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INFLUENCE OF TIME DELAYS ON THE
HAHNFELDT ET AL. ANGIOGENESIS MODEL DYNAMICS

Abstract. We study the influence of time delays on the dynamics of the
general Hahnfeldt et al. model of an angiogenesis process. We analyse the
dynamics of the system for different values of the parameter α which reflects
the strength of stimulation of the vessel formation process. Time delays are
introduced in three subprocesses: tumour growth, stimulation and inhibition
of vessel formation (represented by endothelial cell dynamics). We focus
on possible destabilisation of the positive steady state due to the delay.
Results are illustrated by numerical simulations performed for parameter
values estimated by Hahnfeldt et al. for tumour volume data of Lewis lung
carcinoma implanted in mice.

1. Introduction. Tumour angiogenesis is one of the most important
processes in tumour dynamics. It allows solid tumours to grow to sizes ex-
ceeding 2-3 mm, which is a typical maximal diameter for avascular tumours.
Furthermore, it is necessary for tumour metastasis. From the medical treat-
ment point of view, it is considered as a target for chemotherapy, which was
discovered by Folkman in 1972 ([11]). Today, we are able to understand and
describe this process much better (see e.g. [3]). In the absence of nutrients,
tumour cell secrete growth factors, which can stimulate endothelial cells to
proliferate, migrate and form new blood vessels. However, in [3] it is claimed
that the newly formed vessels have highly unstable structure and its stabilisa-
tion crucially depends on maturation. Therefore, the effective vessel density
EVD (that is, the total perfused vasculature) can exhibit an oscillatory be-
haviour and it can be connected with the delays present in the subprocesses
of the angiogenesis process considered. Thus, the influence of time delays on
the angiogenesis dynamics can be an interesting research topic.
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The process of angiogenesis is complicated, and mathematical modelling
can bring a better understanding and lead to better treatment protocols
(see [3]). The basic mathematical model of this process was proposed by
Hahnfeldt et al. [19]. It is described by a system of two ODEs with the
Gompertzian type tumour growth and with carrying capacity equal to en-
dothelial cell volume. This model was studied in [24]. On the basis of the
Hahnfeldt et al. model some treatment protocols have been proposed (see
e.g. [10, 23, 26]). Another, much more complicated numerical model was
proposed in [3] and compared with experimental data in [2]. Due to the
complexity of that model, in [1] a simple model (more precisely, a family
of models) was proposed. This model was analysed in [1] and [14]. Sim-
plification of this model and some basic comparison with the Hahnfeldt et
al. model was presented in [13]. A model combining the ideas of carrying
capacity depending on vessel density with [1] was proposed in [7]. On the
other hand, in [5] some preliminary analysis of the influence of time delays
on the Hahnfeldt et al. model dynamics was performed.

In this paper we follow the ideas of [5]. We analyse the dynamics of the
system for different values of the parameter α which reflects the strength
of stimulation of the vessel formation process. In [19] this parameter was
chosen as α = 1, while in [10], α = 0. We study the dynamics of the general
Hahnfeldt et al. model (that is, for any α ∈ [0, 1]) with respect to the magni-
tude of one of the delays introduced. The results are illustrated by numerical
simulations for the model parameters estimated in [19] for tumour volume
data of Lewis lung carcinoma implanted in mice, while in [5] simulations
were performed for arbitrary chosen parameters.

2. Presentation of the model. The Hahnfeldt et al. model [19] was
built on the basis of Gompertzian growth of tumour cells, that is,

ṗ = −rp ln
(
p

K

)
,

where p denotes the tumour cell density and K is the maximal tumour size
(carrying capacity in terms of population dynamics). The Gompertz model
([18]) was widely used in tumour modelling (see also [4, 6, 15, 21, 22, 25, 27]
and references therein).

In the Hahnfeldt et al. model it is assumed that K is non-constant and
depends on the vessel volume which is represented by the endothelial cell
density q. The endothelial cell dynamics depends on their production stimu-
lated by tumour cells, inhibition due to the presence of mature vessels, and
the natural death process. In [19] it is assumed that the stimulation function
has the form pαqβ with α+β = 1. Hence, in the general case the stimulation
term takes the form pαq1−α with α ∈ [0, 1]. Finally, in [19] it is assumed
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that α = 1, while in [10], α = 0 was chosen. In this paper we would like to
compare the behaviour of the system for different values of α.

The inhibition process is described by the term p2/3q, where the exponent
2/3 reflects the ratio of the tumour surface to its volume.

Hence, in the general case the system of equations describing the Hahn-
feldt et al. model has the following form:

(1)
ṗ = −rp ln

(
p

q

)
,

q̇ = bpαq1−α − (ap2/3 + µ)q,

with positive coefficients. However, µ is very small compared to other pa-
rameters (see e.g. [23]), so that µ ≈ 0. Therefore, in the following we assume
that µ = 0 for simplicity.

Studying the behaviour of the system (1) we follow the ideas presented
in [1]. We change variables so that u = p/q and introduce time delays to
the processes described in the model. The first delay τ1 reflects the delay of
tumour cell production with respect to stimulus. The same delay appears in
the first term of the second equation, which is connected with the change
of variables (in the original system the logarithmic term is absent in the
second equation of (1)). The second delay τ2 reflects the delay of tumour
vessel production with respect to stimulus. In [1] this delay appears in the
second term of the second equation. However, in our case this term describes
two different processes, namely stimulation and inhibition. Therefore, we can
consider two delays instead of one. In the new variables the system with time
delays reads

(2)
ṗ(t) = −rp(t) lnu(t− τ1),
u̇ (t) = −u(t)

(
r lnu(t− τ1) + b(u(t− τ2))α − a(p(t− τ3))2/3

)
,

for u, p > 0, with τi ≥ 0, i = 1, 2, 3.
We focus on the behaviour of the solutions to (2) for different α ∈ [0, 1]

and other parameters estimated in [19]. After rescaling the variable p by
10−4 these parameters have the following values:

r = 0.192, a = 4.052, b = 5.85.

In [19] the value α = 1 was chosen, and therefore in the following we refer to
(2) with α = 1 as the Hahnfeldt et al. model, while for α = 0 we talk of the
Ergun et al. model due to the value α = 0 chosen in [10]. For comparison we
use also the medium value α = 1/2.

3. Asymptotic stability analysis. In this section we study the be-
haviour of the system (2) for different α ∈ [0, 1]. We start from the case
without delay, that is, τi = 0 for i = 1, 2, 3. We analyse (2) in the extended
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phase space {(p, u) : u > 0, p ≥ 0}. It is easy to see that this system has
one positive steady state (p∗, u∗) with u∗ = 1 and p∗ = (b/a)3/2, and in the
extended phase space there exists a semi-trivial steady state with p = 0 and
u defined implicitly by r lnu+buα = 0. Uniqueness of the semi-trivial steady
state follows from monotonicity of both terms in this formula.

Theorem 1. For every α ∈ [0, 1] the positive steady state (p∗, u∗) of (2)
is globally stable in (R+)2. For α ≥ 2/3 this state is a stable node, while for
α < 2/3 it is a node or focus depending on the value of r: for

r ∈
(

(4− 3α)b
3

−
√
∆

2
,
(4− 3α)b

3
+
√
∆

2

)
, where ∆ =

4
9
b2(3α−4)2−4α2b3,

it is a stable focus, otherwise it is a stable node.

Proof. It is easy to see that the characteristic polynomial for (2) is

W (λ) = λ2 + (r + αb)λ+
2
3
rb

for every α ∈ [0, 1]. Its discriminant ∆W = r2 + 2
3rb(3α− 4)+α2b2 is always

non-negative for α ≥ 2/3, which means that W (λ) has only real roots and
they are negative. Hence, the positive steady state is a stable node in this
case. For α < 2/3 the sign of this discriminant depends on the roots of ∆W

as a function of r, that is, r1,2 =
(

2
3(4 − 3α)b ±

√
∆

)
/2. For r ∈ (r1, r2) we

have ∆W < 0, that is, the positive steady state is a stable focus. Otherwise
it is a stable node.

Studying the phase portrait (see Fig. 1), we see that all orbits are bounded
independently of α ∈ [0, 1]. Therefore, using the Poincaré–Bendixson theo-
rem we conclude that each orbit either tends to the positive steady state or
to the closed orbit surrounding it. However, the Dulac–Bendixson criterion
for (2) with the standard function for Lotka–Volterra systems (see e.g. [17]
where it was used for the system with switching functions) B(p, u) = 1/pu
implies that there are no closed orbits in (R+)2. Hence, all solutions to (2)
with positive initial data tend to (p∗, u∗) as t→∞.

Fig. 1. Phase space portraits for (2) with parameter values from [19] and different α:
α = 1 (left), α = 1/2 (middle) and α = 0 (right)
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Studying the character of the semi-trivial steady state we see that for
u→ 0 and every p > 0 we have ṗ→ +∞. Thus the orbits are parallel to the
horizontal axis at the points (p, 0), and ṗ > 0 for small positive u. For p = 0
we have u → u. This shows that the semi-trivial steady state is a saddle
point.

3.1. Influence of time delays. In this subsection we study the influence
of delays on the dynamics of system (2). We focus on the simplest cases when
only one of the delays is non-zero or some two delays are equal positive. It
is known (see e.g. [12]) that if the steady state is a saddle for τ = 0, then it
cannot gain stability for positive delays. Therefore, we only study the positive
steady state (p∗, u∗). We calculate the characteristic quasi-polynomial. In the
general case it has the form

(3) Wτ (λ) = λ2 + λ(re−λτ1 + αbe−λτ2) +
2
3
rbe−λτ1e−λτ3 .

We know that stability depends continuously on the magnitude of the de-
lay. Therefore, to obtain destabilisation, the existence of purely imaginary
characteristic values is necessary. Hence, in the following we analyse Wτ (λ)
for λ = iω looking for its roots and the global change of the argument
∆ argω∈[0,∞)Wτ (iω) which determines stability due to the Mikhailov or
Nyquist criterion (see e.g. [12, 20]).

We illustrate the results of analytical investigations with numerically
computed solutions for the parameter values from [19].

Because we study (2) with only one positive delay, the characteristic
quasi-polynomial (3) for λ = iω has a general form

(4) Wτ (iω) = −ω2 + c1iω + c2 + (d1iω + d2) exp(−iωτ),

where τ = τ1, τ2, τ3. Purely imaginary roots of Wτ exist iff ‖−ω2 + c1iω
+ c2‖2 = ‖d1iω + d2‖2. Following the ideas from [9, 8] and defining the
auxiliary function

F (x) = x2 + (c21 − 2c2 − d2
1)x+ c22 − d2

2, x = ω2,

we see that the existence of purely imaginary eigenvalues is equivalent to the
existence of positive roots of F . If F has a positive root x0, then there exists
a pair ±iω0 of purely imaginary eigenvalues with ω0 =

√
x0. For this ω0 we

find a sequence {τn} of delays for which the switch of stability can occur.
This sequence is defined implicitly by its sine and cosine:

sin(τnω0) = ω0
c1d2 − c2d1 + d1ω

2
0

d2
2 + d2

1ω
2
0

, cos(τnω0) =
(d2 − c1d1)ω2

0 − c2d2

d2
2 + d2

1ω
2
0

.

Typically, the system looses stability for the smallest τn, that is, τ0 ∈ (0, 2π),
satisfying the relations above.
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Case τ1 > 0 and τ2 = τ3 = 0. In this case the coefficients of the charac-
teristic quasi-polynomial (4) are equal to

c1 = αb, c2 = 0, d1 = r, d2 =
2
3
br,

and the free term of the auxiliary function F is c22 − d2
2 = −4

9b
2r2 < 0. This

implies that F has a unique positive root, and therefore Wτ has exactly
one pair of purely imaginary roots. Hence, there exists a unique pair of
purely imaginary eigenvalues ±iω0, and a sequence {τn1 } of critical values
of the delay τ1 for which (p∗, u∗) can loose stability. In Figs. 2 and 3 we
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Fig. 2. Solutions to (2) for α = 1/2 and for τ1 = 0.1 (left), τ1 = 5.9 (middle) and τ1 = 6.4
(right)
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Fig. 3. Solutions to (2) for α = 0 and for τ1 = 0.1 (left), τ1 = 0.25 (middle) and τ1 = 0.5
(right)

present examples of the solutions to (2) in this case for α = 1/2 and α = 0,
respectively. It can be observed that destabilisation of the positive steady
state occurs. The Mikhailov or Nyquist criterion used for this data shows
that destabilisation takes place for τ1 ≈ 0.2522 for α = 0 (the Ergun et
al. model), τ1 ≈ 6.06 for α = 1/2. The left-hand side graph in Fig. 8 shows
the dependence of the critical value τ1,crit on the parameter α. The results
of simulations suggest that system (2) exhibits Hopf bifurcation for every
α ∈ [0, 1]. Exactly the same qualitative behaviour can be observed for the
Hahnfeldt et al. model. The difference is only quantitative—the threshold
value of delay changes. In this case the destabilisation takes place at τ1 ≈
12.36. It should be marked that the threshold value of delay for the Hahnfeldt
et al. model is large and can be irrelevant from the biological point of view.
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Case τ2 > 0 and τ1 = τ3 = 0. Now,

c1 = r, c2 =
2
3
br, d1 = αb, d2 = 0.

In this case the free term of F is positive (c22 − d2
2 = 4/3r2b2 > 0), and

therefore the existence of positive roots of F depends on the signs of the
coefficient c21 − 2c2 − d2

1 of the linear term and the discriminant of F . It
should be noticed that in [5] there is a mistake because it is assumed that
this coefficient is always positive.

Theorem 2. If τ2 > 0 while τ1 = τ3 = 0, then the positive steady state
(p∗, u∗) is locally asymptotically stable independently of the magnitude of τ2
for r > αb. If r ≤ αb, then there exists a critical value of the delay τ2 for
which this state can loose stability.

Proof. Due to the form of F , if c21− 2c2− d2
1 = r2− 4

3br−α
2b2 ≥ 0, then

F can have either real negative roots or complex roots with negative real
part. This implies that there are no purely imaginary eigenvalues of (2) for
r ≥ (2 +

√
9α2 + 4)b/3. On the other hand, if r < (2 +

√
9α2 + 4)b/3, then

∆F =
(
r2− 4

3br−α
2b2

)2− 16
9 b

2r2 and ∆F < 0 for r > αb, while ∆F ≥ 0 for
r ≤ αb. Hence, for r ≤ αb the auxiliary function F has positive roots, while
for r > αb positive roots do not exist.

Remark 1. For the Hahnfeldt et al. model and parameter values esti-
mated in [19] we have α = 1 and r < b, which implies that (p∗, u∗) can loose
stability, while for the Ergun et al. model, always r > αb = 0, implying that
the positive steady state is locally asymptotically stable independently of the
magnitude of τ2. It should also be noticed that for the parameter α = 1/2
chosen for comparison in this paper and other parameters from [19] we have
r < αb = b/2.
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Fig. 4. Solutions to (2) for α = 1 and for τ2 = 0.1 (left), τ2 = 0.25 (middle) and τ2 = 0.27
(right)

Examples of the behaviour of solutions to the Hahnfeldt et al. model in
this case are presented in Fig. 4. With an increasing delay, solutions exhibit
an oscillatory behaviour. Bifurcation occurs at τ2 ≈ 0.265. As in the previous
case, this dynamics suggests Hopf bifurcation. The behaviour of the solutions



258 M. Bodnar and U. Foryś

to (2) for α = 1/2 is similar—there is only quantitative difference in the
threshold value of the delay. Hopf bifurcation occurs at τ2 ≈ 0.518. In the
middle graph of Fig. 8 the dependence of the bifurcation threshold on α is
presented.
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Fig. 5. Solution to (2) for α = 0

Remark 2. In this case the dynamics of the Ergun et al. model does
not involve time delay. Therefore, for all τ2 > 0 solutions have the same
dynamics. In Fig. 5 a sample solution is presented.

Case τ3 > 0 and τ1 = τ2 = 0. In this case,

c1 = r + αb, c2 = 0, d1 = 0, d2 =
2
3
br

and the free term of F is equal to c22− d2
2 = −4

9b
2r2 < 0. As before, the pos-

itive steady state can loose stability. In Fig. 6 examples of the behaviour of
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Fig. 6. Solutions to (2) for α = 1 and for τ3 = 1.0 (left), τ3 = 12 (middle) and τ3 = 12.51
(right)

solutions to the Hahnfeldt et al. model are presented. Again, computer sim-
ulations show that for some values of parameters, non-dumping oscillations
arise. This suggests a loss of stability of the steady state and occurrence of
Hopf bifurcation. The Nyquist criterion used for this data shows that desta-
bilisation takes place for τ3 ≈ 12.51. For the case α = 1/2 and for the Ergun
et al. model, similar qualitative behaviour is observed. However, the bifurca-
tion thresholds differ and have the following values: τ3 ≈ 6.237 for α = 1/2
and τ3 ≈ 0.2585 for α = 0. Similarly to the first case with τ1 > 0 and
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τ2 = τ3 = 0, we see that the threshold value of the delay for the Hahnfeldt
et al. model is large.

Case τ2 = τ3 > 0 and τ1 = 0. Following the ideas presented in [1] we
can consider the additional case when τ2 = τ3 > 0. In this case

c1 = r, c2 = 0, d1 = αb, d2 =
2
3
br

and the free term is the same as in the previous case, which obviously implies
that a change of stability is possible. The qualitative behaviour of solutions is
very similar to the case with τ1 = τ2 = 0 and τ3 > 0. Numerical simulations
show a change of stability and suggest that Hopf bifurcation occurs. The
Nyquist criterion used for this data shows that destabilisation takes place
for τ2 = τ3 ≈ 0.27 for the Hahnfeldt et al. model, at τ2 = τ3 ≈ 0.528 for the
case α = 1/2, and at τ2 = τ3 ≈ 0.258 for the Ergun et al. model.

General case. As is easily seen from the previous subsections, in the
general case the positive steady state can be destabilised by delays, indepen-
dently of other model parameters. Moreover, in that case, stability switches
can occur (see e.g. [16]). In Fig. 7 we may observe that increasing delay
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Fig. 7. Solutions to (2) for α = 1/2 and τ1 = 6.4, τ3 = 0 and τ2 = 0.2 (left), τ2 = 0.46
(middle) and τ2 = 0.49 (right)

leads to stabilisation of the steady state. For fixed τ1 = 6.4 and τ3 = 0,
and small τ2, solutions to (2) exhibit oscillations whose amplitude increases
(Fig. 7, left). After increasing the delay, the amplitude is decreasing in time
(Fig. 7, middle). After further increasing the delay, oscillations arise again
(Fig. 7, right). Using the Nyquist criterion we may approximate points at
which stability switches occur. For the data used in simulations it turns out
that for small τ2 < 0.29 the steady state is unstable, for 0.29 < τ2 < 0.47 it
is stable, and for τ2 > 0.47 it is unstable. We deduce that stability switches
occur around τ2 = 0.29 and τ2 = 0.47.

4. Conclusions. We have presented a modified Hahnfeldt et al. model.
We consider the case of α ∈ [0, 1], while in [19] this parameter was chosen to
be α = 1. On the other hand, in [10] the authors used α = 0. We rewrite the
original model in such a way that system (2) is similar to systems presented



260 M. Bodnar and U. Foryś

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

α

τ
crit

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

α

τ
crit

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

τ
crit

α

Fig. 8. Dependence of the critical value τcrit where destabilisation occurs on the parameter
α in different cases. Left: τ1 > 0, τ2 = τ3 = 0; middle: τ1 = 0, τ2 > 0 and τ3 = 0; right:
τ1 = 0, τ2 = τ3 > 0

in [3, 1, 2] and analysed in [14, 13]. However, there is a difference between
our model and those from [3, 1, 2, 14, 13]. We use the new variable u = p/q,
while the models proposed in [1] are formulated in terms of EVD which is
equal to q/p = 1/u. We have decided to use u instead of EVD because this
allows us to consider the extended phase space with p = 0.

We have introduced time delays in three terms and carried out a simple
stability analysis. We have shown that a time delay in the stimulus term
(i.e. τ2) for some values of the model parameters cannot lead to destabili-
sation (as in the Ergun et al. model), while delays in other terms may lead
to destabilisation. Biologically, this suggests that the stimulation process is
very strong itself, so that the delay introduced into it does not significantly
influence the system dynamics. Numerical simulations show that a loss of
stability really occurs (see Figs. 2–4, 6, 7). The simulations suggest that sys-
tem (2) is more sensitive to the delay τ2 of the vessel production than to the
others. Destabilisation occurs for smaller delays (see Figs. 4, 7 for τ2 > 0
and Figs. 2, 3, 6 for τ2 = 0). Stability switches are also possible. However,
the computed threshold values of delays (namely τ1 when τ2 = τ3 = 0 and
τ3 when τ1 = τ2 = 0) suggest that all delays should be taken into account,
especially in the case of the Hahnfeldt et al. model, where these values seem
to be biologically irrelevant compared to the case τ1 = τ3 = 0.
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