a dot above a variable represents its derivative with respect to
time. We denote by Sd the space of second order symmetric tensors on Rd
(d = 2, 3), and | · | represents the Euclidean norm on Rd and Sd. Thus,
for every u, v ∈ Rd, u.v = uivi, |v| = (v.v)1/2, and for every σ, τ ∈ Sd,
σ.τ = σijτij , |τ | = (τ.τ)1/2. Here and below, the indices i and j run between
1 and d and the summation convention over repeated indices is adopted.

Now, to proceed with the variational formulation, we need the following
function spaces:

H = (L2(Ω))d, H1 = (H1(Ω))d, Q = {σ = (σij) : σij = σji ∈ L2(Ω)},
Q1 = {σ ∈ Q : div σ ∈ H}.
Note that H and Q are real Hilbert spaces endowed with the respective
canonical inner products

(u, v)H =
�

Ω

uivi dx, (σ, τ)Q =
�

Ω

σijτij dx.

The strain tensor is

ε(u) = (εij(u)) =
1

2
(ui,j + uj,i);

div σ = (σij,j) is the divergence of σ. For every v ∈ H1 we denote by vν and
vτ the normal and tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν.
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We also denote by σν and στ the normal and the tangential traces of a
function σ ∈ Q1, and when σ is a regular function then

σν = (σν).ν, στ = σν − σνν,
and the following Green formula holds:

(σ, ε(v))Q + (div σ, v)H =
�

Γ

σν.v da ∀v ∈ H1,

where da is the surface measure element.
Now, let V be the closed subspace of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1},
and let the convex subset of admissible displacements be given by

K = {v ∈ V : vν ≤ g a.e. on Γ3}.
Since meas(Γ1) > 0, the following Korn inequality holds [10]:
(2.9) ‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V,
where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V
with the inner product

(u, v)V = (ε(u), ε(v))Q

and ‖ · ‖V is the associated norm. It follows from (2.9) that the norms ‖ · ‖H1

and ‖·‖V are equivalent on V. Thus (V, ‖·‖V ) is a real Hilbert space. Moreover
by Sobolev’s trace theorem, there exists dΩ > 0 which only depends on the
domain Ω, Γ1 and Γ3 such that
(2.10) ‖v‖(L2(Γ3))d ≤ dΩ‖v‖V ∀v ∈ V.

For p ∈ [1,∞], we use the standard norm of Lp(0, T ;V ). We also use the
Sobolev space W 1,∞(0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).

For every real Banach space (X, ‖ · ‖X) and T > 0 we use the notation
C([0, T ];X) for the space of continuous functions from [0, T ] to X; recall
that C([0, T ];X) is a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

We suppose that the body forces and surface tractions have the regularity
(2.11) ϕ1 ∈W 1,∞(0, T ;H), ϕ2 ∈W 1,∞(0, T ; (L2(Γ2))

d),

and denote by f(t) the element of V defined by

(2.12) (f(t), v)V =
�

Ω

ϕ1(t).v dx+
�

Γ2

ϕ2(t).v da, ∀v ∈ V, t ∈ [0, T ].

Using (2.11) and (2.12) yields

f ∈W 1,∞(0, T ;V ).
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In the study of the mechanical problem P1 we assume that the nonlinear
elasticity operator F : Ω × Sd → Sd satisfies:

(2.13)



(a) there exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤M |ε1 − ε2|,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(b) there exists m > 0 such that
(F (x, ε1)− F (x, ε2)).(ε1 − ε2) ≥ m|ε1 − ε2|2,
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(c) the mapping x 7→ F (x, ε) is Lebesgue measurable on Ω,
for any ε ∈ Sd;

(d) F (x, 0) = 0 for a.e. x ∈ Ω.
The adhesion coefficients are assumed to satisfy

(2.14) cν , cτ ∈ L∞(Γ3), εa ∈ L2(Γ3), cν , cτ , εa ≥ 0 a.e. on Γ3,

and the friction coefficient µ satisfies

(2.15) µ ∈ L∞(Γ3) and µ ≥ 0 a.e. on Γ3.

Next we define the functional jad : L2(Γ3)× V × V → R by

jad(β, u, v) =
�

Γ3

[(p(uν)− cνβ2Rν(uν))vν + cτβ
2Rτ (uτ ).vτ ] da,

∀(β, u, v) ∈ L2(Γ3)× V × V,
and the functional jfr : V × V → R+ by

jfr(u, v) =
�

Γ3

µp(uν)|vτ | da, ∀(u, v) ∈ V × V.

We assume that the normal compliance function p : Γ3 × R→ R+ satisfies:

(2.16)



(a) There exists Lp > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2|,
∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0,

∀r1, r2 ∈ R, a.e. x ∈ Γ3;
(c) the mapping x 7→ pν(x, r) is Lebesgue measurable on Γ3,

for any r ∈ R;

(d) p(x, r) = 0, ∀r ≤ 0, a.e. x ∈ Γ3.
We also assume that the initial bonding field satisfies

(2.17) β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3,
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and we introduce the set
B = {θ : [0, T ]→ L2(Γ3); 0 ≤ θ(t) ≤ 1, ∀t ∈ [0, T ], a.e. on Γ3}.

Finally, assuming that the solution is sufficiently regular and applying Green’s
formula, we deduce the following variational formulation of the mechanical
problem P1.

Problem P2. Find a displacement field u : [0, T ] → V and a bonding
field β : [0, T ]→ L2(Γ3) such that

(2.18)

u(t) ∈ K,(
Fε(u(t)), ε(v)− ε(u(t))

)
Q

+ jad
(
β(t), u(t), v − u(t)

)
+ jfr(u(t), v)− jfr(u(t), u(t)) ≥ (f(t), v − u(t))V , ∀v ∈ K, t ∈ [0, T ],

(2.19) β̇(t)=−
[
β(t)

(
cν(Rν(uν(t)))2+cτ |Rτ (uτ (t))|2

)
−εa

]
+
a.e. t∈(0, T ),

(2.20) β(0) = β0.

3. Existence and uniqueness result. Our main result is the following
theorem.

Theorem 3.1. Let (2.11) and (2.13)–(2.17) hold. Then Problem P2 has
a unique solution, which satisfies

u ∈W 1,∞(0, T ;V ) ∩ C([0, T ];K)(3.1)

and

β ∈W 1,∞(0, T ;L2(Γ3)) ∩B,(3.2)
if

‖µ‖L∞(Γ3) < m/Lpd
2
Ω.

The proof of Theorem 3.1 is carried out in several steps. In the first step,
let k > 0 and consider the closed subset X of C([0, T ];L2(Γ3)) defined as

X = {θ ∈ C([0, T ]; L2(Γ3)) ∩B : θ(0) = β0},
where the Banach space C([0, T ];L2(Γ3)) is endowed with the norm

‖θ‖X = max
t∈[0,T ]

[exp(−kt)‖θ(t)‖L2(Γ3)] for θ ∈ C([0, T ];L2(Γ3)).

Next for a given β ∈ X, we consider the following variational problem.

Problem P1β. Find uβ : [0, T ]→ V such that

(3.3)

uβ(t) ∈ K,(
Fε(uβ(t)), ε(v − uβ(t))

)
Q

+ jad
(
β(t), uβ(t), v − uβ(t)

)
+ jfr(uβ(t), v)− jfr(uβ(t), uβ(t)) ≥ (f(t), v − uβ(t))V

∀v ∈ K, t ∈ [0, T ].

We have the following result.
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Proposition 3.2. Problem P1β has a unique solution

(3.4) uβ ∈ C([0, T ];K)

if
‖µ‖L∞(Γ3) < m/Lpd

2
Ω.

The proof of Proposition 3.2 will be established in several steps. In the
first step for each t ∈ [0, T ] and a given η ∈ K, we consider the following
intermediate problem.

Problem Pβη. Find uβη(t) ∈ K such that

(3.5)
(
Fε(uβη(t)), ε(v − uβη(t))

)
Q

+ jad
(
β(t), uβη(t), v − uβη(t)

)
+ j(η, v)

− jfr(η, uβη(t)) ≥ (f(t), v − uβη(t))V , ∀v ∈ K.

Lemma 3.3. Problem Pβη has a unique solution.

Proof. Let the operator Aβ(t) : V → V be defined by

(Aβ(t)u, v)V = (Fε(u), ε(v))Q + jad(β(t), u, v), ∀u, v ∈ V.

We use (2.10), (2.13)(a), (2.13)(b), (2.16)(b) and (2.16)(c) to show that the
operator Aβ(t) is strongly monotone and Lipschitz continuous.

Moreover, the functional j(η, ·) : V → R+ is a continuous seminorm.
Hence by a standard existence and uniqueness result for elliptic variational
inequalities (see [25]), there exists a unique element uβη(t) ∈ K which satis-
fies (3.5) since K is a non-empty, closed convex subset of V.

Now, in the second step, for a fixed t ∈ [0, T ] we consider the map
Tt : K → K defined as

Tt(η) = uβη(t).

We have the following lemma.

Lemma 3.4. The map Tt has a unique fixed point η∗ and uβη∗(t) is a
unique solution of the inequality (3.3).

Proof. Let η1, η2 ∈ K. In (3.5) satisfied by uη1(t) set v = uη2(t), and
also in the same inequality satisfied by uη2(t) take v = uη1(t). Using (2.10),
(2.13)(c) and (2.16), it follows after adding the resulting inequalities that

‖Tt(η1)− Tt(η2)‖V ≤
‖µ‖L∞(Γ3)Lpd

2
Ω

m
‖η1 − η2‖V , ∀η1, η2 ∈ K.

Then for ‖µ‖L∞(Γ3)Lpd
2
Ω/m < 1, the map Tt is a contraction; so it has a

unique fixed point η∗ and uβη∗(t) is a unique solution of inequality (3.3).
Next, denote uβη∗(t) = uβ(t) for each t ∈ [0, T ]. As in [31], to show that
uβ ∈ C([0, T ];K), it suffices to see from (3.3) that there exists a constant
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c > 0 such that

(3.6) ‖uβ(t1)− uβ(t2)‖V
≤ c

m− ‖µ‖L∞(Γ3)Lpd
2
Ω

(
‖f(t1)− f(t2)‖V + ‖β(t1)− β(t2)‖L2(Γ3)

)
for all t1, t2 ∈ [0, T ]. Therefore, as f ∈ C([0, T ];V ) and β ∈ C([0, T ];L2(Γ3)),
we immediately deduce (3.4).

In the second step, we consider the following problem.

Problem P2β . Find χβ : [0, T ]→ L2(Γ3) such that

(3.7) χ̇β(t) =

−
[
χβ(t)

(
cν(Rν(uβν(t)))2 + cτ |Rτ (uβτ (t))|2

)
− εa

]
+

a.e. t ∈ (0, T ),

(3.8) χβ(0) = β0.

We obtain the following result.

Lemma 3.5. Problem P2β has a unique solution χβ which satisfies

χβ ∈W 1,∞(0, T ;L2(Γ3)) ∩B.

Proof. Consider the mapping Fβ(t, θ) : [0, T ]×L2(Γ3)→ L2(Γ3) defined
by

Fβ(t, θ) = −
[
θ
(
cν(Rν(uβν(t)))2 + cτ |Rτ (uβτ (t))|2

)
− εa

]
+
.

It follows from the properties of the truncation operators Rν and Rτ , that
Fβ is Lipschitz continuous with respect to the second argument, uniformly
in time. Moreover, for any θ ∈ L2(Γ3), the mapping t 7→ Fβ(t, θ) belongs to
L∞(0, T ;L2(Γ3)). Then, from a version of the Cauchy–Lipschitz theorem, we
deduce the existence of a unique fonction χβ ∈ W 1,∞(0, T ;L2(Γ3)), which
satisfies (3.7), (3.8). The regularity χβ ∈ B follows from (3.7), (3.8) and
(2.17) (see [22, 24, 26]). Therefore, from Lemma 3.5, we deduce that for all
β ∈ X, the solution χβ of Problem P2β belongs to X.

Next, we define the mapping Λ : X → X by

Λβ = χβ.

The third step consists of the following lemma.

Lemma 3.6. The mapping Λ has a unique fixed point β∗.

Proof. We have

Λβ(t) = β0 −
t�

0

[
χβ(s)

(
cν(Rν(uβν(s)))2 + cτ |Rτ (uβτ (s))|2

)
− εa

]
+
ds,
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where uβ is the solution of Problem P1β . Then for β1, β2 ∈ X, using (2.19)(a)
and the properties of Rν and Rτ (see [23]), there exists a constant c1 > 0
such that

|χβ1(t)− χβ2(t)| ≤ c1
t�

0

(
|χβ1(s)− χβ2(s)|+ |uβ1τ (s)− uβ2τ (s)|

)
ds.

Applying Gronwall’s inequality and using (2.10) yields

‖χβ1(t)− χβ2(t)‖L2(Γ3) ≤ c2
t�

0

‖uβ1(s)− uβ2(s)‖V ds

for some constant c2 > 0. Now let t ∈ [0, T ]. Then, using the inequalities
(3.3), (2.13), (2.16) and ‖µ‖L∞(Γ3)Lpd

2
Ω < m, we deduce that there exists a

constant c3 > 0 (see [31]) such that

‖uβ1(t)− uβ2(t)‖V ≤ c3‖β1(t)− β2(t)‖L2(Γ3).

Hence,

‖Λβ1(t)− Λβ2(t)‖L2(Γ3) ≤ c4
t�

0

‖β1(s)− β2(s)‖L2(Γ3) ds, ∀t ∈ [0, T ],

for some constant c4 > 0. Therefore,

‖Λβ1 − Λβ2‖X ≤
c4
k
‖β1 − β2‖X , ∀β1, β2 ∈ X.

Thus, this previous inequality shows that for k sufficiently large, Λ is a
contraction. Hence it has a unique fixed point β∗ which satisfies (3.7) and
(3.8). On the other hand, from (3.6) we deduce that uβ∗ ∈W 1,∞(0, T ;V ).

Proof of Theorem 3.1. Let β = β∗ and let uβ∗ be the solution to Prob-
lem P1β. We conclude by (3.3), (3.7) and (3.8) that (uβ∗ , β

∗) is a solution
of Problem P2. Now to prove the uniqueness of the solution, suppose that
(u, β) is a solution of Problem P2 which satisfies (2.18)–(2.20). It follows
from (2.18) that u is a solution of Problem P1β and by Proposition 3.2 we
get u = uβ . Taking u = uβ in (2.18) and using the initial condition (2.20),
we deduce that β is a solution of Problem P2β . Finally, using Lemma 3.5,
we obtain β = β∗ and so (uβ∗ , β

∗) is a unique solution to Problem P2 which
satisfies (3.1), (3.2).

4. A convergence result. In this section we consider a frictional con-
tact problem with normal compliance and adhesion with unlimited penetra-
tion. The contact condition (2.5) is replaced by the contact condition

−σν =
1

δ
(uν − g)+ + p(uν)− cνβ2Rν(uν) on Γ3 × (0, T ).
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We recall that δ > 0 is the penalization and regularization parameter and 1/δ
is interpreted as the stiffness coefficient of the foundation. We understand
that when δ is small, the reaction of the foundation to the penetration is
important; also when δ is large then the reaction is weaker. We study the
behavior of the solution as δ → 0 and prove that in the limit we obtain the
solution of the adhesive frictionless contact problem with normal compliance
and finite penetration. Next we define the functionals jadδ : L2(Γ3)×V ×V →
R and jfrδ : V × V → R by

jadδ(β, u, v) =
�

Γ3

(
1

δ
(uν − g)+ + p(uν)− cνβ2Rν(uν)

)
vν da,

∀(β, u, v) ∈ L2(Γ3)× V × V,

jfrδ(u, v) =
�

Γ3

µp(uν)
uτ√
u2τ + δ2

vτ da, ∀u, v ∈ V.

With this notation, the variational formulation of the penalized and regu-
larized problem with frictional contact and adhesion is the following.

Problem Pδ. Find uδ : [0, T ]→ V and βδ : [0, T ]→ [0, 1] such that

(4.1) (Fε(uδ(t)), ε(v))Q + jadδ(βδ(t), uδ(t), v) + jfrδ(uδ(t), v)

= (f(t), v)V , ∀v ∈ V, t ∈ [0, T ],

β̇δ(t) =(4.2)

−
[
βδ(t)

(
cν(Rν(uδν))2 + cτ |Rτ (uδτ )|2

)
− εa

]
+
on Γ3 × (0, T ),

βδ(0) = β0.(4.3)

We have the following result.

Theorem 4.1. Problem Pδ has a solution which satisfies

uδ ∈ L∞(0, T ;V ), βδ ∈W 1,∞(0, T ;L2(Γ3)) ∩B.

Proof. As in [24], the proof is similar to the proof of Theorem 3.1 and it
is carried out in several steps.

(i) For any β ∈ X, we consider the problem below.

Problem P1δ. Find uδ : [0, T ]→ V such that

(4.4)
(
Fε(uδ(t)), ε(v)

)
Q

+ jadδ(β(t), uδ(t), v) + jfrδ
(
uδ(t), v

)
= (f(t), v)V , ∀v ∈ V, t ∈ [0, T ].

We have the following lemma.

Lemma 4.2. Problem P1δ has a solution uδ ∈ L∞(0, T ;V ).
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Proof. As in [11], to prove Lemma 4.2 we use the theorem on pseu-
domonotone operators. For this, let us state some properties and abstract
results for these operators, obtained in [33]. We start with the following
definition.

Definition 4.3. Let X be a reflexive Banach space and X ′ be its dual
space. An operator A : X → X ′ is called pseudomonotone if

uk → u weakly in X, lim sup
k→∞

〈Auk, uk − u〉X′×X ≤ 0

⇒ 〈Au, u− w〉
X′×X ≤ lim inf

k→∞
〈Auk, uk − w〉X′×X , ∀w ∈ X.

In order to decide whether a given operator is pseudomonotone or not, we
need Proposition 4.4 and Theorem 4.5 below.

Proposition 4.4. Let X be a reflexive Banach space, A : X → X ′ be
strongly monotone and B : X → X ′ be completely continuous. Then the sum
C = A+B is pseudomonotone.

A nonlinear operator C : X → X ′ is called coercive if

lim
‖u‖X→∞

〈Au, u〉X′×X
‖u‖X

= +∞.

The theorem on pseudomonotone operators that we use is the following.

Theorem 4.5. Let X be a real, reflexive and separable Banach space
and C : X → X ′ be pseudomonotone, bounded and coercive. Then for each
L ∈ X ′ the equation

Cu = L

has a solution.

In order to apply this theorem to our situation, we define the operators
At, P : V → V ′ by

〈Atu, v〉V ′×V = 〈Fε(u), ε(v)〉Q + jadδ(β(t), u, v),

〈Pu, v〉V ′×V =
�

Γ3

µp(uν)
uτ√
u2τ + δ2

vτ da, ∀u, v ∈ V.

We use (2.13), (2.14) and (2.16) and the definition of the operator Rν to see
that At is strongly monotone and Lipschitz continuous. We also use (2.15)
and (2.16), the compact embedding H1/2(Γ3) ↪→ L2(Γ3) and the Lebesgue
dominated convergence theorem to show that the operator P is completely
continuous. We have

|〈Pu, v〉V ′×V | ≤ ‖µ‖L∞(Γ3)Lpd
2
Ω‖u‖V ‖v‖V , ∀u, v ∈ V.



Unilateral and adhesive contact problem 397

Moreover,
〈Pv, v〉V ′×V ≥ 0, ∀v ∈ V.

Thus the operator Ct = At + P is pseudomonotone, bounded and coercive.
Consequently, by applying Theorem 4.5 we deduce that equation (4.4) has
solution uδ(t) ∈ V . To prove that uδ ∈ L∞(0, T ;V ), it suffices to take
v = uδ(t) in (4.4); since

jadδ
(
βδ(t), uδ(t), uδ(t)

)
≥ 0, jfrδ(uδ(t), uδ(t)) ≥ 0,

it follows from (4.4) that(
Fε(uδ(t)), ε(uδ(t))

)
Q
≤ (f(t), uδ(t))V .

This inequality together with the assumption (2.13)(b) implies that

(4.5) ‖uδ(t)‖V ≤ ‖f(t)‖V /m.

Hence using the regularity f ∈ C([0, T ];V ), we immediately conclude from
(4.5) that uδ ∈ L∞(0, T ;V ).

(ii) There exists a unique βδ such that

βδ ∈W 1,∞(0, T ;L2(Γ3)) ∩B,(4.6)

β̇δ(t) =(4.7)

−
[
βδ(t)

(
cν(Rν(uδν(t)))2 + cτ |Rτ (uδτ (t))|2

)
− εa

]
+
a.e. t ∈ (0, T ),

βδ(0) = β0.(4.8)

(iii) Let βδ be as defined in (ii) and denote again by uδ the function
obtained in step (i) for β = βδ. Then, by using (4.4), (4.7) and (4.8)
it is easy to see that (uδ, βδ) is a solution to Problem Pδ and it satis-
fies

(uδ, βδ) ∈ L∞(0, T ;V )×W 1,∞(0, T ;L2(Γ3)) ∩B.
Now, as in [23, 24], we study the convergence of the solution (uδ, βδ) as

δ → 0 in the following theorem.
Theorem 4.6. Assume that (2.13)–(2.16) hold. Then

lim
δ→0
‖uδ(t)− u(t)‖V = 0 for all t ∈ [0, T ],(4.9)

lim
δ→0
‖βδ(t)− β(t)‖L2(Γ3) = 0 for all t ∈ [0, T ].(4.10)

The proof is carried out in several steps. In the first step, we show the
following lemma.

Lemma 4.7. For each t ∈ [0, T ], there exists ū(t) ∈ K such that after
passing to a subsequence still denoted (uδ(t)) we have

(4.11) uδ(t)→ ū(t) weakly in V.



398 A. Touzaline

Proof. Let t ∈ [0, T ]. Setting v = uδ(t) in (4.1), we have

(4.12)
(
Fε(uδ(t)), ε(uδ(t))

)
Q

+ jadδ
(
βδ(t), uδ(t), uδ(t)

)
+ jfrδ(uδ(t), uδ(t)) = (f(t), uδ(t))V .

Then it is easy to see from (4.12) that estimate (4.5) holds and so there
exists an element ū(t) ∈ V and a subsequence still denoted uδ(t) such that

uδ(t)→ ū(t) weakly on V.

On the other hand, from (4.12) we also have
�

Γ3

(
uδν(t)− g

δ

)
+

(uδν(t)− g) da ≤ (f(t), uδ(t))V ,

which implies that

‖(uδν(t)− g)+‖2
L2(Γ3)

≤ δ‖f(t)‖2V /m.

Then by (4.11), it follows that

(4.13) ‖(ūν(t)− g)+‖L2(Γ3) ≤ lim inf
δ→0

‖(uδν(t)− g)+‖L2(Γ3) = 0.

Therefore we conclude by (4.13) that (ūν(t) − g)+ = 0, i.e. ūν(t) ≤ g a.e.
on Γ3, which shows that ū(t) ∈ K.

Now, we state the following problem.

Problem P3. Find β : [0, T ]→ L2(Γ3) such that

β̇(t) = −
[
β(t)

(
cν(Rν(ūν(t)))2 + cτ |Rτ (ūτ (t))|2

)
− εa

]
+
a.e. t ∈ (0, T ),

β(0) = β0.

As in [24, Lemma 3.2] we have the following result.

Lemma 4.8. Problem P3 has a unique solution β ∈ W 1,∞(0, T ;L2(Γ3))
∩B.

We also show the following convergence result.

Lemma 4.9. Let β be the solution to Problem P3. Then

(4.14) lim
δ→0
‖βδ(t)− β(t)‖L2(Γ3) = 0 for all t ∈ [0, T ].

Proof. As in [24, Lemma 3.2], we have

(4.15) ‖βδ(t)− β(t)‖L2(Γ3)

≤ c
t�

0

(‖uδν(s)− ūν(s)‖L2(Γ3) + ‖uδτ (s)− ūτ (s)‖(L2(Γ3))d) ds,
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for some c > 0. Using (4.11) we deduce that uδν(t) → ūν(t) strongly in
L2(Γ3) and uδτ (t) → ūτ (t) strongly in (L2(Γ3))

d as δ → 0. On the other
hand, we have

‖uδν(t)− ūν(t)‖L2(Γ3) + ‖uδτ (s)− ūτ (s)‖(L2(Γ3))d

≤ 2dΩ‖uδ(t)− ū(t)‖V ≤ dΩ
(
‖f(t)‖V
m

+ ‖ū(t)‖V
)
,

which implies that there exists a constant c1 > 0 such that

‖uδν(t)− ūν(t)‖L2(Γ3) + ‖uδτ (s)− ūτ (s)‖(L2(Γ3))d ≤ c1.

Then it follows from Lebesgue’s convergence theorem that

(4.16) lim
δ→0

t�

0

(‖uδν(s)− ūν(s)‖L2(Γ3) + ‖uδτ (s)− ūτ (s)‖(L2(Γ3))d) ds = 0.

The convergence result is now a consequence of (4.15) and (4.16).

Next, we prove the following lemma.

Lemma 4.10. We have ū(t) = u(t) for all t ∈ [0, T ].

Proof. Let v ∈ K and take v − uδ(t) in (4.1) to obtain

(4.17)
(
Fε(uδ(t)), ε(v − uδ(t))

)
Q

+ jadδ
(
βδ(t), uδ(t), v − uδ(t)

)
+ jfrδ(uδ(t), v − uδ(t)) ≥ (f(t), v − uδ(t))V , ∀v ∈ K.

Since

jadδ
(
βδ(t), uδ(t), v − uδ(t)

)
=

�

Γ3

((
uδν(t)− g

δ

)
+

+ p(uδν(t))− cνβ2δRν(uδν(t))

)
(vν − uδν(t)) da

≤
�

Γ3

(
p(uδν(t))− cνβ2δRν(uδν(t))(vν − uδν(t))

)
da,

we use (2.16), (4.10), (4.12), the properties of Rν and the compact imbedding
H1/2(Γ3) ↪→ L2(Γ3) to see that
�

Γ3

(
p(uδν(t))− cνβ2δRν(uδν(t))

)
(vν − uδν(t)) da→ jad

(
β(t), ū(t), v − ū(t)

)
as δ → 0 and

lim
δ→0

jfrδ(uδ(t), v − uδ(t)) ≤ jfr(ū(t), v)− jfr(ū(t), ū(t)).
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Therefore, passing to the limit in (4.17) as δ → 0, we obtain

(4.18)
(
Fε(ū(t)), ε(v − ū(t))

)
Q

+ jad
(
β(t), ū(t), v − ū(t)

)
+ jfr(ū(t), v)

− jfr(ū(t), ū(t)) ≥ (f(t), v − ū(t))V , ∀v ∈ K.

Now, setting v = u(t) in (4.18) and v = ū(t) in (2.18) and adding the
resulting inequalities, we obtain, by using the assumption (2.13)(b) on F ,

m‖ū(t)− u(t)‖2V ≤ jad
(
β(t), ū(t), u(t)− ū(t)

)
+ jad

(
β(t), u(t), ū(t)− u(t)

)
+ jfr(ū(t), u(t))− jfr(ū(t), ū(t)) + jfr(u(t), ū(t))− jfr(u(t), u(t)).

Moreover using (2.16) and the properties of Rν and Rτ we see that

jad
(
β(t), ū(t), u(t)− ū(t)

)
+ jad

(
β(t), u(t), ū(t)− u(t)

)
≤ 0,

which implies that

m‖ū(t)− u(t)‖2V
≤ jfr(ū(t), u(t))− jfr(ū(t), ū(t)) + jfr(u(t), ū(t))− jfr(u(t), u(t)).

On the other hand using (2.10) and (2.16) we have

jfr(ū(t), u(t))− jfr(ū(t), ū(t)) + jfr(u(t), ū(t))− jfr(u(t), u(t))

≤ Lpd2Ω‖ū(t)− u(t)‖2V .

Hence we get

(m− Lpd2Ω‖µ‖L∞(Γ3))‖ū(t)− u(t)‖2V ≤ 0,

and so as m− Lpd2Ω‖µ‖L∞(Γ3) > 0, we obtain

(4.19) ū(t) = u(t).

Now, we have all the ingredients to prove Theorem 4.6. Indeed, from
(4.19), we deduce immediately (4.10). To prove (4.9), we set v = u(t) in
(4.17) to obtain

m‖uδ(t)− u(t)‖2V
≤ jad

(
βδ(t), uδ(t), u(t)− uδ(t)

)
− jad

(
β(t), u(t), u(t)− uδ(t)

)
+ jfrδ(uδ(t), u(t)− uδ(t))− jfr

(
u(t), u(t)− uδ(t)

)
+
(
Fε(u(t)), ε(u(t)− uδ(t))

)
Q

+ (f(t), uδ(t)− u(t))V .
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Passing to the limit as δ → 0 and using the convergences

jad
(
βδ(t), uδ(t), u(t)− uδ(t)

)
− jad

(
β(t), u(t), u(t)− uδ(t)

)
→ 0,

jfrδ
(
uδ(t), u(t)− uδ(t)

)
− jfr

(
u(t), u(t)− uδ(t)

)
→ 0,(

Fε(u(t)), ε(u(t)− uδ(t))
)
Q

+
(
f(t), uδ(t)− u(t)

)
V
→ 0,

we obtain the strong convergence

‖uδ(t)− u(t)‖V → 0 for all t ∈ [0, T ].
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