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MODELS OF INTERACTIONS BETWEEN
HETEROTROPHIC AND AUTOTROPHIC ORGANISMS

Abstract. We present two simple models describing relations between
heterotrophic and autotrophic organisms in the land and water environ-
ments. The models are based on the Dawidowicz & Zalasiński models but
we assume the boundedness of the oxygen resources. We perform a basic
mathematical analysis of the models. The results of the analysis are com-
plemented by numerical illustrations.

1. Introduction. In this paper we study two simple three-variable mod-
els of complex interactions between heterotrophic and autotrophic organisms
depending on the amount of oxygen available in the environment. The mod-
els differ depending on the assumed environment—it can be either land or
water. The basic models were proposed in [2], which is part of the project of
mathematical modelling of the life phenomenon [1, 2]. Such models are well
known in the biomathematical literature (cf. e.g. [5]), but the Dawidowicz
& Zalasiński models differ from the standard ones in that the right-hand
sides of the systems of equations involved are not smooth in general—there
are some threshold values of the model parameters and variables which di-
vide the phase space into subspaces where the right-hand sides are smooth.
Therefore, mathematical analysis of these models requires a partition of the
phase space into subspaces where each of the models is described by a stan-
dard three-variable ODE with a smooth right-hand side. The basic analysis
of the model for the land environment was presented in [4].

In [4] we have also proposed a modification of the model for the land
environment in which we assume that oxygen atoms are either bounded
in diatomic molecules O2 or in carbon dioxide CO2 (i.e. we assume the
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boundedness of the oxygen resources). In our opinion such a modification
captures the key aspects of the process of photosynthesis in a better way.
Hence, we would like to propose the same modification for the model in the
water environment.

In the present paper we focus on mathematical and numerical analysis
of the modified models for both environments.

1.1. Presentation of the Dawidowicz & Zalasiński models. In the model
the following three variables are used: x(t) and y(t) describe the biomass of
heterotrophic (animals) and autotrophic (green plants) organisms, respec-
tively, and z(t) is the volume of oxygen. For the land environment the model
in [2] is described by

(1.1)

ẋ = axmin{y, (z −K)+} − bx,

ẏ = cy(M − y)− dxmin{y, (z −K)+},

ż = ey(M − y)− fxmin{y, (z −K)+},

where (z −K)+ = max{z −K, 0} and all coefficients are positive.
In the first equation, which describes the dynamics of animal biomass, the

first term, axmin{y, (z −K)+}, is responsible for the animal reproduction,
which is proportional to their density (number of animals) and the minimum
of the following two quantities: the density of autotrophic organisms and the
volume of the accessible oxygen above some minimal threshold (denoted by
the constant K). Using such a reproduction term, the authors intend to
account for the fact that animals cannot survive in an environment with
both poor nutrient supply and poor oxygen supply. The second term, −bx,
corresponds to natural death of animals.

In the second equation, describing the dynamics of green plant biomass,
the first term, cy(M−y), denotes its growth, which is limited by the capacity
of the environment, denoted by the constant M (the logistic term is used
to model that fact). The second term, −dxmin{y, (z −K)+}, describes the
decline of plants due to animal consumption, which is proportional to the
animal biomass and the minimum of two quantities: the plant biomass and
the oxygen volume (again the authors assume that the animals can only
survive if there is enough oxygen, i.e. above the threshold K).

In the third equation, describing the changes in oxygen volume, the first
term (analogous to the first term in the second equation), ey(M − y), de-
notes the increase of the oxygen volume because of its production by green
plants. The second term (again analogous to the second term in the second
equation), −fxmin{y, (z − K)+}, describes the decline of the oxygen vol-
ume because of animal activity, which is again proportional to the animal
biomass and the minimum of the plant biomass and oxygen volume.
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A slightly different system of equations is proposed to describe the same
processes in the water environment:

(1.2)

ẋ = axmin{y, z,N} − bx,
ẏ = cy(M − y)− dxmin{y, z,N},
ż = ey(M − y)− fxmin{y, z,N} − g(z −N)+,

with positive coefficients and the same meaning of the term (z − N)+ as
before.

The main difference between the models for the land and water environ-
ments is that the concentration of oxygen diluted in water is limited, and its
decrease is associated not only with consumption but also with the escape
of oxygen surplus which was not diluted.

In the first equation, corresponding to animal biomass, the first term,
axmin{y, z,N}, describes the growth of animal population, which is again
proportional to their concentration and the minimum of: the plant biomass,
the accessible oxygen and the maximal amount of oxygen that can be diluted
in water (denoted by the constant N). The second term, −bx, as previously,
corresponds to natural death of animals.

In the second equation, describing the dynamics of green plant biomass,
the first term, cy(M−y), reflecting its growth is the same as in the model for
the land environment, while the second one, −dxmin{y, z,N}, describing
the decline of plants due to animal consumption, is (analogously to the
previous equation) proportional to the animal biomass and the minimum
of: the plant biomass, the accessible oxygen and the maximal amount of
oxygen that can be diluted in water.

In the third equation, describing the changes in accessible oxygen in
water, the first term (analogous to the first term in the second equation),
ey(M − y), stands for the production of oxygen by green plants during the
process of photosynthesis. The second term (again analogous to the second
term in the second equation), −fxmin{y, z,N}, is the decline of oxygen due
to animal consumption. The additional third term, −g(z − N)+, describes
the escape of non-diluted oxygen surplus.

1.2. Properties of the Dawidowicz & Zalasiński models. As mentioned
in [2] and in the introduction, the models can be analysed separately in
different subspaces of the phase space in which the right-hand sides of (1.1)
and (1.2) are smooth. Such analysis for (1.1) was performed in [4]. In this
subsection we summarise the results of that analysis and make some remarks
concerning the second model described by (1.2).

In [2] it was proved that:

1. The phase space for both models can be restricted to the set D =
{(x, y, z) : x > 0, 0 < y < M, z > 0}.
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2. The last variable z can be expressed as a functional of y, where

(1.3) z(t) = z0 +
f

d
(y(t)− y0) +

(
e− cf

d

) t�

0

y(s)(M − y(s)) ds,

for (1.1) and (1.2) with z ≤ N , while for (1.2) and z > N this func-
tional has the following form:

(1.4) z(t) = N +
(
z0 −M −

f

d
y0

)
e−gt

+
f

d
y(t) +

t�

0

y(s)
(
M

(
e− cf

d

)
− fg

d
− y(s)

)
eg(s−t) ds.

The authors of [2] also remarked that in the case of optimal level of oxygen
both models can be simplified to the well-known predator-prey model with
carrying capacity for preys (see e.g. [5] or [3]). Clearly, if z > y + K in the
land environment or y < z ≤ N in water, then the predator-prey system for
x and y is uncoupled with z, and z can be calculated from (1.3) for both
equations (1.1) and (1.2). This is the only case when both (1.1) and (1.2)
have the same form. Similarly to [4] we can prove the following properties:

I. If b/a > M , e > c, d > f , then

• for z0 > y0 +K, the solution to (1.1) stays in the subregion D1
1 =

{(x, y, z) ∈ D : z > y +K};
• for

y0 < z0 < N − e

c
(M − y0)− x0

M

b− aM

(
ed

c
− f

)
< N,

the solution to (1.2) stays in D2
1 = {(x, y, z) ∈ D : N > z > y}.

Moreover, (x, y, z)→ (0,M, zg) where

zg = z0 +
f

d
(M − y0) +

(
e− cf

d

)∞�
0

y(s)(M − y(s)) ds.

II. If b/a < M , x0 < (e/f)(M − y0), e > c and d > f , then (x, y) →
((c/d)(M−b/a), b/a) and z increases. Therefore, for (1.1) the solution
stays in D1

1 and z →∞, while the solution to (1.2) leaves D2
1 (z > N

at some time).

In the case of non-optimal level of oxygen, equations (1.1) and (1.2) have
different forms. In [4] for (1.1) it was proved that:

• If 0 < z0 < K − (e/c)(M − y0), then the solution to (1.1) stays in
D1

2 = {(x, y, z) ∈ D : z < K} and (x, y, z)→ (0,M, z0+(e/c)(M−y0)).
• If (e/c)(M − y0) < z0 < K, then the solution to (1.1) leaves D1

2.
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• If K < z0 < y0 +K, e < c and d < f , then the solution to (1.1) stays
in D1

3 = {(x, y, z) ∈ D : K < z < y +K}.

Similarly, we can prove the following properties of the solutions to (1.2):

• If b/a < M < N , y0 < N < z0 and x0 < (e/f)(M − y0), then the
solution stays in D2

2 = {(x, y, z) ∈ D : y < N < z}.
• If M > N and y0 < N < z0, then there exists t > 0 such that the

solution leaves D2
2 at t.

• If M > N > b/a, y0 > N and z0 > N , then there exists t > 0 such
that the solution leaves D2

3 = {(x, y, z) ∈ D : y > N and z > N}.
• If M < N , ed < cf , f < d and y0 > (d/f)z0, then the solution stays

in D2
4 = {(x, y, z) ∈ D : y > z and z < N}.

• If z0 < y0, z0 < N and z0 +(e/c)(M−y0), then the solution leaves D2
4.

The proofs of the above properties of (1.2) are similar to those given in
[4] for (1.1). We include part of them in the Appendix.

2. Modified models. In our opinion the system needs some modifica-
tions. Oxygen is produced by autotrophs from carbon dioxide in the photo-
synthesis process. On the other hand, oxygen is consumed by heterotrophs,
with carbon dioxide as one of the products. Therefore, we assume that the
common amount of oxygen atoms in the atmosphere is constant and equal
to some parameter L. Hence, we propose a linear dependence of the oxygen
production on the autotrophs density with coefficient proportional to L− z.
Finally, under the assumptions above, the system for land environment takes
the form

ẋ = axmin{y, (z −K)+} − bx,
ẏ = cy(M − y)− dxmin{y, (z −K)+},(2.1)

ż = ey(L− z)− fxmin{y, (z −K)+}.
In the modified system a positive steady state exists and it can be stable
(cf. [4] where examples of stable behaviour of the modified system were
shown). We observe quick stabilisation of the oxygen level and the balance
between heterotrophs and autotrophs. In our opinion this type of system
dynamics reflects natural processes better than in the case of the original
system described by (1.1).

Similarly, after modification, the system for the water environment has
the form

ẋ = axmin{y, z,N} − bx,
ẏ = cy(M − y)− dxmin{y, z,N},(2.2)

ż = ey(L− z)− fxmin{y, z,N} − g(z −N)+.
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2.1. Properties of the modified systems. The Dawidowicz & Zalasiński
models and those proposed in [4] and in this paper differ only in the third
equation. Therefore, under some assumptions their properties may be sim-
ilar. However, note that after the proposed modification the density z(t)
of oxygen does not increase unboundedly, as is possible in the case of the
original model in the land environment. Also note that in the general case
for the modified systems described by (2.1) and (2.2) there is no formula
for z as a functional of y (like formulae (1.3) or (1.4) for equations (1.1)
and (1.2)).

It is easy to see that the modified systems can be analysed in the phase
space A = {(x, y, z) : x > 0, 0 < y < M, 0 < z < L}. Hence, we restrict our
analysis to this space.

Properties of (2.1). For the system defined by (2.1) we have three cases:

(a) z < K;
(b) z > K and min{y, (z −K)+} = y;
(c) z > K and min{y, (z −K)+} = z −K.

In case (a) the dynamics of solutions is very simple because the equations
for x and y are uncoupled.

Lemma 1. If z0 < K and L ≤ K, then the solution to (2.2) stays in the
subregion A1

1 = {(x, y, z) ∈ A : z < K}, while for L > K it leaves A1
1.

Proof. Until z < K we have min{y, (z − K)+} = 0. Hence, ẋ = −bx
and the dynamics of y is described by the well-known logistic equation ẏ =
cy(M−y) (proposed by Verhulst in [6]). Therefore, x→ 0 exponentially and
y →M as a solution to the logistic equation (see e.g. [5] or [3]). In this case
it is possible to express z as a functional of y. Clearly, dividing the second
equation of (2.1) by the third, one gets

dz

dy
=
c

e

L− z
M − y

,

which implies

z(t) = L− (L− z0)
(
M − y(t)
M − y0

)c/e

.

Hence, z increases to L as y increases to M .
Finally, if L ≤ K, then z(t) < K for every t ≥ 0, while for L > K there

exists t > 0 such that z(t) = K and the solution to (2.1) leaves A1
1.

In case (b) the first and second equations of (2.1) form the predator-
prey system (in (x, y) coordinates) with carrying capacity for preys (see
e.g. [5] or [3]) whose dynamics depends on the magnitude of M . In this case
the inequality y < z −K is satisfied so we are interested in the subregion
A1

2 = {(x, y, z) ∈ A : z > K + y}.
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Lemma 2. If M < b/a, L > K +M , c/d > e/f , y0 < L−K − (f/e)x0

and z0 > K+y0, then x→ 0, y →M , z → L and the solution to (2.1) stays
in A1

2.

Proof. If M<b/a and 0<y0<M , then x is decreasing to 0 and y→M .
Moreover, y takes the minimal value on the isocline y = M − (d/c)x (see
e.g. [5]). If the solution stays in A1

2, then ż(t) = ey(t)(L− z(t))− fx(t)y(t)
for every t ≥ 0. Therefore, for every ε > 0 there exists t > 0 such that

e(M − ε)(L− z(t))−Mε < ż(t) < eM(L− z(t)) for t > t.

Asymptotically one gets L ≤ z ≤ L+Mε/e(M − ε) for every ε > 0, which
yields z → L as t→∞.

In A1
2 the inequality z(t) > y(t) + K for t ≥ 0 must be satisfied. If the

solution leaves A1
2, then there exists t̃ > 0 such that z(t̃ ) = y(t̃ ) + K. The

straight line y = L−K − (f/e)x lies above the isocline y = M − (d/c)x in
the (x, y) plane, and therefore the inequality y < L−K− (f/e)x is satisfied
under the assumptions of this lemma. Hence, ż(t̃ ) = y(t̃ )(e(L−K−y(t̃ ))−
fx(t̃ )) > 0, which guarantees that the solution stays in A1

2.

If M > b/a, then solutions to predator-prey systems with carrying ca-
pacity for preys are non-monotonic. Moreover, there exists a positive steady
state (x, y) = ((c/d)(M−b/a), b/a), which is globally stable in (R+)2. Hence,
if the solution to (2.1) stays in A1

2, then we can estimate the growth of z.

Lemma 3. If M > b/a, L > K + M + cf
de (M − b/a), c/d > e/f and

z0 > y0 +K, then there exists a neighbourhood U of the positive steady state
(x, y) ∈ U such that if (x0, y0) ∈ U , then the solution to (2.1) stays in A1

2,
y(t) < L−K−(f/e)x(t) for t ≥ 0 and x→ x, y → y and z → z = L−(f/e)x.

Proof. Under the assumptions of this lemma the positive steady state in
(x, y) coordinates lies in the region y < L −K − (f/e)x. Due to its global
asymptotic stability in the positive quadrant (R+)2 (see e.g. [5]) there exists
an open subset U ⊂ (R+)2 such that if (x0, y0) ∈ U , then the solution stays
in the region y < L−K − (f/e)x. If the solution stays in A1

2, then z tends
to z, which can be shown similarly to the proof of Lemma 2. However, the
inequality z > y +K is necessary in this case. We have

z = L− cf

de

(
M − b

a

)
> M +K > y +K

under the assumptions of this lemma.
Finally, as in the proof of Lemma 2 we show that if z(t) = y(t) +K for

some t > 0, then ż(t) > 0, which implies that the solution stays in A1
2.

In case (c) all three equations of (2.1) are coupled. Now, we study the
dynamics of (2.1) in the subregion A1

3 = {(x, y, z) ∈ A : K < z < y + K}.
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As in case (b), the existence of a positive steady state depends on the model
parameters.

Looking for steady states we get either x = 0 or z = z = K + b/a from
the first equation of (2.1). If x = 0, then y = 0 or y = M from the second
equation. However, only y = M can be stable (asymptotically, if x→ 0, then
y tends to the solution of the logistic equation). Therefore, we are interested
in the stability of the semi-trivial steady-state (0,M,L). On the other hand,
if z = z, then

ey

(
L−K − b

a

)
= f

b

a
x

from the third equation of (2.1). This implies that the positive steady state
exists only if L > K + b/a. Moreover, calculating y one gets

y = M − de

cf

(
L−K − b

a

)
,

which yields

M >
de

cf

(
L−K − b

a

)
.

Finally,

x =
ae

bf
y

(
L−K − b

a

)
.

Lemma 4. If L < K + b/a, then the semi-trivial steady state (0,M,L)
of (2.1) is locally asymptotically stable and the positive steady state does not
exist.

If L > K + b/a and M > de
cf (L −K − b/a), then there exists a positive

steady state (x, y, z) ∈ A1
3 and the semi-trivial steady state is unstable.

Proof. As shown above, the inequality L > K + b/a is necessary for the
existence of a positive steady state for (2.1). Hence, if the reverse inequality
is satisfied, then the positive steady state does not exist. To study the local
stability of the semi-trivial steady state we calculate the Jacobi matrix of
the system

J(x, y, z) =

a(z −K)− b 0 ax

−d(z −K) cM − 2cy −dx
−f(z −K) e(L− z) −ey − fx

 .

For the semi-trivial steady state this matrix is lower triangular and it is
easy to see that its characteristic values are λ1 = a(L−K)− b, λ2 = −cM ,
λ3 = −eM . Hence, all of them are real and negative iff L < K + b/a.

The existence of a positive steady state was considered above.
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The stability of the positive steady state can be analysed using the
Routh–Hurwitz criterion. Setting u = L− z = L−K − b/a one gets

J(x, y, z) =

 0 0 a2e
bf

(
M − de

cf u
)
u

− bd
a

2de
f u−Mc −ade

bf

(
M − de

cf u
)
u

− bf
a eu −e

(
M − de

cf u
)(

1 + a
bu
)
 .

Calculating the characteristic polynomial for this steady state,

W (λ) = λ3 +A2λ
2 +A1λ+A0,

we see that

A0 = ace

(
M − de

cf
u

)2

u > 0

and

A1 =
ad2e3

cf2
u3 +

2bd2e3 − 2acde2fM − abde2f

cf2
u2

+
(acefM + abef − 3bde2)M

f
u+ bceM2,

A2 = − ade2

cf
u2 +

acefM − bde2 − 2bcde
cf

u+ b(c+ e)M.

Therefore, the Routh–Hurwitz criterion (see e.g. [5]) implies stability for
small positive values of u and instability for large u. Clearly, for u→ 0 (that
is, z → L) we have A1A2 − A0 → b2ce(c + e)M3 > 0, while for u → ∞
we have A1A2 − A0 → −∞. On the other hand, in our case positivity of
the steady state yields u < cf

edM . This suggests that the sign of A1A2 −A0

depends on the magnitude of M . However, for u→ cf
edM one gets

A1A2 −A0 →
ac2fM4

d
(c2 − 1)(3acfM + abf − 3bde− 2cbd),

which shows that stability also depends on the magnitude of other parame-
ters, mainly on c.

Corollary 1. For L > K + b/a and M > de
cf (L − K − b/a), if L −

K− b/a is sufficiently small , then the positive steady state (x, y, z) is locally
asymptotically stable in A1

3.

Properties of (2.2). For the second system defined by (2.2) the following
four cases can be considered:

(A) y < z < N ;
(B) z < N and z < y;
(C) z > N and y > N ;
(D) z > N > y.
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In case (A) the system (2.2) takes the same form as (2.1) in case (b),
but the subregion where this form is valid is different from that for (2.1).
Now we are interested in A2

1 = {(x, y, z) ∈ A : y < z < N}.

Lemma 5. If M < b/a, N > L > M , c/d > e/f , y0 < L− (f/e)x0 and
z0 > y0, then x→ 0, y →M , z → L and the solution to (2.2) stays in A2

1.
If M < b/a and L < M , then the solution leaves A2

1.

Proof. The proof of the first part is similar to the proof of Lemma 2.
The second part is obvious. If the solution stays in A2

1, then z → L and
y →M ; but this implies z(t) < y(t) for sufficiently large t, which contradicts
the definition of A2

1.

If M > b/a, then every solution to (2.2) staying in A2
1 has the same

limit as the solution to (2.1) in case (b), that is, x → x = (c/d)(M − y),
y → y = b/a and z → z = L− (f/e)x.

In case (B) all three equations of (2.2) are coupled as in case (c) for (2.1),
but the form of (2.2) is slightly different from that of (2.1) in case (c)—the
term z−K is replaced by z. Therefore, there is the same semi-trivial steady
state (0,M,L), and the positive steady state

(x, y, z) =
(
e

f

(
L− b

a

)(
M − de

cf

(
L− b

a

))
,M − de

cf

(
L− b

a

)
,
b

a

)
exists iff M > de

cf (L − b/a) > 0. We study the behaviour of the system in
the subregion A2

2 = {(x, y, z) ∈ A : z < min(N, y)}.

Lemma 6. If L < b/a and L < min(N,M), then the semi-trivial steady
state (0,M,L) ∈ A2

2 of (2.2) is locally asymptotically stable and the positive
steady state does not exist.

If L > b/a, N > b/a and M− de
cf (L−b/a) > b/a, then the positive steady

state (x, y, z) ∈ A2
2 exists and the semi-trivial steady state is unstable.

Proof. As in case (c) the Jacobi matrix is lower triangular and we can
easily find the characteristic values λ1 = aL − b, λ2 = −cM < 0 and
λ3 = −ey < 0. Hence, all three characteristic values are real and negative
iff L < b/a. If L < b/a, then z > L, which contradicts the definition of the
phase space A. Thus, the positive steady state does not exist.

The first coordinate of the positive steady state x is positive iff L > b/a
and M > de

cf (L − b/a). Under the assumptions, z < N and z < y, which
yields (x, y, z) ∈ A2

2. This completes the proof.

To study local stability of the positive steady state one can see that the
Jacobi matrix is exactly the same as in case (c) for (2.1). Therefore, the
conditions of stability are also the same.
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In case (C) the interesting subregion is defined by A2
3 = {(x, y, z) ∈ A :

N < min(y, z)}. In this case the first equation of (2.2) is uncoupled and
x(t) = x0e(aN−b)t.

Lemma 7. If N > b/a, then the solution to (2.2) leaves A2
3.

If N < b/a, N < min(M,L), M > de
cf (L−N) and

x0 < min
(
M − de

cf
(L−N),

c

d
(M −N)

)
,

y0 < N and z0 < N , then the solution stays in A2
3 and

x→ 0, y →M, z → eML+ gN

eM + g
.

Proof. If N > b/a, then x → ∞ as t → ∞, which implies ẏ → −∞.
Therefore, there exists t > 0 such that y(t) < N and the solution leaves A2

3.
If N < b/a, then x decreases to 0. This implies that y → M and if

x0 < (c/d)(M −N), then y does not drop below N . Clearly, if there exists
t > 0 such that y(t) = N , then ẏ(t) = cN(M −N)− dNx(t) > cN(M −N)
− dNx0 > 0, which contradicts the definition of t.

Similarly we show that z → eML+gN
eM+g and z(t) > N for every t ≥ 0.

In the last case (D) we study the system in A2
4 = {(x, y, z) ∈ A : y <

N < z}. Then the first two equations of (2.2) form a predator-prey system
and the dynamics depends on the magnitude of M .

Lemma 8. If M<b/a, M<N <L, y0<N <z0 and x0< (e/f)(L−N),
then the solution to (2.2) stays in A2

4 and tends to (0,M,L).
If M > b/a, M < N < L and (c/d)(M − b/a) < (e/f)(L − N), then

there exists a neighbourhood U of ((c/d)(M − b/a), b/a) in (x, y) coordinates
such that if (x0, y0) ∈ U , then x(t) < (e/f)(L − N) and the solution stays
in A2

4 and tends to(
c

d

(
M − b

a

)
,
b

a
,
beL+ agN − bcf

d (M − b/a)
be+ ag

)
.

Proof. It is similar to those presented above.

3. Numerical solutions and discussion. We now present some re-
sults of numerical simulations for systems (2.1) and (2.2). In Fig. 1 we see
a typical example of solution and phase space portrait for (2.1) in the case
described by Lemma 1 and analysed in the previous section. In this case,
there is lack of oxygen, z < K, heterotrophs become extinct, autotrophs
stabilise on their carrying capacity M and oxygen stabilises on its maximal
level L.
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Fig. 1. Example of solution and phase space portrait for (2.1) in the first case of Lemma 1
with z0 < K and L ≤ K (parameter values: a = 5, b = c = 2, d = e = 1, f = 3, K = 15,
M = 5 and L = 10)
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Fig. 2. Example of solution and phase space portrait for (2.1) in the case of Lemma 3
with M > b/a and L > K + M + cf

de
(M − b/a), c/d > e/f and z0 > y0 + K (parameter

values: a = 5.2, b = 5, c = 0.6, d = e = 2, f = 8, K = 3, M = 3.5 and L = 10)

In Fig. 2 we see a typical example of solution and phase space portrait
for (2.1) in the case described by Lemma 3. In this case, there is enough
oxygen and typically, a positive steady state exists. The solutions stay in the
initial subregion of the phase space and stabilise on the level of the positive
steady state. This case can be interpreted as “normal” condition, the most
common in nature in our opinion.

In Fig. 3 we present an example of solution and phase space portrait
for (2.2) in the case described by Lemma 8. Similarly to Fig. 2 we observe
stabilisation on the level of the positive steady state.

In Fig. 4 we present an example of solution that changes subregions of
the phase space. We start from the subregion A1

2 with M > b/a. Initially,
the solution in variables x and y behaves as in the predator-prey system
with carrying capacity for preys (cf. [5] or [3]) until z(t) < K when the
solution switches to the subregion A1

1 where x→ 0, y →M , z → L.
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Fig. 3. Example of solution and phase space portrait for (2.2), the second case of Lemma 8
with M > b/a, M < N < L and (c/d)(M − b/a) < (e/f)(L − N) (parameter values:
a = 5.2, b = 5, c = 0.15, d = 2, e = 1, f = 8, g = 1, K = 3, M = 4, L = 8 and N = 5)
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Fig. 4. Example of solution and phase space portrait for (2.1) in the case when the solution
changes subregions of the phase space (parameter values: a = 15, b = 2, c = 2, d = 1,
e = 1, f = 3, k = 1.5, m = 1 and l = 1)

We have performed many simulations in which we have not observed
the behaviour different from those described above and shown in Figs. 1–4.
Typically, the solution to both models tends either to the positive steady
state or to the semi-trivial one, even if it does not stay in the same subregion
of the phase space for all time (see Fig. 4 where the solution passes from A1

2

to A1
1). If the maximal level of autotrophs (that is, their carrying capacity)

is small, M < b/a, then there is no positive steady state for either (2.1) or
(2.2), which leads to the extinction of heterotrophic organisms. If M > b/a,
then there is a positive steady state for both systems, and typically, it is
attractive. We interpret this case as the normal state which is observed in
nature. The models confirm the commonly accepted view that people need
to take care of green plants, especially trees in forests, which are necessary
for us to survive.

Finally, we stress once again that in our opinion the modifications of
the Dawidowicz and Zalasiński models proposed in [4] and in this paper are
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necessary. Without that modification, the level of oxygen can increase to
infinity in some cases, which is impossible in nature.

4. Appendix. In this appendix we present the proofs of the properties
of (1.2) similar to those proved in [4]. We mainly focus on the case of optimal
level of oxygen, that is, y < z < N , in Lemmas 9 and 10, but we also study
the case z < y and z < N in Lemma 11. The proofs of other properties are
similar.

Lemma 9. If b/a > M , e > c, d > f , then for

y0 < z0 < N − e

c
(M − y0)− x0

M

b− aM

(
ed

c
− f

)
< N

the solution to (1.2) stays in the subregion D2
1 = {(x, y, z) ∈ D : N > z > y}.

Moreover , (x, y, z)→ (0,M, zg) where

zg = z0 +
f

d
(M − y0) +

(
e− cf

d

)∞�
0

y(s)(M − y(s)) ds.

Proof. Consider the auxiliary variable u(t) = z(t) − y(t). Under the
assumptions of this lemma we have u0 > 0. Calculating u̇ = ż − ẏ one gets

u̇ = ey(M − y)− fxy− cy(M − y) + dxy = (d− f)xy+ (e− c)y(M − y) > 0,

under the assumed inequalities. Hence, u is increasing, which implies u(t)>0
for every t ≥ 0.

The solution to (1.2) stays in D2
1 only if the inequality z(t) < N is

satisfied. Using formula (1.3) one needs to estimate the integral
	∞
0 y(s)

· (M − y(s)) ds. From the first equation of (1.2) we have ẋ < (aM − b)x.
Hence, x(t) ≤ x0e−(b−aM)t and ẏ ≥ cy(t)(M−y(t))−dx0y(t)e−(b−aM)t. This
implies

cy(t)(M − y(t)) ≤ ẏ(t) + dx0y(t)e−(b−aM)t.

Therefore,
t�

0

y(s)(M − y(s)) ds ≤ 1
c

t�

0

ẏ(s) ds+
dx0

c

t�

0

y(s)e−(b−aM)s ds

<
M − y0

c
+

dx0M

c(b− aM)
.

Finally,

z(t) < z0 +
e

c
(M − y0) + x0

M

b− aM

(
ed

c
− f

)
< N for every t ≥ 0,

under the assumption of this lemma.
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The last part of the lemma is obvious if we know that the integral	∞
0 y(s)(M − y(s)) ds converges. But

	t
0 y(s)(M − y(s)) ds is increasing in

t and bounded above. Hence, it converges. This completes the proof.

Lemma 10. If b/a < M , x0 < (e/f)(M − y0), z0 < N , e > c and d > f ,
then (x, y)→ ((c/d)(M−b/a), b/a) and z is increasing such that the solution
to (1.2) leaves D2

1 (z > N at some time).

Proof. We know that the (x, y) coordinates of the solution tend to the
positive steady state of (1.2), which means y → b/a and x→ (c/d)(M−b/a).
As in the proof of Lemma 9, we easily show that z is increasing until z(t)<N .
We only need to show that it increases to∞, which means that the solution
leaves D2

1. For any ε > 0 and sufficiently large t, that is, for t > t, we have
b/a− ε < y(t) < b/a+ ε. Hence,

z(t) > z0 +
f

d

(
b

a
− ε− y0

)
+
(
e− cf

d

) t�

t̄

(
b

a
− ε
)(

M − b

a
− ε
)
ds

>
f

d

(
b

a
− ε− y0

)
+
(
e− cf

d

)(
b

a
− ε
)(

M − b

a
− ε
)

(t− t).

Taking ε = 1
2 min{b/a,M − b/a} > 0 one gets z(t) → ∞ as t → ∞. This

ends the proof.

Lemma 11. If M < N , ed < cf , f < d and y0 > (d/f)z0, then the
solution to (1.2) stays in the subregion D2

4 = {(x, y, z) ∈ D : y > z and
z < N}.

If z0 < y0, z0 < N and z0 + (e/c)(M − y0), then the solution leaves D2
4.

Proof. If the solution stays in D2
4, then x(t) can be expressed as a func-

tional of y, similarly to z(t), namely

x(t) =
(
x0 +

a

d
y0

)
e−bt − a

d
y(t) +

a

d

t�

0

y(s)(cM + b− y(s))eb(s−t) ds.

Therefore, if the solution stays in D2
4 and y(t) has a limit, then x(t) and z(t)

also have limits. Moreover, all derivatives ẋ(t), ẏ(t) and ż(t) have limits.
This implies x→ 0, y →M and z → z0 + (e/c)(M − y0).

Under the first list of assumptions we have N > M > y0 > (d/f)z0 > z0

and y(t) < M < N for every t > 0, obviously. Hence,

z(t) = z0 −
f

d
y0 +

f

d
y(t) +

ed− cf
d

t�

0

y(s)(M − y(s)) ds <
f

d
y(t) < y(t)

for t > 0. This implies that the solution stays in D2
4.

Under the second list of assumptions we have limt→∞ z(t) > b/a, and
therefore z(t) > b/a for sufficiently large t, that is, t > t. This implies
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ẋ(t) > 0 for large t. Hence, x(t) > x(t) for t > t and x(t) does not tend to 0.
Thus, the solution leaves D2

4.

Acknowledgements. The work of UF was partially supported by the
Polish Ministry of Science, grant No. 1P03A 028 30.

References
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