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ON THE POINCARÉ–LYAPUNOV CONSTANTS
AND THE POINCARÉ SERIES

Abstract. For an arbitrary analytic system which has a linear center at
the origin we compute recursively all its Poincaré–Lyapunov constants in
terms of the coefficients of the system, giving an answer to the classical
center problem. We also compute the coefficients of the Poincaré series in
terms of the same coefficients. The algorithm for these computations has an
easy implementation. Our method does not need the computation of any
definite or indefinite integral. We apply the algorithm to some polynomial
differential systems.

1. Introduction. Many models of natural phenomena use systems of
differential equations in the plane and the qualitative theory of differential
equations, introduced by Poincaré, can be used to describe the behavior
of such systems in most cases. One of the problems here is to distinguish
between a focus and a center (the center problem). The resolution of this
problem requires the computation of the so-called Poincaré–Lyapunov con-
stants. Therefore to have a fast and easy method for this computation is of
great importance. Another important problem is to determine systems that
have centers at some singular points due to the fact that perturbations of
such systems give rich bifurcations of limit cycles.

In the last years many papers have been published giving different meth-
ods to compute the Poincaré–Lyapunov constants. In this work we compute
them recursively in terms of the coefficients of the system for an arbitrary
analytic system which has a linear center at the origin, thus answering the
classical center problem. We also compute the coefficients of the Poincaré
series in terms of the same coefficients. Our method does not need the com-
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putation of any definite or indefinite integral, and is easy to implement on
a computer.

Consider two-dimensional autonomous systems of differential equations
of the form

(1) ẋ = −y +X(x, y), ẏ = x+ Y (x, y),

where the nonlinearities are

X(x, y) =
∞∑

s=2

Xs(x, y) and Y (x, y) =
∞∑

s=2

Ys(x, y)

with Xs(x, y) =
∑s
k=0 a

s
kx

kys−k and Ys(x, y) =
∑s
k=0 b

s
kx

kys−k and ask and
bsk are arbitrary real coefficients.

For such systems Poincaré [20] developed an important technique that
consists in finding a formal power series of the form

(2) H(x, y) =
∞∑

n=2

Hn(x, y),

where H2(x, y) = (x2 + y2)/2, and for each n, Hn(x, y) =
∑n
k=0 C

n
k x

kyn−k,
such that the derivative of H along the solutions of system (1) satisfies

(3) Ḣ =
∞∑

k=2

V2k(x2 + y2)k,

where V2k are called the Poincaré–Lyapunov constants.
In order to solve the problem of the stability of system (1) at the origin,

it is sufficient to consider the sign of the first Poincaré–Lyapunov constant
different from zero. If it is positive we have asymptotic stability for negative
times, and if it is negative we have asymptotic stability for positive times.
If all Poincaré–Lyapunov constants are zero, then the origin is stable for all
times, but there is no asymptotic stability for any time (see for instance [2]).
In this last case, we have a center at the origin, i.e. there is an open neigh-
borhood of the origin where all orbits are periodic, except of course the
origin. The origin is said to be a fine focus of order k if V2k+2 is the first
nonzero Poincaré–Lyapunov constant. In this case at most k limit cycles
can bifurcate from this fine focus [4]; they are called small-amplitude limit
cycles. Therefore to obtain the maximum number of limit cycles which can
bifurcate from the origin for a given system, one has to find the maximum
possible order of a fine focus. It is known that this maximum number is three
for quadratic systems [3] and it has been shown recently that it is greater
than or equal to eleven for cubic systems [24].

In this work we are going to see that we can always determine Cnk and
V2k from ask and bsk, but the Cnk are not unique and in consequence neither
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are the V2k. Therefore, the Poincaré formal series is not unique. Poincaré [20]
proved, by delimitation, that for polynomial systems there exists one which
is convergent, and Lyapunov [17] generalized Poincaré’s theorem to analytic
systems. In [6] Chazy, using the theorem of analytical dependence on initial
parameters, demonstrated that there exists one which is convergent, by a
suitable choice of parameters that appear in the construction of Poincaré
series. For polynomial systems we have uniqueness of the V2k in the sense
of the following theorem due to Shi Songling [22].

Theorem 1. Let A be the ring of real polynomials whose variables are
the coefficients of a polynomial differential system. Given a set of Poincaré–
Lyapunov constants V1, . . . , Vi, let Jk−1 be the ideal of A generated by
V1, . . . , Vk−1. If V ′1 , . . . , V

′
i is another set of Poincaré–Lyapunov constants,

then Vk ≡ V ′k (mod Jk−1).

As mentioned above, the origin is a center if and only if all the Vi’s
are zero. Let J = (V1, V2, . . .) be the ideal of A generated by all the Vi’s.
For polynomial systems, by Hilbert’s basis theorem, J is finitely generated,
i.e. there exist B1, . . . , Bq in J such that J = (B1, . . . , Bq). Such a set of
generators is called a basis of J.

There exist various algorithms to compute the Poincaré–Lyapunov con-
stants. The technique used by Bautin [3] is based on computing the deriva-
tives of the return map from a nonlinear system of recursive differential
equations. There is another algorithm which involves the solution of a sys-
tem of linear equations for the coefficients of Hn in terms of the coefficients
of Xs, Ys and Hk for k = 2, . . . , n−1 (see for instance [16] and [19]). Another
method is to construct a Poincaré formal power series in polar coordinates
and the Poincaré–Lyapunov constants can be computed from recursive linear
formulas as definite integrals of trigonometric polynomials (see for example
[1] and [5]). In [10] the authors give a survey of different ways to compute
the Poincaré–Lyapunov constants.

Modifying the standard techniques explained in [2] for obtaining the
Poincaré–Lyapunov constants, in [7] the first and second Poincaré–Lyapunov
constants are computed for an arbitrary analytic system using the return
function and some algebraic properties of the Poincaré–Lyapunov constants.
In [15] taking advantage of the complex structure that simplifies their ef-
fective computation, V3 and V5 have been found by hand. A development
of the method presented in [15] is used in [13] to obtain V7 for an arbitrary
analytic system. Using the Runge–Kutta–Fehlberg methods and Richard-
son’s extrapolation, an analytic-numerical method of computation of the
Poincaré–Lyapunov constants is given in [14]. Another algorithm is devel-
oped in [12] and [11], based on the calculation of successive derivatives of the
first return map associated with the perturbations of some planar Hamil-
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tonian systems. An important generalization of this last method is given
in [23].

The paper is organized as follows. In the next section we present a for-
mula for the Poincaré–Lyapunov constants (see Theorem 2) and we describe
the algorithm that we have developed. As a particular case the formula is
applied to quadratic systems. Section 3 is devoted to the center problem for
some particular systems as an application of the method.

2. The main result. We present a formula for the Poincaré–Lyapunov
constants and Poincaré series for general systems (1) in recurrent form fol-
lowing the ideas of Shi Songling [21] who found the same expression for
the Poincaré–Lyapunov constants, but he did not find the recursive relation
with the Poincaré series, which establishes a method to compute them.

The advantages of this method are:

(a) In the whole process we only calculate products and sums without
definite or indefinite integrals as in the majority of other methods.

(b) As a consequence of (a) the process is easy to implement on a com-
puter.

(c) The method gives the Poincaré–Lyapunov constants and Poincaré
series at the same time. This allows us to find systems with a polynomial
first integral by requiring the Poincaré series to have a finite number of
terms.

Theorem 2. The Poincaré–Lyapunov constants of system (1) are

Vn =
∑n/2
l=0(n− (2l + 1))!! (2l − 1)!! dn2l∑n/2
l=0(n− (2l + 1))!! (2l− 1)!!

(
n/2
l

) , n = 4, 6, 8, . . . ,

where dnk =
∑n−2
m=1

∑m+1
l=0 (lan−mk−l+1 + (m + 1 − l)bn−mk−l )Cm+1

l , n ≥ 3, k =
0, . . . , n, with ask = bsk = 0 for k < 0 or k > s, C2

0 = C2
2 = 1/2 and C2

1 = 0,
and for n ≥ 3,

Cnk =





∑(k−1)/2
l=0 (n− (2l + 1))!! (2l− 1)!!

(
dn2l −

(
n/2
l

)
Vn
)

(n− k)!! k!!
,

k = 1, 3, 5, . . . ,

−
∑[(n−1)/2]
l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k)!! k!!
, k = 0, 2, 4, . . .

where λn are arbitrary constants and Vn and λn are zero for n odd.

Proof. From the evaluation of the derivative of H(x, y) along the solu-
tions of system (1) we have
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Ḣ =
∂H

∂x
ẋ+

∂H

∂y
ẏ

=
( ∞∑

n=2

∂Hn

∂x

)(
−y +

∞∑

s=2

Xs

)
+
( ∞∑

n=2

∂Hn

∂y

)(
x+

∞∑

s=2

Ys

)

=
∞∑

n=2

(
−y ∂Hn

∂x
+ x

∂Hn

∂y

)
+
∞∑

s=2

Xs

∞∑

n=2

∂Hn

∂x
+
∞∑

s=2

Ys

∞∑

n=2

∂Hn

∂y

=
∞∑

n=3

(
−y ∂Hn

∂x
+ x

∂Hn

∂y
+

n−2∑

m=1

(
Xn−m

∂Hm+1

∂x
+ Yn−m

∂Hm+1

∂y

))
.

Comparing with (3) we have

(4) −y ∂Hn

∂x
+ x

∂Hn

∂y
+

n−2∑

m=1

(
Xn−m

∂Hm+1

∂x
+ Yn−m

∂Hm+1

∂y

)

=
{

0 if n is odd,
Vn(x2 + y2)n/2 if n is even.

For the second term on the left hand side of (4) we have

n−2∑

m=1

(
Xn−m

∂Hm+1

∂x
+ Yn−m

∂Hm+1

∂y

)

=
n−2∑

m=1

(( n−m∑

k=0

an−mk xkyn−m−k
)(m+1∑

l=0

lCm+1
l xl−1ym+1−l

))

+
n−2∑

m=1

(( n−m∑

k=0

bn−mk xkyn−m−k
)(m+1∑

l=0

(m+ 1− l)Cm+1
l xlym−l

))

=
n−2∑

m=1

m+1∑

l=0

n−m∑

k=0

lan−mk Cm+1
l xk+l−1yn+1−l−k

+
n−2∑

m=1

m+1∑

l=0

n−m∑

k=0

(m+ 1− l)bn−mk Cm+1
l xk+lyn−l−k

=
n−2∑

m=1

m+1∑

l=0

n−m+l−1∑

k=l−1

lan−mk−l+1C
m+1
l xkyn−k

+
n−2∑

m=1

m+1∑

l=0

n−m+l∑

k=l

(m+ 1− l)bn−mk−l C
m+1
l xkyn−k.
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Since ask = bsk = 0 for k < 0 or k > s this last expression takes the form

n−2∑

m=1

m+1∑

l=0

n∑

k=0

(lan−mk−l+1 + (m+ 1− l)bn−mk−l )Cm+1
l xkyn−k

=
n∑

k=0

n−2∑

m=1

m+1∑

l=0

(lan−mk−l+1 + (m+ 1− l)bn−mk−l )Cm+1
l xkyn−k.

Define dnk =
∑n−2
m=1

∑m+1
l=0 (lan−mk−l+1 +(m+1− l)bn−mk−l )Cm+1

l for k = 0, . . . , n.
We remark that the computation of dnk involves ask, bsk and Csk for s =
2, 3, . . . , n− 1. Therefore we obtain

n−2∑

m=1

(
Xn−m

∂Hm+1

∂x
+ Yn−m

∂Hm+1

∂y

)
=

n∑

k=0

dnkx
kyn−k.

For the first term of the left hand side of (4) we have

y
∂Hn

∂x
−x∂Hn

∂x
= y

∂

∂x

n∑

k=0

Cnk x
kyn−k − x ∂

∂y

n∑

k=0

Cnk x
kyn−k

=
n∑

k=0

kCnk x
k−1yn−k+1 −

n∑

k=0

(n− k)Cnk x
k+1yn−k−1

=
n−1∑

k=0

(k + 1)Cnk+1x
kyn−k −

n∑

k=1

(n− k + 1)Cnk−1x
kyn−k

=Cn1 y
n+

n−1∑

k=1

((k+1)Cnk+1−(n−k+1)Cnk−1)xkyn−k−Cnn−1x
n.

On the other hand,

Vn(x2 + y2)n/2 = Vn

n/2∑

k=0

(
n/2
k

)
x2kyn−2k =

∑

k=0
2|k

(
n/2
k/2

)
Vnx

kyn−k.

Substituting in (4) we obtain

Cn1 +
(
n/2
0

)
Vn = dn0 ,

(k + 1)Cnk+1− (n−k+1)Cnk−1 +
(
n/2
k/2

)
Vn = dnk , k= 1, . . . , n−1,(5)

−Cnn−1 +
(
n/2
n/2

)
Vn = dnn,

where the term
(
n/2
k/2

)
Vn, for k = 0, . . . , n, is different from zero only for n
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and k even. We can rewrite (5) as follows:

Cn1 = dn0 −
(
n/2
0

)
Vn, Cnn−1 =

(
n/2
n/2

)
Vn − dnn,

Cnk =
1
k

(
dnk−1 −

(
n/2

(k − 1)/2

)
Vn + (n− k + 2)Cnk−2

)
, k = 2, . . . , n,(6)

Cnk = − 1
n− k

(
dnk+1 −

(
n/2

(k + 1)/2

)
Vn − (k + 2)Cnk+2

)
,

k = 0, . . . , n− 2.

For n odd and k odd this yields

Cn1 = dn0 , Cnk =
1
k

(dnk−1 + (n− k + 2)Cnk−2), k = 3, 5, . . . , n.

In this case we claim that

Cnk =
∑(k−1)/2
l=0 (n− (2l + 1))!! (2l− 1)!! dn2l

(n− k)!! k!!
for k = 1, 3, 5, . . . , n.

We prove the claim by induction. It is easy to see that it is true for k = 1.
Now, suppose that it is true for k − 2, that is,

Cnk−2 =
∑(k−3)/2
l=0 (n− (2l + 1))!! (2l− 1)!! dn2l

(n− k + 2)!! (k − 2)!!
.

Then

Cnk =
1
k

(
dnk−1 + (n− k + 2)

∑(k−3)/2
l=0 (n− (2l + 1))!! (2l− 1)!! dn2l

(n− k + 2)!! (k − 2)!!

)

=
dnk−1

k
+
∑(k−3)/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l

(n− k)!! k!!

=
∑(k−1)/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l

(n− k)!! k!!
.

For n odd and k even, (6) gives

Cnn−1 = −dnn, Cnk =
1

n− k (−dnk+1 +(k+2)Cnk+2), k = 0, 2, 4, . . . , n−3.

In this case we claim that

Cnk = −
∑(n−1)/2

l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1

(n− k)!! k!!
for k = 0, 2, 4, . . . , n− 1.

It is easy to see that it is true for k = n−1. Suppose that it is true for k+2,
that is,

Cnk+2 = −
∑(n−1)/2
l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1

(n− k − 2)!! (k + 2)!!
.
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Then

Cnk =
1

n− k

(
−dnk+1 + (k + 2)

−∑(n−1)/2
l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1

(n− k − 2)!! (k + 2)!!

)

= − dnk+1

n− k −
∑(n−1)/2
l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1

(n− k)!! k!!

= −
∑(n−1)/2
l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1

(n− k)!! k!!
.

For n even and k odd, (6) gives

Cn1 = dn0 −
(
n/2
0

)
Vn, Cnn−1 =

(
n/2
n/2

)
Vn − dnn,

Cnk =
1
k

(
dnk−1 −

(
n/2

(k − 1)/2

)
Vn + (n− k+ 2)Cnk−2

)
, k = 3, 5, . . . , n− 1.

In this case we claim that

Cnk =

∑(k−1)/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
dn2l −

(
n/2
l

)
Vn
)

(n− k)!! k!!
for k = 1, 3, 5, . . . , n− 1.

It is easy to see that this is true for k = 1. Suppose that it is true for k− 2,
that is,

Cnk−2 =

∑(k−3)/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
dn2l −

(
n/2
l

)
Vn
)

(n− k + 2)!! (k − 2)!!
.

Then

Cnk =
1
k

(
dnk−1 −

(
n/2

(k − 1)/2

)
Vn + (n− k + 2)Cnk−2

)

=
dnk−1 −

( n/2
(k−1)/2

)
Vn

k

+

∑(k−3)/2
l=0 (n− (2l + 1))!! (2l− 1)!!

(
dn2l −

(
n/2
l

)
Vn
)

(n− k)!! k!!

=

∑(k−1)/2
l=0 (n− (2l + 1))!! (2l− 1)!!

(
dn2l −

(
n/2
l

)
Vn
)

(n− k)!! k!!
.

Hence

Cnn−1 =

∑(n−2)/2
l=0 (n− (2l + 1))!! (2l− 1)!!

(
dn2l −

(
n/2
l

)
Vn
)

(n− 1)!!
;
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but we know that Cnn−1 =
(n/2
n/2

)
Vn − dnn, so

(n−2)/2∑

l=0

(n− (2l + 1))!! (2l − 1)!!
(
dn2l −

(
n/2
l

)
Vn

)

+ (n− 1)!!
(
dnn −

(
n/2
n/2

)
Vn

)
= 0,

which is equivalent to

(7)
n/2∑

l=0

(n− (2l + 1))!! (2l− 1)!!
(
dn2l −

(
n/2
l

)
Vn

)
= 0.

From (7) we obtain

Vn =
∑n/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l∑n/2
l=0 (n− (2l + 1))!! (2l− 1)!!

(
n/2
l

) , n = 4, 6, 8, . . .

Finally, for n even and k even, (6) gives

Cnk =
1

n− k (−dnk+1 + (k + 2)Cnk+2), k = 0, 2, 4, . . . , n− 2.

Now we have only a recurrence between Cnn , Cnn−2, Cnn−4, . . . , Cn4 , Cn2 , Cn0 ,
and one of them is arbitrary. If we choose Cnn = −λn/n!!, with λn arbitrary,
then

Cnk = −
∑n/2−1
l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k)!! k!!
for k = 0, 2, 4, . . . , n.

Indeed, it is easy to see that this is true for k = n. Suppose that it is true
for k + 2, that is,

Cnk+2 = −
∑n/2−1
l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k − 2)!! (k + 2)!!
.

Then

Cnk =
1

n−k

(
−dnk+1 +(k + 2)

−∑n/2−1
l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1 +λn

(n− k − 2)!! (k + 2)!!

)

= − dnk+1

n− k −
∑n/2−1
l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k)!! k!!

= −
∑n/2−1
l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k)!! k!!
,

which completes the proof of the theorem.
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The method works as follows. From the first terms of the Poincaré se-
ries (2), i.e. C2

0 = C2
2 = 1/2 and C2

1 = 0 one calculates d3
k for k = 0, 1, 2, 3

and hence C3
k for k = 0, 1, 2, 3. The next step is calculating d4

k for k =
0, 1, 2, 3, 4 and finally we obtain V4 and C4

k for k = 0, 1, 2, 3, 4. The pro-
cess continues in an analogous way. The method has been implemented in
Mathematica 2.2.

A particular case: quadratic systems. We apply the above expressions to
quadratic systems. In this case all ask and bsk are zero except a2

0, a2
1, a2

2 and
b20, b21, b22. Therefore in the expression

dnk =
n−2∑

m=1

m+1∑

l=0

(lan−mk−l+1 + (m+ 1− l)bn−mk−l )Cm+1
l ,

we have n−m = 2, i.e. m = n− 2, and the expression takes the form

dnk =
n−1∑

l=0

(la2
k−l+1 + (n− 1− l)b2k−l) Cn−1

l ,

where we can omit the upper index of a2
0, a2

1, a2
2 and b20, b21, b22 because it is

always 2. Taking into account that the subscripts k− l+1 and k− l must be
0, 1, 2, we have respectively l = k + 1, l = k, l = k − 1 and l = k, l = k − 1,
l = k − 2 with 0 ≤ l ≤ n− 1. Then

dnk = (k + 1)a0C
n−1
k+1 + (ka1 + (n− 1− k)b0)Cn−1

k +

+ ((k − 1)a2 + (n− k)b1)Cn−1
k−1 + (n+ 1− k)b2Cn−1

k−2 ,

and Cn−1
l = 0 if the restriction 0 ≤ l ≤ n − 1 is not satisfied. Then the

Poincaré–Lyapunov constants for quadratic systems are

Vn =
∑n/2
l=0 (n− (2l + 1))!! (2l− 1)!! dn2l∑n/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
n/2
l

) , n = 4, 6, 8, . . . ,

where

dn2l = (2l + 1)a0C
n−1
2l+1 + (2la1 + (n− 1− 2l)b0)Cn−1

2l

+ ((2l − 1)a2(n− 2l)b1)Cn−1
2l−1 + (n+ 1− 2l)b2Cn−1

2l−2.

Application to more general systems is based on finding the expression dnk
and it is easy to see that the contributions to dnk of each homogeneous term
of the system are independent.

3. Applications. When we apply our method to particular cases of sys-
tem (1) we can determine the Poincaré–Lyapunov constants more explicitly.
The system of Proposition 1 was studied in [7] and [13] with a4 = b4 = 0
and in [23] with b2 = a2. Here we present the following result.
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Proposition 1. Consider the system

(8)
{
ẋ = −y + a2x

2 + a3x
3 + a4x

4,
ẏ = x+ b2y

2 + b3y
3 + b4y

4,

where ai and bi are real numbers. Then the origin is a center if and only
if one of the following conditions holds: a2 − b2 = a3 + b3 = a4 − b4 = 0,
a2 + b2 = a3 + b3 = a4 + b4 = 0, a2 = a3 = a4 = b3 = 0 and b2 = b3 = b4 =
a3 = 0.

Proof. (a) Sufficiency. Every group of conditions gives the necessary
symmetries to show that system (8) is reversible and then the origin is a
center (the symmetry principle, see [18], p. 135).

(b) Necessity. The first Poincaré–Lyapunov constant is V4 = a3 + b3 so
taking b3 = −a3 we see that the second Poincaré–Lyapunov constant takes
the form

V6 = 5a2
2a3 − 6a3

2b2 − 22a4b2 − 5a3b
2
2 + 6a2b

3
2 + 22a2b4.

If a2 is different from zero we can express b4 in terms of the other parameters.
In this case the third Poincaré–Lyapunov constant is

V8 =
1
a2

(b2 + a2)(b2 − a2)(−235a3
2a3 − 1254a3a4 + 84a4

2b2

− 285a2
3b2 + 1100a2a4b2 + 357a2a3b

2
2 − 216a2

2b
3
2),

and the vanishing of the second factor, that is, b2 = a2 gives the first condi-
tion of Proposition 1. Next, b2 = −a2 corresponds to the second condition.
From the last factor of V8 we can isolate a4 if 57a3−50a2b2 is different from
zero, and the vanishing of the next Poincaré–Lyapunov constants implies
a2 = b2 = 0. If 57a3− 50a2b2 is zero, that is, a3 = 50a2b2/57, the last factor
of V8 takes the form a2b2(a2

2 + b22), which implies b2 = 0, and we obtain the
fourth condition of Proposition 1.

If a2 is zero then the second Poincaré–Lyapunov constant is V6 =
b2(22a4 + 5a3b2). Let 22a4 + 5a3b2 be zero with b2 6= 0, that is, a4 =
−5a3b2/22; in this case V8 = a3b2(235b22 + 1254b4). The case a3 = 0 corre-
sponds to the third condition of Proposition 1. In the case b4 = −235b32/1254
the next Poincaré–Lyapunov constants imply a3 = b2 = 0. Finally, if b2 = 0
the Poincaré–Lyapunov constant V8 is zero and V10 = a3(a4 − b4)(a4 + b4).
The vanishing of the factors a4 − b4 and a4 + b4 corresponds to particu-
lar cases of the first and second conditions respectively. When a3 = 0 with
(a4 − b4)(a4 + b4) 6= 0 we have V12 = 0 and V14 = a4b4(a4 − b4)(a4 + b4).
The cases a4 = 0 and b4 = 0 correspond to particular cases of the third and
fourth conditions respectively.

Consider the system ẋ = −y + xf(x, y), ẏ = x+ yf(x, y) with f(x, y) =∑3
i=1 fi(x, y) where fi(x, y) are homogeneous polynomials of degree i. Any
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center at the origin of this type of systems is necessarily isochronous (all
the closed orbits around the center have the same period), since in polar
coordinates (r, ϕ) the angle ϕ satisfies the equation ϕ̇ = 1. This type of
isochronous centers are called uniformly isochronous centers (see [9]). If
f2 = f3 = 0 the origin is automatically a center because the system has
R(x, y) = (1− a2x+ a1y)−3 as integrating factor. These classes of systems
have been studied in [8] with f3 = 0. Here we present the center conditions
for f2 = 0 and f3 6= 0.

Proposition 2. Consider the system

(9)
{
ẋ = −y + x(a1x+ a2y + a6x

3 + a7x
2y + a8xy

2 + a9y
3),

ẏ = x+ y(a1x+ a2y + a6x
3 + a7x

2y + a8xy
2 + a9y

3),

where ai are real numbers. Then the origin is a center if and only if

a1(a7 + 3a9)− a2(a8 + 3a6) = 0 and

(3a1a
2
2 − 3a3

2)a6 + (3a1a
2
2 − a3

1)a7 − 2a2
1a2a8 = 0.

Proof. (a) Sufficiency. Suppose that the two conditions of Proposition 2
hold. If a1 = a2 = 0 then the system has an integrating factor of the form

R(x, y) = (1− (a7 + 2a9)x3 + 3a6x
2y − 3a9xy

2 + (2a6 + a8)y3)−5/3,

which is defined at the origin and therefore the origin is a center. If a1 = 0
with a2 6= 0 the first condition of Proposition 2 reads a2(3a6 + a8) = 0,
which implies a8 = −3a6. In this case the second condition is a3

2a6 = 0 and
therefore a6 = 0. System (9) with a1 = a6 = a8 = 0 is invariant under the
change of variables (x, y, t) 7→ (x,−y,−t) and so the origin is a center. If
a2 = 0 with a1 6= 0 the first condition of Proposition 2 reads a1(3a9+a7) = 0,
which implies a7 = −3a9. In this case the second condition is a3

1a9 = 0 and
therefore a9 = 0. System (9) with a2 = a7 = a9 = 0 is invariant under the
change of variables (x, y, t) 7→ (−x, y,−t) and so the origin is also a center.
Finally if a1a2 6= 0 from the first condition of Proposition 2 we can isolate
a9, and from the second condition of Proposition 2 we obtain a8 in terms of
the other parameters. In this case we make a rotation with tanα = −a2/a1;
in the new variables (X,Y ), system (9) is invariant under the change of
variables (X,Y, t) 7→ (−X,Y,−t) and therefore has a center at the origin.

(b) Necessity. The first Poincaré–Lyapunov constant V4 is zero. The
second and third Poincaré–Lyapunov constants are the two conditions of
Proposition 2.

To find the maximum number of small-amplitude limit cycles which can
bifurcate from the origin, the method is to find a fine focus of maximum
order. From our calculations it is easy to see that if a2 = b2 = a3 = b3 = 0
then V4 = V6 = V8 = V10 = V12 = 0 and V14 = a4b4(a4− b4)(a4 + b4), which
is diferent from zero if a4b4 6= 0 and a4 6= b4, and a4 6= −b4, and therefore
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we obtain a fine focus of order six for system (8). In the same way if a1 = 0
and a8 = −3a6 then V4 = V6 = 0 and V8 = a3

2a6, which is diferent from zero
if a2 and a6 are diferent from zero, and therefore we obtain a fine focus of
order three for system (9). Therefore we obtain the following result

Proposition 3. The maximum number of small-amplitude limit cycles
which can bifurcate from the origin is at least six for system (8) and three
for system (9).

The Poincaré–Lyapunov constants of systems (8) and (9) are available
from the e-mail address gine@eup.udl.es.
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