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DAGMAR MEDKOVA (Praha)

THE SUCCESSIVE APPROXIMATION METHOD
FOR THE DIRICHLET PROBLEM IN A PLANAR DOMAIN

Abstract. The Dirichlet problem for the Laplace equation for a planar do-
main with piecewise-smooth boundary is studied using the indirect integral
equation method. The domain is bounded or unbounded. It is not supposed
that the boundary is connected. The boundary conditions are continuous
or p-integrable functions. It is proved that a solution of the correspond-
ing integral equation can be obtained using the successive approximation
method.

1. Introduction. The integral equation method is a classical tool for
the study of the Dirichlet problem for the Laplace equation. For a bounded
domain with connected smooth boundary and a smooth boundary condition
the solution of the Dirichlet problem has been looked for in the form of a
double layer potential. In 1919 J. Radon studied the Dirichlet problem on a
bounded planar domain whose boundary is a curve with bounded rotation
(see [18], [19]). He proved the existence of a classical solution of the Dirichlet
problem for continuous boundary conditions. In the second half of the 20th
century the classical Dirichlet problem was studied using the integral equa-
tion method on domains with nonsmooth boundary in general Euclidean
space (see [9], [11]). Later this method was used to study a generalized solu-
tion of the Dirichlet problem on a bounded domain with connected Lipschitz
boundary and boundary conditions from LP, p > 2 (see [7]). If the domain
is convex, the boundary condition is continuous and we look for a solution
in the form of a double layer potential then the solution of the correspond-
ing integral equation can be calculated by the Neumann series (see [9]).
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This result was proved for more general bounded domains with connected
boundary in 1998 (see [12]).

If G is a domain with bounded boundary and G is not bounded or if
O0G is not connected then the solution of the Dirichlet problem is not a
double layer potential in general. This problem was overcome for G C R™
with m > 2 (see [14]). D. Medkova looked for a solution of the Dirichlet
problem in the form of a sum of a single layer potential and a double layer
potential with the same density. For a wide class of domains the existence of
a solution of the corresponding integral equation was proved and the solution
of this equation was expressed by the Neumann series. This method cannot
be directly used for planar domains. The first reason is that the single layer
potential is not bounded in the planar case. Secondly, if G C R™ with m > 2
and the single layer potential with density ¢ vanishes on G then ¢ = 0.
This is not true for planar domains. So, we must modify the method and
look for a solution of the Dirichlet problem in a slightly different form.

This paper is devoted to the Dirichlet problem for the Laplace equa-
tion for a planar domain G with boundary formed by finitely many curves
with bounded rotation. This domain might be bounded or unbounded. The
classical solution and also the scale of strong solutions with LP boundary
condition are studied. The solution is looked for in the form

=DM M _— d
u f+aS f+H1(aG)a§Gf Hi,

where
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is the double layer potential with density ¢,
1
Se(x)

T 2r

1

8SG e(y) I o= dH(v)

is the single layer potential with density ¢, and a is a nonnegative constant.

(If G is bounded then u = Df 4+ aSM f. If G is unbounded then

1
u:Df+aSMf+Hl(aG)astdH1.)

This leads to the integral equation T, f = g, where g is a boundary condition.
Here
1

Tof(x) = KM f(z) + dg(x)M f(x) + aSM f(z) + 1 (00) | fdm
oG
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where

Ko =t § M0 o) ),

{y€dG; lz—y|>e}
. Mo () 1 G)

. 2034r (T
da@) = m = @)
is the density of G at =x.
Fix R > diam G and define
CR = sup S S lnidHl(y).

2€dG 2T o, [ =yl
(If OG is formed by segments Ci,...,Cy of lengths Ii,...,l; then cp <
27713 1;[1 — In(l;/2R)].) The main result of the paper is the following
theorem:

THEOREM. Put

po =1+ sup [1—2dg(z)|.
z€0G

Fiz v > (14+acr)/2, p € (po;00). The operator T, is continuously invertible
in LP(0G) and in C(OG) and

oo
T, b=ty (=T

n=0
If g € LP(OG) then there is a unique LP-solution u of the Dirichlet problem
Au=0 in G,
u=g onJG.

(If g € C(OG) then u is a classical solution of the problem.) If we put f =
T lg then

w=DMf+aSMf + | fdH,.

HA(0G) )

Fiz fo € LP(0G) and put
fns1 = ’Y_lg + (I - ’y_lTa)fn forn > 0.
Then f,, converges to f in LP(OG) and ||f, — f|| < Mq"™/(1 — q), where M

is a constant depending on G, a, 7, p, g, fo and q € (0;1) is a constant
depending on G, a, p, . The same is true in C(0G).

2. Formulation of the problem. Let S be a rectifiable curve in R?
and let s denote arc length on S (0 < s <1[). If the angle #(s) made by the
positively oriented tangent and the x-axis is a function of bounded variation
on [0;1], the curve S is said to be a curve with bounded rotation. Note that
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piecewise C1T% bounded curves with o > 0 and the boundary of a convex
bounded set are curves with bounded rotation.

Denote by Hj the k-dimensional Hausdorff measure normalized so that
Hy, is the Lebesgue measure on RF. If z € R? and r > 0, define 2,.(z) =
{y € R% |x —y| < r}. If G C R? is a measurable set and = € R?, denote by

. Ho(2:(x)NG)
dg(z) = lim ————=
ale) = lim Ha(2,(z))
the density of G at x.

Let G be a domain in R? with bounded nonempty boundary 0G. Suppose
that 0G is formed by finitely many disjoint Jordan curves with bounded
rotation. Suppose moreover that G has no cusps, i.e.

(1) 0 < inf dg(x) < sup dg(x) < 1.
z€0G z€d@

We remark that 0G is locally the graph of a Lipschitz function. Let S
be a fixed Jordan curve of OG. Suppose that S = {(z(s),y(s)); 0 < s < I},
where the parameter s is the arc length on S. If 0(s) is the angle made by
the positively oriented tangent and the x-axis, then

S S

2(s) = 2(0) + \cosO(t) dt,  y(s) = y(0) + | sind(t) dt

0 0
(see [19, p. 1126]). Fix sg € (0;1). Since 6 is a function of bounded variation,
it follows that 04 (sp), the limit from the right of 6 at sg, and 6_(s¢), the limit
from the left of 6 at sg, both exist. We can choose a coordinate system so that
—m/2 < 0_(s9) < 0 < 04(sp) < w/2. This implies that there are positive
constants a, $1, s such that 0 < 51 < 59 < s9 <land —7/2 < —a < 0(s) <
a < /2 for each s € (s1;52). Put S1 = {(x(s),y(s)); s1 < s < s2)}. Since
x(s) is an increasing function in (s1;s2) we can express y(s) as a function
of z(s) for S7. If s1 < s < 7 < s9 then
§ cos 0(t) 1

dt = -
coS COoS (v [2(r) = 2(s)l;

ly(r) —y(s)| < 7—s<

because T — s is the length of the part of S between (z(s),y(s)) and (z(7),
y(7)). So, Sy is the graph of a Lipschitz function.

If g € C(OG) we say that u is a classical solution of the Dirichlet problem
for the Laplace equation

(2) Au=0 inG,
(3) u=g ondG

if u € C?(G) NC(clG) is bounded and satisfies (2), (3). (Here clG denotes
the closure of G.)
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We will also study the scale of strong solutions of the Dirichlet problem
(2), (3) for g € LP(OG).
For z € 0G let

I(x) = In(z) = {y € G; [z —y| < (1 + o) dist(y, 0G)}

denote the nontangential approach region of opening « corresponding to
G and z, where a@ > 0 is taken large enough depending on the Lipschitz
constant associated with G. Here dist(y, M) denotes the distance of the
point y from the set M. If u is a function on G we denote by

N(u)(z) = sup{|u(y)|; y € I'(x)}
the nontangential mazximal function of u with respect to G. If x € 0G and

c= lim U
y—z,yel'(x) ®)
we say that c is the nontangential limit of u at = with respect to G.
Let 1 <p < oo and g € LP(0G). We say that u is an LP-solution of the
Dirichlet problem (2), (3) if u € C?(G) satisfies (2), N(u) € LP(0G) and g(z)
is the nontangential limit of u at & with respect to G for Hj-a.a. z € 0G.

3. Potentials. Since G has locally Lipschitz boundary there is an out-
ward unit normal n(y) at almost all y € G. For f € LP(0G), 1 < p < oo,
define .

n(y) (y—x
Df) = 5= § " ) ar o)
oG
the double layer potential with density f, and

§f() =5 | f)n

2 S0 |z =yl
the single layer potential with density f. Then Df, Sf are harmonic func-
tions in G, N(Df) € LP(0G), N(|VSf|) € LP(OG) and the nontangential
limits of Df, VS f with respect of G exist at almost all points of OG (see [7,

Theorem 2.2.13]). The single layer potential is well defined for all z € R”
and Sf € C(R™) (see [9, Lemma 2.18] or [16, Lemma 3.1]). If

(4) | far,i=0
oG

then Sf(z) — 0 as |z| — oo and N(Sf) € LP(0G). If (4) does not hold and
G is unbounded then |Sf(x)| — oo as |z| — oo and N(Sf) = oo on 9G.
For ¢ > 0 and z € G denote

K@= | MWD ) ).

_ 2
weaGijo—y>ey 1Y

dH1(y)
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For almost all x € 9G we have
Kf(z) = lim K. f(2)
E—

and 3 f(z) + K f(z) is the nontangential limit of Df at x (see [7, Theo-
rem 2.2.13]). If f € C(OG) then K f(z) makes sense for each x € 9G and
i Df(y) = da(@)f(x) + K[(2)

yeG, y—x
(see [9, Theorem 2.19, Lemma 2.15, Proposition 2.8 and Lemma 2.9]). Ob-
serve that dg(x) = 1/2 for almost all z € OG because G has locally Lipschitz
boundary.

If G is unbounded then D1 = 0in G and dg(z)+K1(z) = 0 on OG. (This
is an easy consequence of Green’s formula.) If G is bounded then D1 =1 in
G and dg(z) + K1 =1 on 0G.

For f € L?(0G), ¢ > 0 and y € 9G set

O e R e (L}
[yeot ja—yl>e) Y

For almost all y € 0G we have
K" f(y) = lim K2 f(y),

and % f(y) + K* f(y) is the nontangential limit of —n(y) - VS f with respect
to R%\ clG at y (see [7, Theorem 2.2.13]).

4. Reduction of the problem. Define

1
5 Mf=f—-—rx dH
(5) f=17 H1(3G)88Gf 1
for f € L1(0G).
Fix a > 0. We look for a solution of the problem (2)—(3) in the form

1
6 =DM SMf+ ——++ dH.
(6) u f+a f+H1(3G)aSGf Hi
Here f € C(0G) if g € C(OG) and if we look for a classical solution; f €
LP(0G) if g € LP(OG) and if we look for an LP-solution. Note that u =
Df +aSM f for G bounded, and

1
u="Df +aSMf + ’Hl(c’iG)astdHl
for G unbounded.
For f € LP(0G) and z € 0G define
(1) Tuf(w) = KMJ(@) +do(e) M (@) +aSMf(@) + g | f

oG
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if the expression makes sense. If f,g € C(0G) then u given by (6) is a
classical solution of the Dirichlet problem (2), (3) if and only if T, f = g.
If f,g € LP(0G), 1 < p < oo, then u given by (6) is an LP-solution of the
Dirichlet problem (2), (3) if and only if 7, f = g.

If G is bounded then

Tof(r) = Kf(z) +da(x)f(z) + aSM f(x).
If G is unbounded then

(@) = KF () + do(@) [ () +0SM (@) + s | it
oG

5. Properties of the integral operator. Let X be a real Banach
space. Denote by compl X the complexification of X, i.e. compl X = {x + iy;
x,y € X}. If T is a linear operator on X extend T onto compl X by setting
T(z+iy) = Tx+iTy. In particular, the complexifications of the spaces C(D)
and LP(D) of real-valued functions are the corresponding spaces Cc(D) and
L@ of complex-valued functions.

The bounded linear operator 7" on the Banach space X is called Fredholm
if a(T), the dimension of the kernel of T', is finite, the range T'(X) of T is
a closed subspace of X, and 3(T'), the codimension of 7'(X), is finite. The
number i(T) = a(T') — B(T) is the index of T

Let X be a complex Banach space and T' be a bounded linear operator
in X. Denote by o(T) the spectrum of T, r(T) = sup{|\|; A € o(T)} the
spectral radius of T, and r.(T") = sup{|A|; AT —T is not a Fredholm operator
with index 0} the essential spectral radius of T'. Here I denotes the identity
operator on X.

LEMMA 5.1. The operator Ty, is a bounded linear operator in Cc(0G) and
in L2(0G). Moreover, re(T, — 3I) < % in Cc(0G). Put

(8) po =1+ sup [1—2dg(z)l.

z€0G
Then 1 <py < 2. If p € (1,00) then T, is a Fredholm operator with index 0
in LP(0Q) if and only if p > 1+|1—2dg(x)| for each x € 0G. If py < p < 00
then re(T, — 31) < 3 in LE(OG).

Proof. Since G has no cusps, (1) implies that 1 < py < 2.

Define T'f(z) = dg(z) f(z) + K f(z). The operator T is a bounded linear
operator on C(d@G) (see [9, §2] or [19]). J. Radon proved that re(T — ) <1
in Cc(0G) for OG connected (see [19, p. 1149]). Denote by C1,...,Cj all
components of 0G. Let GG1, ..., G be open sets such that G = ﬂ?zl Gj and
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C; =0G, for j=1,... k. For f € LL(C;), 1 < p < o0, set

Tyfa) = doy () f@) + tim 0§ P g ),
{yeCj;|z—y[>e}

Then r.(Tj — 1) < 1 in Cc(8G;). For f € LA(AG) define Tf(x) = T; f ()
forx € Cj, j = 1,. ,k. Let now A € C, |[A\| > 1/2. If f € Cc(O0G) then
(T—%I—)\I)f:Oifandonlyif(Tj—%I—)\I)f:Oforj:1,...,k and
thus

a(T =31 = A) = a(Ty — 31 = XI) + - + (T}, — 31 — AD).

Moreover, for a given g € Cc(0G) there is f € Cc(9G) such that (T — 31—

M) f = g if and only if there are f; € Cc(C}) such that ( %I— M)fj=g
on Cj. Therefore

BT — 31— NI) = B(Ty — 41 = M)+ -+ B(Ty — 31 = \I).

Since ZIA} — 31 — \I are Fredholm operators in Cc(C;) with index 0 for j =

., k, we conclude that T - %I — M is a Fredholm operator in Cc(0G)
with index 0. (Compare also [22, Proposition 1].) Since

F-Dfw= | "W )

_ 2
BO\G; [z —y

for x € C}, we see that T —T is a bounded linear operator from Cc(9G) into
CL(8G). The compact embedding of C*(9G) into C (8G) implies that T — T
is a compact linear operator in Cc(dG). Since T — 31—\ = (T — 31—
M)+ (T-T),T - 21— A is a Fredholm operator Wlth index 0, and T T
is a compact linear operator, we conclude that T - %I — M is a Fredholm
operator with index 0 (cf. [20, Theorem 5.10]). Hence (T — i) < 1 in
Cc(0G).

Fasy calculation yields

(9) (Ta_f)f:aSMf+[ | fdm]u—’ﬁ).

1
H1(0G) 56
We now show that T, — T is a compact linear operator in Cc(9G). Since
T1 =0 for G unbounded and 71 = 1 for G bounded (see above), we have

(T, —T)f = aSMf + fdH,

el
H1(0G) e
for G unbounded and

(Tu —T)f = aSM
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for G bounded. The operator f — Sf is a bounded linear operator from
L%(0G) to C(OG) (see [16, Lemma 3.1]). The compact embedding of C(9G)
into L2(9G) gives that S is a bounded compact operator in C(9G). Since the
composition of a bounded operator and a compact operator is a compact
operator, the finite-dimensional operator is a compact operator and the sum
of two compact operators is a compact operator (see [24, Chapter X, §2]),
we infer that T, — T is a bounded compact linear operator in Cc(d@). Since
T, — T is a bounded linear operator in Cc(90G), we find that T, is a bounded
linear operator in Cc(AG). Fix now A € C, [\ > 1/2. Since T — 11— Al
is a Fredholm operator with index 0 and T, — Tis a compact operator in
Cc(0G), we deduce that T, — I — A is a Fredholm operator with index 0
in Cc(8G) (cf. [20, Theorem 5.10]). Therefore, re(T, — 31) < & in Cc(0G).

Fix 1 < p < 0o. Then K is a bounded linear operator in L{.(0G) (see [7,
Theorem 2.2.13]). Since G has locally Lipschitz boundary we have dg(z) = %
for almost all # € OG. Thus T = %I + K is a bounded linear operator
in LL.(8G). The operator S is a compact linear operator in LP.(9G) (see
[16, Lemma 3.1]). Using (9) and the same reasoning as above we prove
that T, — T is a bounded compact linear operator in L{.(0G). Therefore
T, is a bounded linear operator in L{.(dG). In the same way as above we
prove that T-Tisa compact linear operator in L{.(9G). Fix now X € C.
Since T, — Tisa compact linear operator in L{.(9G) the operator T, — A\I
is a Fredholm operator in L{(9G) if and only if T — M is a Fredholm
operator in L{.(0G) and (T, — \) = i(T — M) (see [20, Theorem 5.10)).
If f € L2(dG) then (T — AI)f = 0 if and only if (T; — AI)f = 0 for
j=1,...,k and thus a(’f—)\f) = a(ﬁ —A)+-- -—i—a(fk — AI). Moreover,
for a given g € L2(JG) there is f € LL(AG) such that (T — AI)f = g if and
only if there are f; € L{.(C;) such that (fj — M) fj = g on Cj. Therefore
B(T — M) = B(Ty — M) + - + B(T — ). Hence T — A is a Fredholm
operator in L2(G) if and only if Tj — Ml is a Fredholm operator in L (C})
for j=1,....k and i(T — M) = i(Ty — M)+ - - - +i(Tj — AI). (Cf. also [22,
Proposition 1].) According to [22, Theorem 5], fj is a Fredholm operator
inALé(Cj) if and only if p # 1+ [1 — 2dg(x)| for each = € C;. Morcover,
i(T;) > 0, and i(Tj) = 0 if and only if p > 14 |1 — 2dg(x)| for each x € 9C;.
Altogether, T, is a Fredholm operator with index 0 in LP(9G) if and only if
p>14|1—2dg(x)| for each x € IG.

Let po < p < 00, A € C, |A| > 4. Then Tj — 11 — Al is a Fredholm
operator with index 0 in LP(C;) for j = 1,...,k by [22, Theorem 6] (see
also [21, Theorem 4]). We have shown that T, — %I — A is a Fredholm
operator with index 0 in LP(8G). Thus re(T, — 3I) < & in L2(9G).
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COROLLARY 5.2. For f € L(0G) and z € G define

1 1
(10) Ty f(x) = ME*f(z) + 5 Mf(z) + aMSf(z) + ——— | fdH,

2 H1(0G) oG
whenever it makes sense. Then the operator T; is bounded in L%(0G) and
it is the adjoint operator of T, in LZ(0G).

Proof. Easy calculation gives that K7 is the adjoint operator of K.. If
f € L%(0G) then |K.f|| < C|fll, IK:f]l < C||f|| where the constant C
does depend on f and ¢ (see [23, Lemma 1.2]). This, the definitions of K*,
K and the Lebesgue lemma imply that K* is a bounded operator in L%(@G)
which is the adjoint operator of K in LZ(0G). Since the operator f — Sf
is a bounded linear operator in L4 (0G) (see [16, Lemma 3.1]) we infer that
T is a bounded operator in L2 (0G). Since dg(z) = § for almost all z € 9G,
Fubini’s theorem shows that T} is the adjoint operator of T, in LZ(9G).

LEMMA 5.3. Denote by L3(0G) the set of all f € L*(0G) satisfying (4).
Fiz R > diam 0G, where diam 0G denotes the diameter of 0G. Define

1 R

11 cp= sup — \ In——dH;(y).
(1) f x68G27TaSG |z -yl 1)

Let f = f1+ify € La(c(aG), 0 < S]f\Q < 1. Denote by f = f1 —ifs the
complex conjugate of f. Then
0< | |VSfPdHy = | fSfdMy < cgr < oo
R2\0G oG
Proof. Denote by H the restriction of H; onto dG. Since S f; is bounded

on G and f; € L3(dG) the real measure f;H has finite energy (see [10,
Chapter I, §4]). According to [10, Chapter I, Theorem 1.16] we have

| fiStdHy >0,

oG
and equality holds if and only if f; = 0 a.e. on G. Moreover, [10, Chapter I,
Theorem 1.20] shows that

| IVSfiPdHy = | f;Sf; dH.
R2\0G aG
Fubini’s theorem gives
| IVSfPdHy = | (IVSHI +|VSfo’] dHs
R2\OG R2\9G

oG G
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Since 0 < {|f|*> we obtain

0< {[AShH + fShldH = | fSTdH,.
oG oG

Since f € ngc(aG) we have

ST@) = 57 | F)n 2 ama(v).
oG

Using Holder’s inequality and Fubini’s theorem we obtain

j ssFam < | f<x>r\/ [ 170 5T 2 dHa(y) e P (x)
oG oG

5C |z =yl

< WR\/ S If(w)|2dH1(w)\/ | {1 o () ()
oG

8G 8G |z~ ]

[z =yl
LEMMA 5.4. Fiz R > diam(0G). If f is a nontrivial function from the
space L%}C(aG) then

0< § (MSF)(SPdH < cg | fSFdH,
oG oG
where cg is given by (11).

< \/@\/S lf(y)|? S %lnidHl(x)dHl(y) < cpg.
oG oG

Proof. Holder’s inequality gives

‘ { Sdel‘Q <H,(0G) | SF?dH,

oG oG
and the equality holds if and only if Sf = c a.e. on dG, where c is constant.
In that case

0= | fSfdH,
oG

which contradicts Lemma 5.3. Thus

1 2 _

0< \ISfPdHy — | | SFary| = | (MSF)(SF)dH,.
oG H1(0G) ‘ aG ‘ aG
For ¢, € L(2)7<C(8G) define
(6, 9] = | ¢S dH,.
oG

Lemma 5.3 implies that [¢,1] is a scalar product on Lg’(c(aG). Define
A ={¢ € L§-(9G); §|¢]* < 1}. Since MSf € L§ (0G), using Schwarz’s
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inequality (see [4, Theorem 1.7.4]) we get

| (MSF)(SF)dHy < sup (o, FIMSFlz2 o0
oG peA

<sup|l6, fllsup | | wMSfars| =supll, fllsup | § vSFar,|
peA Pen PYe peA Pe PYe

< sup /[¢, o]V fll sup VIf, FIV Y. ¥] < erlf, f]
peN el

by Lemma 5.3.

PROPOSITION 5.5. Let a >0, f € LZ(8G) be nontrivial, and T f = \f
where X\ is a complex number. If f & L(Q)’C@G) then A\=1. If f € Lac(@G)
then 0 < A< 1+acg. If a > 0 or OG is connected then A > 0.

Proof. Suppose first that f & L%,(C (0G). Since T} is the adjoint operator
of T,, we have
AMofai= {1 1pfan = | f-TuldHy = | fdH,.
oG oG oG oG
Let now f € L&C(ac;). Then

A rSFary = | [T ISl dH,
oG oG
= V(K f+3HSFdHy+a | (MSF)(ST)dH,
oG oG
= | |VS/PdHi +a | (MSF)(ST)dH,
R2\G le;
by [12, Lemma 7]. Using Lemmas 5.3 and 5.4 we get

e VSIPdHe | 16 (MSI(SD) dHy

 reyoq VST dHy Yo fSfdH:
If @ > 0 then A > 0 by Lemma 5.4. Suppose now that « = 0 and 0G is
connected. If A = 0 then VSf = 0 in R?\ cIG. Since R?\ clG is connected

there is a constant ¢ such that Sf = c in R? \ clG. Since Sf € C(R?) we
obtain §f = ¢ on 9G. Since f € L%’C(aG) we have

| fSfam, =\ fearny =o.
oG oG
Lemma 5.3 yields f = 0, which is a contradiction.

= A <1+ acg.

COROLLARY 5.6. Let a > 0. If OG is not connected, suppose that a > 0.
Fiz R > diam(0G) and v > (14+acg)/2. Then o(T,) C{\ € C; |A—v| <~}
in Cc(0G) and in LY(OG) for po < p < oo, where py is given by (8).
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Proof. Let A € o(T,) in Cc(9G) or in L{.(G), where py < p < co. Since
{AeC; |IA—=1/2| <1/2} c{X € C; |A =] <~}, we can suppose that |\ —
1/2] > 1/2. Since T, — AI is a Fredholm operator with index 0 by Lemma 5.1,
the complex number A must be an eigenvalue of T, in the corresponding
space. Since T, — AI is a Fredholm operator with index 0 in LZ(0G), the
number ) is an eigenvalue of T, in LZ(0G) (see [17, Lemma 2.1]). Since
A € o(Ty,) in LA(0G) we have X € o(T;) in LL(8G) (see [24, Chapter VIII,
§6, Theorem 2]). Since T — \I is a Fredholm operator with index 0 (see [20,
Theorem 7.22]), we deduce that A is an eigenvalue of T.F. Proposition 5.5
implies that A € (0;1+ ac,] C{B€C; |6 —7| <~}

THEOREM 5.7. Let a > 0. If G is not connected, suppose that a > 0.
Fiz R > diam(0G) and v > (1 + acgr)/2. Let po < p < co. Then there are
positive constants M, M, and q,q, € (0,1) such that

(12) (I = "T0)" | 1o o) < Mpay,
(13) (I =7"'T) lee) < Mq"

for each nonnegative integer n. The operator T, is continuously invertible
in LE(8G) and in Cc(0G) and

o0
(14) T, =) (=T

n=0

Proof. Corollary 5.6 and the spectral mapping theorem (see [20, Theo-

rem 9.5]) give that o(I —y~!T,) C {\ € C; |\| < 1}. Since r(I —~y71T,) < 1
and r(I —y~'T,) = lim || (I —~y~Y1,)"||"/™ as n — oo (see [24, Chapter VIII,
§2]), we deduce that there are positive constants M, M, and ¢,¢, € (0,1)
such that (12), (13) hold. Since T, = Y[l — (I — v~ !T,)], easy calculation
gives (14).

6. Solution of the problem

LEMMA 6.1. Let 0 < R < 0o and u be a bounded harmonic function in
V = {x € R?% |z| > R}. Then |Vu(z)| = O(|z|7?) as |z| — oo.

Proof. Set V.= {z € R% |z| < 1/R} and v(z) = u(z/|z|?) for z €
V'\ {(0,0)}. Then v, the Kelvin transform of u, is a function harmonic in
V\{(0,0)} (see [2, Corollary 1.6.4]). Since v is a bounded harmonic function
in V\{(0,0)}, we can define v at the point (0,0) in such a way that v is a har-
monic function in V (see [2, Corollary 5.2.3]). Since v € C1(V') there is a posi-
tive constant M such that |[Vu(z)| < M for each x with |z| < 1/2R. If |z| >
2R then u(z) = v(z/|z|?) and |[9ju(z)| = |3 div(x/|x*)0;(xi/|=*))] <
3M/|x|%.
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THEOREM 6.2. Let a > 0. If G is not connected, suppose that a > 0.
Fiz R > diam(0G) and v > (1 + acr)/2. If g € C(0G) then there is a
unique classical solution u of the Dirichlet problem (2), (3) with the boundary
condition g. This solution is given by (6), where f = T, 1g and T, ' is given
by (14). Let pg < p < 00. If g € LP(OG) then there is a unique LP-solution u
of the Dirichlet problem (2), (3) with the boundary condition g. This solution
is given by (6), where f = T, g and T,/ ! is given by (14).

Proof. If T, ! is given by (14), f = T, 'g and u is given by (6) then u
is a solution of the problem by §4 and Theorem 5.7. Therefore it suffices to
prove the uniqueness of an LP-solution for py < p < 2.

Let u be an LP-solution of the Dirichlet problem (2), (3) with the bound-
ary condition ¢ = 0, po < p < 2. If G is bounded then u = 0 (see
[7, Theorem 2.3.15] or [8]). Let now G be unbounded. Fix R > 0 such
that 0G C 2z(0). Put G = G N N2z(0) and ¢ = u on 2x(0). Since
g € WYP(OG) there is a unique LP-solution v of the Dirichlet problem
for the Laplace equation on G with the boundary condition g such that
N(|Vv]) € LP(OGR) (see [6, Theorem 5.6]). Uniqueness for bounded do-
mains gives u = v. Since N(|Vu|) € LP(OGR) the nontangential limit of
Vu exists at almost all x € 0GR (see [5, Theorem| and [3, Theorem 1]).
Set h(x) = n(x) - Vu(z). Then h € LP(0GR) and u is an LP-solution of
the Neumann problem for the Laplace equation in Gr with the boundary
condition h. This means that there is ¢ € LP(0GR) and a constant ¢ such
that u = S + ¢ (see [16, Theorem 8.7]). This shows that u € C(clG). Since
u is bounded, |Vu(z)| = O(|z|72) as |#| — oo by Lemma 6.1. Since u = 0
on 0G, we get for R — oo using Green’s formula (cf. [15, p. 229])

)
[IVuldHy = lim | [Vul?dHo = lim | o dHy =0,
R—o0 R—o0 on
G Gr R

Since Vu = 0 in G the function u is constant. Thus v = 0.

REMARK 6.3. Let a > 0. If G is not connected, suppose that a > 0.
Fix R > diam(0G) and v > (1 4 acr)/2. (If OG is formed by segments
Ci,...,Cy of lengths 1, ..., l; then we have the following estimate of cpg:

k
1
e < o > L[l = In(l;/2R)]
j=1

by [16, Example 11.1]. Let g € C(0G) or g € LP(0G), where py < p < o0.
According to Theorem 6.2 there is a unique solution w of the Dirichlet prob-
lem (2), (3) with the boundary condition g, which is given by (6), where f is a
solution of the integral equation T, f = g. We want to find f by successive ap-
proximations. We modify the equation T, f = gas f =y tg+ (I —~y~'T,)f.
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Fix arbitrary fo and put

far1 = ’Y_lg + (I - 'Y_lTa)fn

for each nonnegative integer n. Since the spectral radius of the operator
I — 47T, is smaller than 1 by Corollary 5.6 and the spectral mapping
theorem (see [20, Theorem 9.5]), the series f,, converges to the solution f
(see [1, Chapter V, §5]). Since

fn+1 - fn = (I - 771Ta)n(f1 - fO)a

Theorem 5.7 yields constants ¢ € (0,1), M depending on G, g and fp such
that || fr41 — full < Mq"™ and thus ||f, — f|| < M¢"/(1 —q).
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