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FIXED PRECISION OPTIMAL ALLOCATION
IN TWO-STAGE SAMPLING

Abstract. Two-stage sampling schemes arise in survey sampling, espe-
cially in situations when the complete update of the frame is difficult. In
this paper we solve the problem of fixed precision optimal allocation in
two special two-stage sampling schemes. The solution is based on reducing
the original question to an eigenvalue problem and then using the Perron–
Frobenius theorem.

1. Introduction. We consider a finite population consisting of some
number of subpopulations. Subpopulations themselves are split into clusters.
We want to estimate total values of a variable in the subpopulations. Assume
that the (expected) length of the whole sample is fixed. Our aim is to allocate
the sample in subpopulations and clusters in such a way that relative errors
of the estimates in all subpopulations are the same and as low as possible.
Such a problem falls in the following general scheme. Let zi be a vector
describing the allocation inside the ith subpopulation and Vi(zi) be the
respective relative error. We want to minimize the common value, say F =
Vi(zi) (for all i’s), under the constraints

∑
i gi(zi) = c, where the gi’s are

given functions and c is a constant. Such a problem can be solved in two
steps: 1) For each i separately, minimize Vi(zi) under the constraints gi(zi) =
ci. Let V ∗i (ci) be the solution. 2) Minimize F = V ∗i (ci) under the constraints∑
i ci = c. Section 2 describes the first phase of the solution while the second

phase is examined in Section 3. In Section 4 we present a numerical example.
It is related to a survey of small enterprises, led regularly in Poland by
Główny Urząd Statystyczny (Central Statistical Office). Indeed, our work
was motivated by the need to improve the sampling strategy in this survey.
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2. Optimal allocation in two-stage sampling. In this section we
restrict our considerations to a fixed, finite subpopulation U = {1, . . . , N}
partitioned into clusters: U = U1∪ . . .∪UM . The objective of a survey is the
total value t of a variable Y, i.e. t =

∑
u∈U yu, where yu denotes the value

of Y for unit u ∈ U . Suppose we are to use a two-stage sampling scheme.
At the first stage we choose a random sample V = {U1, . . . , UM} from the
population of clusters. The clusters are therefore primary sampling units
(PSUs). At the second stage we draw random samples from the previously
chosen clusters. Secondary sampling units (SSUs) are elements of U .

Throughout this paper, simple random sampling (SRS) means sampling
without replacement, with equal probabilities. We consider the following two
sampling schemes:

1. stratified SRS (SSRS) at the first stage followed by SRS at the second
stage;

2. SRS at the first stage followed by SSRS at the second stage.

In both cases, we seek an optimal allocation subject to constraints on
the (expected) size of the final sample and (expected) size of the primary
sample. The latter can be expressed either in terms of the number of PSUs
or the number of SSUs.

2.1. SSRS–SRS scheme. The population of PSUs is partitioned into
strata: V = W1 ∪ . . . ∪WH . In what follows, the subscript “h, j, u” will
refer to the uth SSU in the jth PSU in the hth stratum (we just rearrange
objects to make notation readable). Let #(Wh) = Mh be the number of
PSUs in the hth stratum and let mh be the number of PSUs sampled from
this stratum (h = 1, . . . ,H). Write Uh,j for the jth PSU in the hth stratum
and let #(Uh,j) = Nh,j (j = 1, . . . ,Mh). If a PSU Uh,j belongs to the
primary sample, then we draw a sample of nh,j SSUs from it at the second
stage. Write also Nh =

∑
j∈Wh

Nh,j .

Let t̂ be the usual π-estimator (Horvitz–Thompson estimator) of the
total t. According to the well-known general formula [cf. Särndal, Svensson
and Wretman (1992), Ch. 2], the variance of this estimator is given by

D2(t̂ ) =
H∑

h=1

(
1
mh
− 1
Mh

)
M2
hD

2
h(1)

+
H∑

h=1

Mh

mh

Mh∑

j=1

(
1
nh,j

− 1
Nh,j

)
N2
h,jS

2
h,j ,

where th,j =
∑
u∈Uh,j yh,j,u, yh,j = th,j/Nh,j and th =

∑Mh

j=1 th,j/Mh,
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S2
h,j =

1
Nh,j − 1

∑

u∈Uh,j
(yh,j,u − yh,j)2, D2

h =
1

Mh − 1

Mh∑

j=1

(th,j − th)2.

The problem is to minimize D2(t̂ ) as a function of the variables mh and
nh,j , given that the expected number of SSUs in the primary sample is equal
to nI and the expected number of SSUs in the final sample is equal to n.
Therefore, the constraints are the following:

(2)
H∑

h=1

mh

Mh

Mh∑

j=1

Nh,j = nI ,
H∑

h=1

mh

Mh

Mh∑

j=1

nh,j = n.

Let P1 denote the problem described above: minimize (1) subject to
(2). Using the standard method of Lagrange multipliers, we easily obtain
the following result.

Proposition 1. Provided that γh = MhD
2
h−

∑Mh

j=1 Nh,jS
2
h,j > 0 for all

h, the solution of P1 has the following form: the optimal allocation is

mh =
Mh

Nh
·
√
Nhγh∑H

k=1

√
Nkγk

nI ,

and

nh,j = n
Mh

mh
· Nh,jSh,j∑H

k=1

∑Mk

l=1Nk,lSk,l
.

The minimum value of the variance (1) is

D2
opt(t̂ ) =

1
nI

( H∑

h=1

√
Nhγh

)2
+

1
n

( H∑

h=1

Mh∑

j=1

Nh,jSh,j

)2
−

H∑

h=1

MhD
2
h.

A slightly different problem is obtained if we replace the first of the
constraints in (2) by a constraint on the expected size of the primary sample
expressed in terms of PSUs. Put differently, instead of (2), we consider the
following system of constraints:

(3)
H∑

h=1

mh = m,

H∑

h=1

mh

Mh

Mh∑

j=1

nh,j = n.

Let P2 denote the problem: minimize (1) subject to (3).

Proposition 2. Provided that γh > 0 for all h, the solution of P2 has
the following form: the optimal allocation of PSUs is

mh =
√
Mhγh∑H

k=1

√
Mkγk

m.
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The formula for optimal nh,j is the same as in Proposition 1. The minimum
value of the variance (1) is

D2
opt(t̂ ) =

1
m

( H∑

h=1

√
Mhγh

)2
+

1
n

( H∑

h=1

Mh∑

j=1

Nh,jSh,j

)2
−

H∑

h=1

MhD
2
h.

2.2. SRS–SSRS scheme. Now assume that at the first stage PSUs are
sampled according to the SRS scheme. Let M be the number of PSUs in the
population V and assume the number of PSUs in the primary sample is m.
Each of the PSUs (clusters) is partitioned into H strata. Let Nj,h stand for
the number of SSUs in the hth stratum of the jth cluster (h = 1, . . . ,Hj ,
j = 1, . . . ,M ; note that we need a different labeling of units than in the
previous subsection). We apply stratified SRS at the second stage, sampling
nj,h units from the hth stratum of the jth cluster. The general formula for
the variance of the π-estimator t̂ of the total t now assumes the following
form:

(4) D2(t̂ ) =
(

1
m
− 1
M

)
M2D2 +

M

m

M∑

j=1

Hj∑

h=1

(
1
nj,h

− 1
Nj,h

)
N2
j,hS

2
j,h,

where S2
j,h is the variance of the variable Y in the hth stratum of the jth

PSU and

D2 =
1

M − 1

M∑

j=1

(tj − t )2

denotes the variance of totals of Y in PSUs (it is a variable defined in the
population V of PSUs). Consider the following constraint on the expected
sample size:

(5)
m

M

M∑

j=1

Hj∑

h=1

nj,h = n.

Denote by P3 the problem of minimizing (4) under constraint (5).

Proposition 3. The allocation problem P3 has the Neyman-type solu-
tion

nj,h = n
M

m
· Nj,hSj,h∑M

l=1

∑Hl
k=1 Nl,kSl,k

.

The optimal variance is

D2
opt(t̂ ) =

1
m
Mγ +

1
n

( M∑

j=1

Hj∑

h=1

Nj,hSj,h

)2

−MD2,
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where

γ = MD2 −
M∑

j=1

Hj∑

h=1

Nj,hS
2
j,h.

If instead of fixing the sample size of PSUs, we fix the expected number
of SSUs in the primary sample, i.e.

(6)
m

M
N = nI ,

then the formulas for optimal allocation take slightly modified forms. Denote
by P4 the problem of minimizing (4) under constraints (5) and (6), given
nI and n.

Proposition 4. The allocation problem P4 has the following solution:

nj,h = n
nI
N
· Nj,hSj,h∑M

l=1

∑Hl
k=1 Nl,kSl,k

.

The optimal variance is

D2
opt(t̂ ) =

1
nI
Nγ +

1
n

( M∑

j=1

Hj∑

h=1

Nj,hSj,h

)2
−MD2.

Let us sum up the considerations of this section. Observe that the for-
mulas for the optimal variance for problems P1–P4 (see Propositions 1–4)
are of the same shape. In what follows we will be interested in the precision

of the estimator t̂, defined as 2
√
D2(t̂ )/t. Of course, the optimal precision

corresponds to the minimal variance. We can express the squared relative
error in the following form:

(7) D2
opt(t̂ )/t2 = V (x, y) =

A

x
+
B

y
− C,

where x and y are allocation parameters (x = nI and y = n for P1, P4 and
x = m and y = n for P2, P3) while A, B and C are population parameters.

3. Equating the precision in subpopulations. Now consider a pop-
ulation U partitioned into subpopulations (domains) Di, i = 1, . . . , L. We
turn to the second stage of our main problem, as described in the introduc-
tion. This means that we seek an allocation of the sample into subpopula-
tions which gives equal and optimal precisions. Now, we apply formula (7)
separately for each of the domains, arriving at

D2
opt(t̂i)/t

2
i = Vi(xi, yi) =

Ai
xi

+
Bi
yi
− Ci,

where the additional subscript i indicates the subpopulation Di. In partic-
ular, ti is the total value of Y in the domain Di and t̂i is its estimator. Let
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us recall that xi and yi are allocation parameters, while Ai, Bi and Ci are
now subpopulation parameters.

3.1. Main result. Our main problem is to find the smallest common value
F of the squared relative error Vi(xi, yi) in the domains Di, i = 1, . . . , L.
The solution is based on the following theorem.

Theorem 1. Let x, y and Ai, Bi, Ci, i = 1, . . . , L, be given positive
numbers. Assume that Ai/x + Bi/y − Ci > 0 for all i. Put ai =

√
Ai and

bi =
√
Bi. The smallest F > 0 such that

(8)
Ai
xi

+
Bi
yi
− Ci = F (∀i = 1, . . . , L),

under the constraints xi, yi > 0, i = 1, . . . , L, and

(9)
L∑

i=1

xi = x,
L∑

i=1

yi = y,

is the largest eigenvalue of the matrix

1
x

aaT +
1
y

bbT − diag(C),

where a = (a1, . . . , aL)T , b = (b1, . . . , bL)T , C = (C1, . . . , CL)T . This eigen-
value is simple and positive. A corresponding eigenvector v = (v1, . . . , vl)T

has all components positive. The values of xi’s and yi’s corresponding to
the minimum F are given by

xi =
aivi∑L
r=1 arvr

x, yi =
bivi∑L
r=1 brvr

y.

Proof. Consider the function f : (0,∞)2L+1 → R defined by

f(x1, . . . , xL, y1, . . . , yL, F ) = F.

We seek the minimum of f on the set

R = {(x1, . . . , xL, y1, . . . , yL, F ) ∈ (0,∞)2L+1 : (8) and (9) hold}.
It is clear that f is bounded from below on this set, because Ai/xi ≥
Ai/x and Bi/yi ≥ Bi/y. Let f∗ be the infimum of f over R. Notice that
{(x1, . . . , xL, y1, . . . , yL, F ) ∈ R : F ≤ f∗ + 1} is a compact set. Indeed, it
is a (relatively) closed and bounded subset of (0,∞)2L+1. Moreover, this
set is bounded away from the boundary of (0,∞)2L+1, because xi → 0 or
yi → 0 together with (8) implies F → ∞. Therefore, there exists a point
(x∗1, . . . , x

∗
L, y
∗
1 , . . . , y

∗
L, F

∗) ∈ R such that F ∗ = f∗. This is a stationary
point of f , under constraints (8) and (9). Using the method of Lagrange
multipliers, we will find it and then show it is unique.
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Consider the Lagrange function

(10) F +
L∑

i=1

λi

(
Ai
xi

+
Bi
yi
− Ci − F

)
+ α

( L∑

i=1

xi − x
)

+ β
( L∑

i=1

yi − y
)
,

where α, β and λi are the Lagrange multipliers. Differentiating (10) with
respect to xi and yi, we infer that α(x∗i )

2 = λiAi and similarly β(y∗i )2 =
λiBi. Hence all the Lagrange multipliers α, β and λi have the same sign.
Without loss of generality we can assume that they are all positive. Let us
write vi =

√
λi and recall that Ai = a2

i , Bi = b2i . We arrive at

x∗i =
aivi√
α
, y∗i =

bivi√
β
.

Use constraints (9) to get
√
α =

∑L
r=1 arvr/x and

√
β =

∑L
r=1 brvr/y. Now,

plug in the expressions for x∗i and y∗i into (8). We obtain

ai
xvi

L∑

r=1

arvr +
bi
yvi

L∑

r=1

brvr − Ci = F ∗

or, equivalently,
L∑

r=1

(
aiar
x

+
bibr
y

)
vr − Civi = F ∗vi.

In matrix notation, this is just
(

1
x

aaT +
1
y

bbT − diag(C)
)

v = F ∗v,

where v = (v1, . . . , vL)T . Under our assumptions, all elements of the sym-
metric matrix M = aaT /x+ bbT /y− diag(C) are positive. By the Perron–
Frobenius theorem, the largest eigenvalue of M is simple and it is the only
eigenvalue with a positive corresponding eigenvector [cf. Kato (1981), Th. 7.3
in Ch. 1]. Hence it must be F ∗ and the corresponding eigenvector is v. The
conclusions of the theorem follow.

3.2. Corollaries. Now, let us specify the conclusions of Theorem 1 to
the four problems considered in Section 2. We only have to express the
parameters ai, bi and Ci using the formulas for the optimum variance for
P1–P4, respectively. The formulas are given in Propositions 1–4. Note that
now the additional subscript i, referring to the subpopulation, has to appear
in each of these formulas (i = 1, . . . , L).

For P1 we have

ai =
Hi∑

h=1

√
Ni,hγi,h/ti, bi =

Hi∑

h=1

Mi,h∑

j=1

Ni,h,jSi,h,j/ti,
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Ci =
Hi∑

h=1

Mi,hD
2
i,h/t

2
i , x = nI , y = n.

Consequently, the solution of our fixed precision optimal allocation problem
is given by

(11)

mi,h = xi
Mi,h

Ni,h
·

√
Ni,hγi,h∑Hi

k=1

√
Ni,kγi,k

,

ni,h,j = yi
Mi,h

mi,h
· Ni,h,jSi,h,j∑Hi

k=1

∑Mi,k

l=1 Ni,k,lSi,k,l
.

For P2 we have bi, Ci and y the same as above,

ai =
Hi∑

h=1

√
Mi,hγi,h/ti, x = m.

The solution of the fixed precision optimal allocation problem is given by

mi,h = xi

√
Mi,hγi,h∑Hi

k=1

√
Mi,kγi,k

and ni,h,j as in (11).
For P3 we have

ai =
√
Miγi/ti, bi =

Mi∑

j=1

Hi,j∑

h=1

Ni,j,hSi,j,h/ti,

Ci = MiD
2
i /t

2
i , x = m, y = n.

The solution of the fixed precision optimal allocation problem is given by

(12) mi = xi, ni,j,h = yi
Mi

mi
· Ni,j,hSi,j,h∑Mi

l=1

∑Hi,l
k=1 Ni,l,kSi,l,k

.

For P4 we have bi, Ci and y as above,

ai =
√
Niγi, x = nI .

The solution of the fixed precision optimal allocation problem is given by

mi = xi
Mi

Ni

and ni,j,h as in (12).

4. Numerical example. We consider a population of small (up to 5
employees) enterprises in a southern part of Poland of size 79578, divided
into 4 subpopulations, say A, B, C, and D, of respective sizes 15144, 11582,
26960, 25892. Each of the subpopulations is clustered into regions. There
are 170 regions in A, 128 in B, 306 in C and 326 in D, thus the total number
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of regions equals 930. In each of the subpopulations A, B, C and D, the
regions are stratified into 8, 7, 8 and 8 strata, respectively. The variable of
interest is the total employment in subpopulations. We seek a fixed precision
optimal allocation of the sample using the double stage SSRS–SRS scheme
where PSUs are regions and SSUs are enterprises. We impose the following
constraints: the total size of the primary unit sample is 10000 SSUs and the
total size of the final sample equals 2000 SSUs.

Thus we are in the framework of the problem P1 discussed above with
nI = 10000, n = 2000 and L = 4. First it was checked that all γh’s are
positive. Using the definitions of the vectors (4-variate in our setting) a, b
and C it was found that

a = (2.75441, 2.50996, 2.59874, 2.57227)T ,

b = (0.62892, 0.60228, 0.61864, 0.60082)T ,

C = (0.00063, 0.00059, 0.00028, 0.00028)T .

The eigenvalue problem has the following solutions (λi denotes the eigen-
value and vi a respective eigenvector):

λ1 = 0.00304, v1 = (0.49649, 0.46302, 0.52303, 0.51531)T ,

λ2 = 0.00028, v2 = (0.00203, 0.00183, −0.70362, 0.71057)T ,

λ3 = 0.00045, v3 = (0.46661, 0.57090, −0.47862, −0.47674)T ,

λ4 = 0.00061, v4 = (−0.73197, 0.67800, 0.04772, 0.04759)T .

Now using the solution given in the preceding section we notice that F ∗ =
λ1, consequently the precision of the estimate equals 2

√
F ∗ = 0.1102. The

allocation of the primary sample was computed according to the first part
of the formula (11), in terms of the eigenvector v1 (and suitably rounded).
For clarity, we present it in the form of pairs (Mi,h,mi,h):

• for the subpopulation A:

(14, 2), (22, 3), (2, 1), (29, 3), (11, 2), (71, 13), (3, 1), (18, 4),

• for the subpopulation B:

(14, 3), (27, 5), (31, 6), (3, 1), (41, 10), (2, 1), (10, 2),

• for the subpopulation C:

(22, 2), (46, 5), (3, 1), (62, 5), (13, 1), (121, 15), (5, 1), (34, 3),

• for the subpopulation D:

(25, 2), (38, 3), (2, 1), (70, 6), (6, 1), (154, 18), (6, 1), (25, 3).

Similarly the allocation of the final sample of SSUs was obtained using
the second part of (11) (and again rounded). Since this is a lengthy table,
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we present here the pairs (Ni,h,j , ni,h,j) only for stratum number 8 of the
subpopulation A:

(127, 21), (126, 13), (80, 2), (11, 17), (107, 31), (114, 17), (123, 18), (87, 6),
(112, 18), (139, 17), (113, 12), (127, 10), (87, 9), (119, 13), (139, 25),
(119, 9), (226, 33), (145, 17).
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