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MINIMAX NONPARAMETRIC PREDICTION

Abstract. Let U0 be a random vector taking its values in a measur-
able space and having an unknown distribution P and let U1, . . . , Un and
V1, . . . , Vm be independent, simple random samples from P of size n and
m, respectively. Further, let z1, . . . , zk be real-valued functions defined on
the same space. Assuming that only the first sample is observed, we find a
minimax predictor d0(n,U1, . . . , Un) of the vector Y m =

∑m
j=1(z1(Vj), . . .

. . . , zk(Vj))T with respect to a quadratic errors loss function.

1. Introduction. Let U0 be a random vector taking its values in a
measurable space (Y,B) and having an unknown distribution P , which is
assumed to be an element of the set

P = {all probability measures on (Y,B)}.
Let U1, . . . , Un and V1, . . . , Vm be independent, simple random samples from
P of size n and m, respectively. Further, let z = (z1, . . . , zk)T be a mea-
surable function on the space (Y,B) with values in (Rk,BRk). In the paper
we consider the problem of predicting the value of a k-dimensional random
vector Y m =

∑m
j=1 z(Vj) from the data Un = (U1, . . . , Un). Assuming that

the loss function has the form

(1) L(d,Y m) = (d− Y m)TC(d− Y m),

where C = [cij ] is a nonnegative definite, symmetric k × k matrix, we
find a minimax solution of the above prediction problem. We show that
the minimax predictor d0(n,Un) of Y m is an affine (inhomogeneous linear)
function of the random vector Xn =

∑n
j=1 z(Uj).

The decision rule d0(n,Un) has a risk function which is not constant
and therefore proving its minimaxity cannot be accomplished by showing
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that this predictor is Bayes with respect to some prior on P. Instead, we use
the method proposed in Wilczyński (1992). First we show that d0(n,Un) is
minimax among all predictors which are affine functions of Xn. Next, using
some implications of this fact, we calculate the upper bound for a mini-
max risk of d0(n,Un). Then, via nonparametric Bayes approach proposed
by Ferguson (1973), we construct a sequence of priors on P for which the
corresponding sequence of Bayes risks converges to this upper bound. From
this we deduce minimaxity of d0(n,Un).

2. Minimax estimate. The statement of our main result requires in-
troducing the following notation. Let the function z∗ : (Y,B) → (Rk,BRk)
be defined by

z∗(y) = C1/2z(y), y ∈ Y,
where C1/2 is the square root of the matrix C, i.e. C1/2C1/2 = C. The
random vector z∗(U0), its expected value and the sum of the variances of
its components are denoted by Z∗, p∗ and R1(P ) respectively, i.e. we put

Z∗ = z∗(U0),

p∗ = EPZ∗,(2)

R1(P ) = EP ‖Z∗ −EPZ∗‖2 = EP ‖Z∗ − p∗‖2.
Now, let (Pj) be any sequence of probability measures on (Y,B) such that

(3) lim
j→∞

R1(Pj) = sup
P∈P

R1(P )

and let (bj) be the corresponding sequence of points from Rk defined by

(4) bj = EPjZ∗.

In Theorem 1, we show that the above prediction problem has a nontrivial
solution only when the vector-valued function z∗(y) is bounded on Y , i.e.
when

M2 := sup
y∈Y
‖z∗(y)‖2 = sup

y∈Y
zT (y)Cz(y) <∞.

Obviously, if M is finite then the random vector Z∗ and its expected value
p∗ are bounded. This implies that supP∈P R1(P ) <∞ and, because

‖bj‖2 = ‖EPjZ∗‖2 ≤ EPj‖Z∗‖2 ≤M2,

the sequence (bj) takes its values in a convex compact subset M of Rk,
defined by

M = {b ∈ Rk : ‖b‖2 ≤M2}.
Therefore, this sequence has a cluster point b0 ∈ M. Now, we define a0 as
a vector from Rk which solves the equation

(5) C1/2a0 = b0.
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To see that (5) can be solved, we denote by (C1/2)− any g-inverse of the
matrix C1/2. Since C1/2(C1/2)−C1/2 = C1/2, we have

bj = EPjC
1/2z(U0) = EPjC

1/2(C1/2)−C1/2z(U0)

= C1/2(C1/2)−EPjC
1/2z(U0) = C1/2(C1/2)−bj .

This implies that (C1/2)−b0 solves (5), because

b0 = C1/2(C1/2)−b0 = C1/2a0.

Now, let the number α0 satisfy the condition

α2
0n+m = (α0n−m)2 and α0n−m < 0,

i.e. let

(6) α0 =





nm−
√
nm(n+m− 1)
n(n− 1)

if n > 1,

m− 1
2

if n = 1.

The following theorem is the main result of the paper.

Theorem 1. If supy∈Y z(y)TCz(y) <∞ then

(7) d0(n,Un) = α0X
n + (m− α0n)a0

is a minimax predictor of the unobservable vector Y m and its minimax risk
equals

sup
P∈P

R(d0, P ) = (α0n−m)2 sup
P∈P

R1(P ).

If supy∈Y z(y)TCz(y) =∞ then

inf
d∈D

sup
P∈P

R(d, P ) =∞

and therefore a minimax predictor for Y m does not exist.

3. Proof of the main result. Define the following two random vectors:

Xn
∗ = C1/2Xn, Y n

∗ = C1/2Y n.

To prove the first part of Theorem 1 it suffices to show that the decision
rule d0

∗(n,U
n) = C1/2d0(n,Un), which, by (7) and (5), has the form

(8) d0
∗(n,U

n) = C1/2d0(n,Un) = α0X
n
∗ + (m− α0n)b0,

is a minimax predictor of the vector Y m
∗ under the loss function

L∗(d,Y m
∗ ) = (d− Y m

∗ )T (d− Y m
∗ ) = ‖d− Y m

∗ ‖2.
Moreover, to complete the proof of Theorem 1 it suffices to show that the risk
function for any predictor of Y m

∗ is unbounded when supy∈Y z(y)TCz(y)
=∞.
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Let D be the class of all predictors d = d(n,Un) of the vector Y m
∗ .

We start the proof by calculating the risk function R(d, P ) of any decision
rule d from D. Since the vectors d(n,Un) and Y m

∗ =
∑m
j=1 z∗(Vj) are

independent, and since

(9) EPY
m
∗ =

m∑

j=1

EPz∗(Vj) = mEPz∗(U0) = mEPZ∗ = mp∗,

this risk is equal to

R(d, P ) = EP ‖d(n,Un)− Y m
∗ ‖2 = EP ‖d−mp∗‖2 + EP ‖Y m

∗ −mp∗‖2.
Moreover, since z∗(V1), . . . ,z∗(Vm) are i.i.d. random vectors with expected
value p∗,

EP ‖Y m
∗ −mp∗‖2 = EP

∥∥∥
m∑

j=1

(z∗(Vj)− p∗)
∥∥∥

2
(10)

= mEP ‖Z∗ − p∗‖2 = mR1(P ).

Therefore, the risk for any predictor d(n,Un) ∈ D may be rewritten as

(11) R(d, P ) = EP ‖d−mp∗‖2 +mR1(P ).

Assume now that supy∈Y z(y)TCz(y) < ∞. According to the defini-
tion of minimaxity, to prove that the predictor d0

∗(n,U
n) defined by (8) is

minimax we have to show that

(12) sup
P∈P

R(d0
∗, P ) = inf

d∈D
sup
P∈P

R(d, P ).

To do this, we denote by D0 the following class of affine predictors:

D0 = {db ∈ D : db(n,Un) = α0X
n
∗ + (m− α0n)b, b ∈ M},

where the number α0 is defined by (6), and we prove that d0
∗ = db0 is

minimax in D0, i.e.

(13) sup
P∈P

R(d0
∗, P ) = inf

d∈D0

sup
P∈P

R(d, P ).

Next, using some implication of the minimaxity of d0
∗ in D0, we calculate

the upper bound for R(d0
∗, P ). Then, if m > 1, we construct a sequence of

priors on P for which the corresponding sequence of Bayes risks converges
to this upper bound. From this we deduce minimaxity of d0

∗ ∈ D. If m = 1,
we use a different approach to prove that d0

∗ is minimax in D.
We start proving minimaxity of d0

∗ in D0 by calculating its risk function.
We first note that (cf. (9) and (10))

EP ‖α0X
n
∗ + (m− α0n)b−mp∗‖2

= α2
0EP ‖Xn

∗ − np∗‖2 + (α0n−m)2‖b− p∗‖2

= α2
0nR1(P ) + (α0n−m)2‖b− p∗‖2.
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Since α2
0n + m = (α0n −m)2, we conclude, by (11), that the risk function

for a predictor db ∈ D0, denoted for simplicity by R(b, P ), is given by

R(b, P ) = (α2
0n+m)R1(P ) + (α0n−m)2‖b− p∗‖2(15)

= (α0n−m)2[R1(P ) + ‖b− p∗‖2].

Furthermore, if supy∈Y ‖z∗(y)‖2 < ∞ then the random vector Z∗ and its
expected value p∗ = EPZ∗ are bounded, and R1(P ) can be rewritten as

(16) R1(P ) = EP ‖Z∗ −EPZ∗‖2 = EP ‖Z∗‖2 − ‖EPZ∗‖2.
Therefore,

R1(P ) + ‖b− p∗‖2 = EP ‖Z∗ − p∗‖2 + ‖b− p∗‖2

= EP ‖Z∗‖2 − ‖p∗‖2 + ‖b− p∗‖2

= EP ‖Z∗‖2 − 2bT p∗ + ‖b‖2

= EP ‖Z∗‖2 − 2bTEPZ∗ + ‖b‖2.
This implies that

(17) R(b, P ) = (α0n−m)2[EP ‖Z∗‖2 − 2bTEPZ∗ + ‖b‖2].

Obviously, to prove that the decision rule d0
∗(n,U

n) defined by (8) is mini-
max in D0 it suffices to show that

(18) sup
P∈P

R(b0, P ) = inf
b∈M

sup
P∈P

R(b, P ).

For this we note thatM and P are convex sets andM is compact. Moreover,
for each fixed P ∈ P, the mapping R(b, P ) : M× P → [0,∞) is convex,
continuous with respect to b ∈ M and, for each fixed b ∈ M, it is, by (17),
concave (linear) with respect P ∈ P. This means that all the assumptions
of the Nikaido theorem (see Aubin 1980, p. 217) are fulfilled and thus there
exists a point b for which

(19) sup
P∈P

R(b, P ) = inf
b∈M

sup
P∈P

R(b, P ) = sup
P∈P

inf
b∈M

R(b, P ).

Now it remains to prove that b = b0. We first observe that, by (19) and
(15), the minimax risk in D0 equals

(20) inf
b∈M

sup
P∈P

R(b, P ) = sup
P∈P

inf
b∈M

R(b, P ) = (α0n−m)2 sup
P∈P

R1(P ),

because, for a fixed distribution P ∈ P, the convex function R(b, P ) of
the variable b attains its global minimum over M at the point b(P ) = p∗.
Moreover, an easy computation shows that, for each P ∈ P, 0 < β < 1 and
j ≥ 1,

sup
Q∈P

R1(Q) ≥ R1(βP + (1− β)Pj)

= βR1(P ) + (1− β)R1(Pj) + β(1− β)‖(EPjZ∗ − EPZ∗‖2,
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because βP + (1− β)Pj ∈ P and, by (16),

R1(βP + (1− β)Pj) = EβP+(1−β)Pj‖Z∗‖2 − ‖EβP+(1−β)PjZ∗‖2

= βEP ‖Z∗‖2 + (1− β)EPj‖Z∗‖2 − ‖βEPZ∗ + (1− β)EPjZ∗‖2

= β(EP ‖Z∗‖2 − ‖EPZ∗‖2) + (1− β)(EPj‖Z∗‖2 − ‖EPjZ∗‖2)

+ β(1− β)‖EPjZ∗ − EPZ∗‖2

= βR1(P ) + (1− β)R1(Pj) + β(1− β)‖EPjZ∗ − EPZ∗‖2.
Since b0 is a cluster point of the sequence (bj), where bj = EPjZ∗, and since
limj→∞R1(Pj) = supQ∈P R1(Q), we conclude that

sup
Q∈P

R1(Q) ≥ βR1(P ) + (1− β) sup
Q∈P

R1(Q) + β(1− β)‖b0 − EPZ∗‖2.

Therefore,

β sup
Q∈P

R1(Q) ≥ βR1(P ) + β(1− β)‖b0 − EPZ∗‖2

and, since β is positive,

sup
Q∈P

R1(Q) ≥ R1(P ) + (1− β)‖b0 − EPZ∗‖2.

Letting β → 0+, we can see that

sup
Q∈P

R1(Q) ≥ R1(P ) + ‖b0 − EPZ∗‖2 = R1(P ) + ‖b0 − p∗‖2,

which implies, by (15), that

(α0n−m)2 sup
Q∈P

R1(Q) ≥ (α0n−m)2[R1(P ) + ‖b0 − p∗‖2] = R(b0, P ).

Because this is true for all P ∈ P, it follows, by (20), that

sup
P∈P

R(b0, P ) ≤ (α0n−m)2 sup
P∈P

R1(P ) = inf
b∈M

sup
P∈P

R(b, P ) ≤ sup
P∈P

R(b0, P ).

Thus the predictor d0
∗(n,U

n) = db0(n,Un) is minimax in D0 and its mini-
max risk is given by

(21) sup
P∈P

R(d0
∗, P ) = (α0n−m)2 sup

P∈P
R1(P ).

To prove that d0
∗(n,U

n) is minimax in D we assume first that m = 1.
Then α0 = 0 and, for any predictor d ∈ D, we obtain, by (11) and (21),

sup
P∈P

R(d, P ) ≥ m sup
P∈P

R1(P ) = sup
P∈P

R1(P ) = (α0n−m)2 sup
P∈P

R1(P )

= sup
P∈P

R(d0
∗, P ),

which implies minimaxity of d0
∗(n,U

n) in the case where m = 1.
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Now we assume that m > 1. Then α0 > 0 and to show that d0
∗(n,U

n) is
minimax in D we make use of the nonparametric Bayes approach proposed
in Ferguson (1973). The structure of the argument will be the same as in
Wilczyński (1992).

For each j ≥ 1 we denote by Πj a Dirichlet prior process on (Y,B) with
parameter βj = [(m− α0n)/α0]Pj, where (Pj) is a sequence defined by (3).
From Ferguson (1973), Example b, the Πj Bayes nonparametric estimator
of mp∗ = mEPZ∗, and therefore, by (11), the Πj Bayes nonparametric
predictor of Y m

∗ is given by

m

[
(m− α0n)/α0

n+ (m− α0n)/α0
EPjZ∗ +

n

n+ (m− α0n)/α0
· 1
n

n∑

j=1

z∗(Uj)
]

= m

[
m− α0n

m
bj +

α0

m
Xn
∗

]
= dbj (n,Un).

Moreover, the Bayes risk %(j) for this decision rule has the form

%(j) := EΠjR(bj , P ) = (α0n−m)2[EPj‖Z∗‖2 − ‖bj‖2]

= (α0n−m)2[EPj‖Z∗‖2 − ‖EPjZ∗‖2] = (α0n−m)2R1(Pj),

because, by (17),

R(bj , P ) = (α0n−m)2[EP ‖Z∗‖2 − 2bTj EPZ∗ + ‖bj‖2]

and, by Ferguson (1973), Theorem 3,

(22) EΠj [EP ‖Z∗‖2] = EPj‖Z∗‖2 and EΠj [EPZ∗] = EPjZ∗ = bj .

As j → ∞, the Bayes risk %(j) converges to (α0n − m)2 supP∈P R1(P ),
which, by (21), is the upper bound for the risk of d0

∗(n,U
n). This implies

that d0
∗(n,U

n) is a minimax predictor of Y m
∗ (see Ferguson 1967, Theorem 2,

p. 91) and thus the proof of the first part of Theorem 1 is complete.
We now turn to the proof of the second part. Since we assume that

supy∈Y z(y)TCz(y) =∞, there exists a sequence (yj) ⊂ Y such that

(23) lim
j→∞

‖z∗(yj)‖2 =∞.

Let the distribution Pj of U0 be defined by

Pj(U0 = y1) = Pj(U0 = yj) = 0.5.

Then limj→∞R1(Pj) = supP∈P R1(P ) = ∞, because an easy calculation
shows that

R1(Pj) =
‖z∗(yj)− z∗(y1)‖2

4
,

and, by the triangle inequality and (23),

‖z∗(yj)− z∗(y1)‖ ≥ ‖z∗(yj)‖ − ‖z∗(y1)‖ → ∞.
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Therefore, the sequence of Bayes risks %(j) defined above converges to ∞.
This implies, in turn, that the risk of any predictor d(n,Un) ∈ D is un-
bounded, because

sup
P∈P

R(d, P ) ≥ EΠjR(d, P ) ≥ %(j)→∞.

The proof of Theorem 1 is complete.

The first part of Theorem 1 can be slightly generalized. For this we denote
by I the k-dimensional identity matrix and we put H = (C1/2)−C1/2. Since
C1/2(I −H) = 0, we have the following result:

Corollary 1. If supy∈Y z(y)TCz(y) <∞ then, for each c0 ∈ Rk, the
decision rule

d0(n,Un) = α0X
n + (m− α0n)a0 + (I −H)c0

is a minimax predictor of Y m.

4. Examples. As an application of the results obtained we consider the
following three examples.

Example 1. Suppose that the set Y is centrosymmetric about 0 and
that, for each y ∈ Y, z∗(y) = −z∗(−y). Let (Pj) be a sequence for which
(3) holds and let P−j denote the distribution of the random vector −U0

whenever U0 is distributed according to Pj . Then the sequence (P ′j), with
P ′j = (1/2)(Pj + P−j ), satisfies (3), because

R1(P ′j) = EP ′j‖Z∗‖
2 − ‖EP ′jZ∗‖

2 = EPj‖Z∗‖2 − ‖0‖2

≥ EPj‖Z∗‖2 − ‖EPjZ∗‖2 = R1(Pj).

Therefore, we may assume that bj = EP ′jZ∗ = 0, which implies that b0 =
a0 = 0 and thus the decision rule

d0(n,Un) = α0X
n

is a minimax predictor of the unobservable vector Y m.

Example 2. Suppose that C = [cij ] is a diagonal matrix and that there
exist two sequences {yj} and {yj} in Y such that, for each 1 ≤ i ≤ k,

lim
j→∞

zi(yj) = inf
y∈Y

zi(y) > −∞, lim
j→∞

zi(yj) = sup
y∈Y

zi(y) <∞.

Let the distribution Pj of U0, j ≥ 1, be defined by

Pj(U0 = yj) = Pj(U0 = yj) = 0.5.
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Then it is easy to verify that for each 1 ≤ i ≤ k,

sup
P∈P

[EP (zi(U0))2 − (EP zi(U0))2] = lim
j→∞

[EPj (zi(U0))2 − (EPjzi(U0))2]

= lim
j→∞

|zi(yj)− zi(yj)|2
4

.

This implies that (Pj) is a sequence of distributions as in (3), because C is
assumed to be a diagonal matrix and thus

R1(P ) =
k∑

i=1

cii[EP (zi(U0))2 − (EP zi(U0))2].

Since the function z(y) is bounded on Y,

C1/2a0 = b0 = lim
j→∞

EPjC
1/2z(U0) = C1/2 lim

j→∞
EPjz(U0)

= C1/2 lim
j→∞

z(yj) + z(yj)

2
.

Therefore, the coordinates of the point a0 = (a01, a02, . . . , a0k)T are given
by

a0i = lim
j→∞

zi(yj) + zi(yj)

2
=

infy∈Y zi(y) + supy∈Y zi(y)

2
, 1 ≤ i ≤ k,

and
d0(n,Un) = α0X

n + (m− α0n)a0

is a minimax predictor of the unobservable vector Y m.

Example 3. Let {Ai}ki=1 be a measurable partition of Y, i.e. let A1, . . .
. . . , Ak be measurable, pairwise disjoint subsets of Y whose union equals Y.
Furthermore, let zi(y) = 1Ai(y), 1 ≤ i ≤ k, be the indicator functions. Then
the random vectors Z = z(U0), Xn and Y m have (1,p), (n,p) and (m,p)
multinomial distributions, respectively, in which the parameter p = EPZ
takes its values in the simplex S defined by

S = {(s1, . . . , sk) : for all 1 ≤ i ≤ k, si ≥ 0, and s1 + . . .+ sk = 1}.
Furthermore, it is easy to calculate that

R1(P ) = cTp− pTCp,
where c = (c11, c22, . . . , ckk)T stands for the diagonal of the matrixC = [cij ].
This function attains its maximum over P at the distribution P0 for which
EP0Z = p0, where

cTp0 − pT0Cp0 = max
p∈S

[cTp− pTCp].
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Therefore, b0 = EP0Z∗ = EP0C
1/2Z = C1/2EP0Z = C1/2p0 and

d0(n,Un) = α0X
n + (m− α0n)p0

is a minimax predictor of the unobservable vector Y m.
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