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COMPARISON OF SIX MODELS OF
ANTIANGIOGENIC THERAPY

Abstract. Six models of antiangiogenic therapy are compared and ana-
lyzed from control-theoretic point of view. All of them consist of a model of
tumor growth bounded by the capacity of a vascular network developed by
the tumor in the process of angiogenesis and different models of dynamics
of this network, and are based on the idea proposed by Hahnfeldt et al.
Moreover, we analyse optimal control problems resulting from their use in
treatment protocol design.

1. Introduction. Angiogenesis is a complex process which leads to the
formation of new vessels from existing ones and it is stimulated and con-
trolled by molecular factors called activators (stimulators) and inhibitors
(blockers) of angiogenesis. During progression of tumor these factors are re-
leased by tumor itself to develop its own vascular network which enables its
growth and in the next stage determines the possibility of cancer metastasis.
Since this network is necessary for tumor development, in the late sixties
of the last century a new anticancer therapy was proposed, targeted not
directly at the cancer cells but at the new born vascular network. This ther-
apy is known as antiangiogenic therapy and the idea is to reduce the tumor
volume by reducing its vasculature. It was first hypothesized by Folkman
(1971, 1972) more than thirty years ago. Folkman’s main suggestions are as
follows:

a) primary solid tumors go through a prolonged state of avascular growth
(almost quiescent) in which the maximum attainable size is 1-2 mm in
diameter, and the necessary oxygen and nutrients are supplied by passive
diffusion,
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b) these microscopic tumors can switch on angiogenesis by recruiting sur-
rounding mature host blood vessels to start sprouting new blood vessel
capillaries which grow and infiltrate the tumor mass, thus setting the
potential for metastatic spread,

c) the angiogenic switch is triggered by elaboration by tumor cells of a
growth factor (TAF),

d) blocking tumor angiogenesis factors or simply destroying newly formed
immature blood vessels may be used to affect tumor growth.

The most important obstacle against successful chemotherapy is drug resis-
tance acquired by cancer cells while the normal tissues retain sensitivity to
the drugs.

This negative feature of chemotherapy may be used as an advantage in
the antiangiogenic therapy which is directed towards a special part of nor-
mal tissues and only indirectly destroys tumor cells and that is why it has
been called by Kerbel (1997) a therapy resistant to drug resistance. Therapy
directed against tumor vasculature does not exploit tumor cell sensitivity,
relying instead on tumor suppression consequent to inhibition of associated
vasculature. For more than ten years Folkman’s ideas were not followed by
experimental or clinical investigations but now tumor angiogenesis belongs
to the most inspiring areas of cancer research. Kerbel (2000) presents ten sig-
nificant reasons for the explosive growth in tumor angiogenesis research and
development of antiangiogenic drugs (we follow the order of items proposed
by Kerbel):

1) The discovery of basic fibroblast growth factor as the first pro-angio-
genic molecule (Folkman and Klagsburn, 1987).

2) The discovery of vascular endothelial growth factor and its receptor
tyrosine kinases on activated endothelial cells (Klagsburn and Soker,
1993).

3) The discovery of angiopoietins and their tyrosine kinase receptors (Davis
and Yancopoulos, 1999).

4) The discovery of endogenous inhibitors of angiogenesis (Folkman, 1995).
5) The discovery of additional molecular markers in newly formed blood

vessels (Bischoff, 1995).
6) The development of quantitative assays for angiogenesis (Folkman and

Haudebschild, 1980).
7) Recognition of the prognostic significance of tumor angiogenesis (Wei-

dner, 1995).
8) Lack of acquired resistance to directly acting antiangiogenic drugs (Ker-

bel, 2000).
9) The discovery of the impact of angiogenesis on liquid hematologic ma-

lignancies (D’Amato et al., 1994).
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10) The discovery of the accidental antiangiogenic effects of various conven-
tional or new anticancer drugs (Denekamp, 1993).

The complexity of the process of vascularization as well as the way in which
inhibitors, stimulators and antiangiogenic drugs act results in complex mod-
els (see e.g. Mantzaris et al., 2004) applicable for simulation of the process
but less useful in synthesis or even analysis of therapy protocols. The excep-
tion is a class of models proposed by Hahnfeldt et al. (1999) who suggested
that the tumor growth with incorporated vascularization mechanism can be
described by a Gompertz type or logistic type equation with variable carry-
ing capacity which defines the dynamics of the vascular network. Roughly
speaking, the main idea of this class of models is to incorporate the spatial
aspects of the diffusion of factors that stimulate and inhibit angiogenesis
into a non-spatial two-compartmental model for cancer cells and vascular
endothelial cells. The models considered here belong to this class.

2. Models of cancer growth including vascularization and an-
tiangiogenic therapy. The simplest model of population kinetics for can-
cer tissues is given by Malthusian growth which assumes exponential re-
lationship between the size of the population and time. The dynamics is
described by the equation

(1) Ṅ = aN, N(0) = N0,

resulting in the following form of the solution:

(2) N = N0e
at, a = ln 2/PDT,

with N denoting the size of the population and a Malthusian parameter
defined by the inverse of the potential doubling time (PDT ). The unlimited
growth in this model can be avoided if we introduce a varying coefficient
a(t) as in the Gompertz model:

(3)
Ṅ = a(t)N, N(0) = N0,

ȧ = −βa, a(0) = α.

The solution has the following form:

(4) N = N0e
α/β(1−e−βt).

The growth is bounded by

(5) N∞ = N0e
α/β,

which is called the carrying capacity in population dynamics. The same
solution is obtained when we use the non-linear Gompertz equation in the
form

(6) Ṅ/N = −β lnN/N∞ ≈ 1/PDT.
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Hahnfeldt et al. (1999) proposed to treat the carrying capacity which con-
strains the tumor growth as a varying tumor volume sustainable by the
vessels and roughly proportional to the vessel volume:

(7)
N∞ = K,

Ṅ/N = −β lnN/K.

Although the equations (6) and (7) appear similar, the carrying capacity is
not constant in (7) but varies with changes of the volume of the vessels.

Similar behavior may be obtained if the Gompertz type growth is sub-
stituted by a logistic one (also called Pearl–Verhulst growth). Then we have

(8) Ṅ/N = β(1−N/K).

The dynamics of the growth of the volume K represented by its PDT de-
pends on the stimulators of angiogenesis (SF ), inhibitory factors secreted
by tumor cells (IF ) and natural mortality of the endothelial cells (MF ):

(9) PDTk = f(MF,SF, IF ).

In Hahnfeldt et al. (1999) it has been assumed that the inverse of PDT is
the sum of these three factors, i.e.

(10) 1/PDTk = MF + SF + IF.

The spontaneous loss of functional vasculature represented by MF (e.g.
through natural mortality of the endothelial cells) is supposed to be nega-
tive constant, the stimulatory capacity of the tumor upon inducible vascu-
lature represented by SF (e.g. through angiogenic factors like the vascular
endothelial factor) is found to grow at rate KbN c slower than the endoge-
nous inhibition of previously generated vasculature represented by IF (e.g.
through endothelial cell death or disaggregation) where

(11) b+ c ∼ 2/3.

This results from the assertion that tumor-driven inhibitors from all sites act
more systematically whereas tumor-derived stimulators act more locally to
the individual secreting tumor site. On the other hand, analyzing a diffusion-
consumption equation for the concentration of stimulator or inhibitor inside
and outside the tumor, Hahnfeldt et al. concluded that the inhibitor will
influence target endothelial cells in the tumor in a way that grows ultimately
as the area of the active surface between the tumor and the vascular network,
which in turn is proportional to the square of the tumor diameter. This
leads to the conclusion that IF is proportional to the tumor volume to the
power 2/3 since the volume is proportional to the cube of the diameter.
The expression for K suggested in Hahnfeldt et al. (1999) has therefore the
following form:

(12) K̇/K = γN/K − (λN2/3 + µ),
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γ, λ, µ being constant parameters representing the effect of stimulation, in-
hibition and natural mortality, respectively. The modification of this model
proposed in d’Onofrio and Gandolfi (1999) which also satisfies Hahnfeldt’s
suggestions given by (11) assumes that the effect of SF and MF on the
inverse of PDTK is constant while IF is proportional to the active surface
of the area of tumor being in contact with the vascular network (as in the
original Hahnfeldt model):

(13) K̇/K = γ − (λN2/3 + µ).

Combinations of tumor growth models (7), (8) with vascular network models
(12), (13) result in the following four nonlinear models of tumor angiogenesis:

• A (original Hahnfeldt model)

Ṅ/N = −β lnN/K, K̇/K = γN/K − (λN2/3 + µ).

• B (Hahnfeldt model with logistic growth)

Ṅ/N = β(1−N/K), K̇/K = γN/K − (λN2/3 + µ).

• C (d’Onofrio–Gandolfi model with Gompertz type growth)

Ṅ/N = −β lnN/K, K̇/K = γ − (λN2/3 + µ).

• D (d’Onofrio–Gandolfi model with logistic growth)

Ṅ/N = β(1−N/K), K̇/K = γ − (λN2/3 + µ).

Yet another simplified model was proposed by Ergun et al. (2003):

(14) K̇/K = γK−1/3 − λK1/3.

In this case the growth of the vascular network is independent of the tumor
size. Nevertheless to have a complete model of the tumor growth in the
vascular stage we should add one of the two previously proposed models of
growth (Gompertz or logistic type) and thus we are led to two additional
models:

• E (Ergun model with Gompertz type growth)

Ṅ/N = −β lnN/K, K̇/K = γK−1/3 − λK1/3,

and

• F (Ergun model with logistic growth)

Ṅ/N = β(1−N/K), K̇/K = γK−1/3 − λK1/3.

An interesting finding is that the systems A–D have the same nontrivial
equilibrium point (N∗,K∗):

(15) Ṅ/N = K̇/K = 0 ⇒ N∗ = K∗ = ((γ − µ)/λ)3/2.



338 A. Świerniak

The models are strongly nonlinear but by a logarithmic change of variables
and some scaling transformations we are able to simplify them and find their
asymptoptic properties using standard Lyapunov type analysis of stability
(local and global) following the line of reasoning presented by d’Onofrio and
Gandolfi (1999).

More precisely, by the transformation

(16)

x = lnN/N∗, y = lnK/K∗,
x∗ = y∗ = 0, τ = βt,

ϑ = (γ − µ)/β,
x′ = dx/dτ, y′ = dy/dτ,

we are led:
• for model C, to the following quasi-linear system:

(17) x′ = y − x, y′ = −ϑ(e2x/3 − 1),

or to

(18) z = y − x, x′ = z, z′ = −z − ϑ(e2x/3 − 1),

and for models A, B, D to slightly more complicated systems, namely:

• for model B,

(19) z = 1− ex−y, x′ = z, z′ = (z − 1)(z(1 + γ/β) + ϑ(e2x/3 − 1)),

• for model A,

(20) z = y − x, x′ = z, z′ = −z − γ

β
(1− e−z)− ϑ(e2x/3 − 1),

• for model D,

(21) z = 1− ex−y, x′ = z, z′ = (z − 1)(z + ϑ(e2x/3 − 1)).

For all models using the first method of Lyapunov (linearization method) we
find that the system is locally asymptotically stable in the neighbourhood of
the nontrivial equilibrium point (x∗ = 0, y∗ = 0) or equivalently (N∗,K∗).
Global stability can be proved by the second method of Lyapunov (see e.g.
La Salle and Lefschetz, 1961) using the Lyapunov function of Lurie type
representing the total energy of the system. For models A and C such a
function has the following form (see d’Onofrio and Gandolfi, 1999):

(22) V (x, z) = 0.5z2 + ϑ

x�

0

(e2ξ/3 − 1) dξ.

Since (e2x/3−1)x > 0 for all x 6= 0, the Lyapunov function is positive definite
and radial bounded.

Moreover, for model C, V ′ = −z2 ≤ 0, which in turn represents dissipa-
tion of the system. Since in the subspace z = 0 the equilibrium point (0, 0)
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is the only invariant set, the La Salle invariance theorem (La Salle and Lef-
schetz, 1961) implies that the equilibrium point is globally asymptotically
stable.

The same Lyapunov function used for model A yields

V ′ = −z2 − γ

β
z(1− e−z) ≤ 0,

and the same argument as before leads to the conclusion about global asymp-
totic stability of the equilibrium point.

For models B and D similar results may be obtained using the Lyapunov
function

(23) V = −z − ln(1− z) + ϑ

x�

0

(e2ξ/3 − 1) dξ,

which once more represents the total energy of the system. The definition of
this function could be obtained from the transformed form of the differential
equations for the variable z in these models. More precisely, we can write
the last equation of (19) in the form

z′/(z − 1) = (z(1 + γ/β) + ϑ(e2x/3 − 1)),

and the last equation of (21) in the form

z′/(z − 1) = (z + ϑ(e2x/3 − 1)).

Since always z < 1, the Lyapunov function is always positive definite and
for both cases V ′ = −dz2 ≤ 0, with d = 1 + γ/β or d = 1 respectively.
Following the line of reasoning used for models A and C we are led to the
same conclusions. In the case of Ergun’s model, analysis of stability becomes
trivial because of the independence of the vascular network growth from the
tumor growth.

Application of antiangiogenic therapy can be incorporated into the model
by a factor increasing multiplicatively the mortal loss rate of the vessels. For
example in the case of the model (13) this leads to the following equation:

(24) K̇/K = γ − (λN2/3 + µ+ ηu(t)),

where u(t) denotes the dose of the agent scaled to its effect on vascular net-
work and η is a constant parameter. For the constant dose U , the equilibrium
points take the form

(25) N∗ = K∗ = ((γ − µ− ηU)/λ)3/2,

which according to the conditions of stability given by d’Onofrio and Gan-
dolfi (1999) leads to the following conclusion:

(26) U = (γ − µ)/η ⇒ K∗ → 0.
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In other words, the vascular network and in turn the tumor can be erad-
icated. This conclusion is crucial for the philosophy of the entire analysis.
It is enough to ensure that the population of endothelial cells responsible
for angiogenesis behaves in the required way because the size of the tumor
population in some sense tracks the same transients. D’Onofrio and Gan-
dolfi proved that the same effect might be reached for periodic therapy with
mean value satisfying condition (26) or greater. Nevertheless this condition
is generally only necessary and not sufficient since for model A eradication
of the tumor depends on the shape of pulses in the periodic protocol. For the
other models this condition is both necessary and sufficient. For example,
in the case of model C one of the following conditions should be satisfied:

1) If U > (γ − µ)/η then K(t) ≤ K(0)e(γ−µ−ηU)te−F (t) → 0 for t→∞;
2) If U = (γ − µ)/η then K̇ = (−ηf − λN2/3)K, which implies K(t) ≤

K(0)e−λ
	t
0N

2/3(τ)dτe−F (t) → 0 for t→∞,

for periodic therapy with average value and variability defined as

(27) U =
1
T

T�

0

u(t) dt, f(t) = u(t)− U, F (t) = η

t�

0

f(τ) dτ.

Ergun’s model in the case when therapy is included has the form

(28) K̇/K = γK−1/3 − ηu− λK1/3,

or after the logarithmic transformation of variable K:

ẏ = γe−y/3 − λey/3 − ηu.
Although during simulation all six models lead to a similar evolution while
uncontrolled, their behaviour in the presence of control, modelling different
therapeutic protocols, may differ significantly. Moreover, clinical interpreta-
tion of the results is also sensitive to the choice of the model.

3. Optimization of therapy in a finite horizon. Constant or pe-
riodic therapies which ensure tumor eradication discussed previously have
an important drawback. They should be applied for a long therapy horizon.
Shortage in antiangiogenic drugs, their costs, and side effects cause that
the parameters of treatment protocols and the cumulated dose of the drugs
should be bounded. A reasonable solution is to formulate an optimal con-
trol problem for the system given by the proposed model and the control
objective which adequately represents the primary goal of the therapy. In
Ergun et al. (2003) and more rigorously in Ledzewicz and Schättler (2005)
the optimal control problem for the Ergun model with Gompertz type tu-
mor growth (our model E) and a free terminal time is solved. The authors
found that an optimal strategy consists of bang-bang (i.e. with the control
switching between maximal and minimal values) and singular intervals (with
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intermediate values of the control variable, see e.g. Krener, 1977). Świerniak
et al. (2006a) have proposed, for model C, to optimize the protocol in a fixed
finite time of therapy with the primary goal of finding the control that max-
imizes TCP (tumor cure probability). This approach leads to the following
equivalent form of an optimal control problem:

(29)
J = N(Tk),

Tk�

0

u(t) dt ≤ Ξ,

0 ≤ u(t) ≤ Um,

with known constraining constant parameters Um, Ξ. Due to isoperimetric
form of the optimization problem it could be transformed into a problem
with an integral part of the performance index instead of an integral con-
straint on the control. Moreover, we may use the transformed variables x
and y (or x and z) to formulate the modified performance criterion in the
form

(30)
I = gx(Tf ) + hy(Tf ) + r

Tf�

0

u(τ) dτ,

0 ≤ u ≤ 1, Tf = Tkβ,

where the state variables are defined by the equations depending on the
model chosen from among the six models mentioned. Although J and I
are not the same indices and the respective optimization problems are not
completely equivalent, the qualitative behaviour of their solutions should be
given by the same optimal strategies because of the monotonic transforma-
tions of variables. For model C we have

x′ = y − x,
y′ = −ϑ(e2x/3 − 1) + σu,(31)
σ = −η/β.

The weight coefficients h, g, r may change in broad ranges depending on
the type of therapy used and the strength of the integral constraint. The
additional term related to the volume of vascular network may be regarded
as yet another constraint imposed on the possible dynamics of the system.
On the other hand, by the choice of the weighting coefficients we obtain
a new possibility of analysis of the mutual dependence between the tumor
growth and the volume of the vascular network. Thus it is reasonable to
provide an extensive analysis of their effect on the solution of the optimal
control problem. Necessary conditions of optimality can be found using the
Pontryagin maximum principle (Pontryagin et al., 1964) for Hamiltonian



342 A. Świerniak

and co-state variables p, q defined as

H = ru+ σqu+ p(y − x)− qϑ(e2x/3 − 1),(32)

p′ = p+ (2/3)qϑe2x/3, p(Tf ) = g,

q′ = −p, q(Tf ) = h.
(33)

This leads to the following switching function and bang-bang control law:

(34) q = −r/σ > 0, u =
{

1
0
⇐ minH.

Rewriting the co-state equation in the form of a scalar second order ODE
we have

(35) q(Tf ) = h.

An important finding is that singular arcs are not feasible since there are no
finite intervals of constant solutions to the co-state equation. This leads to
the conclusion that intermediate doses of the drug are not optimal and that
the optimal protocol contains only switches between maximal dose and no
drug intervals. This allows one to find recurrently the solution of the TPBVP
composed of the state and co-state equations with bang-bang control found
from the switching condition by using for example the shooting algorithm.

Ledzewicz and Schättler (2006) solved the optimal control problem for
the Hahnfeldt original model (model A) in a similar way to the Ergun model
(model E) and once more proved that in the optimal strategy some parts
are singular. We are able to prove that a reasonable reformulation of the op-
timization problem for of from the six models enables avoidance of singular
arcs and leads to pure bang-bang solutions. The only exception is model A
where the optimal solution may contain a singular control as a middle part
of the control strategy.

In the case of the Hahnfeldt model with logistic type growth of the tumor
(model B) we may define

(36) z = lnKNθ, θ = γ/β, x = lnN, ε = λ/β.

This leads to the following state equations:

(37) x′ = 1− e(θ+1)x−z, z′ = ϑ− εe2x/3 + σu.

For simplicity we assume h = 0 in the performance index. Thus the Hamil-
tonian has the form

H = ru+ σqu+ p(1− e(θ+1)x−z) + q(ϑ− εe2x/3)

and co-state variables are given by

(38)
p′ = p(θ + 1)e(θ+1)x−z + (2/3)qεe2x/3, p(Tf ) = g,

q′ = −pe(θ+1)x−z, q(Tf ) = 0.
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Thus the necessary conditions of optimality have the form identical to (34).
Once more the singular arcs are not feasible since there are no finite intervals
of constant solutions to the co-state equation. For the d’Onofrio–Gandolfi
model with the logistic type tumor growth (model D) the analysis is similar.
We use the state equations

(39) x′ = 1− ex−y, y′ = ϑ(e2x/3 − 1) + σu,

and the performance index (30). This leads to the following Hamiltonian
and co-state equations:

(40)

H = ru+ σqu+ p(1− ex−y) + qϑ(e2x/3 − 1),

p′ = pex−y + (2/3)qϑe2x/3, p(Tf ) = g,

q′ = −pex−y, q(Tf ) = h.

Once more the optimal control strategy has the form (34) and singular arcs
are not present.

For the Ergun model the solution is even simpler if the optimization
problem is reformulated in the following way. We choose g = 0 returning to
the primary goal of the antiangiogenic therapy, i.e. eradication of the vascu-
lar network created in the process of tumor angiogenesis. Since the equation
defining y is independent of x we are led to a first order optimization prob-
lem which has no singular solutions. The solution in this case is independent
of the tumor growth and therefore it is the same for models E and F.

The problem is defined by the state equation

(41) ẏ = γe−y/3 − λey/3 − ηu,
and the Hamiltonian and the co-state variable are given by

(42)
H = p(γe−y/3 − λey/3) + (r − ηp)u,

ṗ =
1
3
p(γe−y/3 + λey/3), p(Tk) = h.

Thid leads to the following form of the bang-bang candidate for optimality:

(43) p = r/η > 0, u =
{

1
0
⇐ minH,

and singular controls cannot be optimal for the same reasons as in the
previously analyzed problems. The only model in which singular arcs as
parts of optimal trajectory could not be eliminated is the standard Hahnfeldt
model with Gompertz type tumor growth (model A), as proved rigorously
by Ledzewicz and Schättler (2007). But from this point of view it is an
exception rather than a rule. If we recall that this model has also different
properties from the others in the case of periodic therapy (dependence of
its asymptotic behaviour on the shape of pulses) we may try to find what is
behind this specificity of this model.
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4. Discussion and concluding remarks. In this study we have com-
pared different modifications of the Hahnfeldt model of vascular tumor
growth and their application to rationales of antiangiogenic therapy. We
consider advantages and drawbacks of six such models in the context of
their possible application and difficulties of mathematical analysis. We also
discuss results of some other authors and discuss possible approaches to op-
timization problems arising from therapy protocol design. All considerations
are however based on the assumption that the complex phenomena leading
to vessel collapse and regression could be described by such simplified mod-
els. It should be interesting to check how robust they are by testing them on
the much more complex models recently published (e.g. Bartha and Rieger,
2006). Tumor angiogenesis belongs to the most inspiring areas of cancer
research. Nevertheless still the most important constrain in efficient antian-
giogenic therapy is the accessibility of antiangiogenic agents. This is why
the rational anticancer therapy should contain a combination of antiangio-
genic therapy with more standard modalities of anticancer treatment, for
example radiotherapy. We discuss a model of such combined therapy in
Świerniak (2007) for the d’Onofrio–Gandolfi model.

The effect of radiotherapy should be included in both compartments
of the model because radiation destroys both cancer and normal tissues.
The classical LQ model (e.g. Thames and Hendry, 1987) assumes that the
damage to DNA, which is the principal target of the radiation, has two
components: a linear one that is a consequence of a simultaneous break in
both DNA strands caused by a single radiation particle, and a quadratic one
that is the result of two separate but adjacent breaks in different strands
caused by two different particles. In our model we omit this second term
and introduce only linear (in dose) effect into both equations. This leads to
the following model:

Ṅ/N = −β lnN/K − ψv,(44)

K̇/K = γ − (λN2/3 + µ)− ηu− ξv,(45)

where v(t) denotes the dose of radiotherapy scaled to its effect on tumor
and normal tissues, and ξ and ψ are constant scaling parameters. Of course
the additional radiotherapy supports the effect of antiangiogenic therapy.
Moreover the effect of tumor eradication may be achieved in an easier and
faster way although the theoretical results based on the theory of stability
still have asymptotic form.

In Ergun et al. (2003) the optimal control problem for Ergun’s model
was presented for a free terminal time.

In our study we have proposed the same optimization scheme as dis-
cussed above for the antiangiogenic therapy. This leads to the following
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equivalent form of an optimal control problem:

(46)
J = N(Tk),

Tk�

0

u(t) dt ≤ Ξ,
Tk�

0

v(t) dt ≤ Φ,

0 ≤ u(t) ≤ Um, 0 ≤ v(t) ≤ Vm,
with known constraining constant parameters: Um, Vm, Ξ, Φ. The integral
constraints imposed on the control variables, although similar in form, have
a different meaning. For radiotherapy the constraint measures the feasible
cumulated negative effect of the radiation while the one for antiangiogenic
agent represents mostly the shortage in the availability of the agent and
only in part the possible side effects of the drugs (not sufficiently recognized
yet). Due to isoperimetric form of the problem it could be transformed into
the problem with an integral part of the performance index instead of an
integral constraint on the control:

(47) J = N(Tk)+r
Tk�

0

u(t) dt+s
Tk�

0

v(t) dt, 0 ≤ u ≤ Um, 0 ≤ v ≤ Vm.

This problem in turn can be approximated by a quasilinear problem in
logarithmic variables as discussed in Section 3. Once more singular arcs for
antiangiogenic therapy are not feasible since there are no finite intervals of
constant solutions to the adjoint equation (the solution is the same as the
one discussed in Section 3). On the other hand, singular arcs for radiotherapy
do not satisfy the Legendre–Clebsch condition.

More precisely, for the state equations in the form

(48) x′ = y − x− υv, y′ = ϑ(1− e2x/3) + σu+ ζv,

and performance index

(49) I = gx(Tf ) + hy(Tf ) + r

Tf�

0

u(τ) dτ + s

Tf�

0

v(τ) dτ

(where ζ = −ξ/β and υ = ψ/β), we have the following co-state equations:

(50)
p′ = p+

2
3
qϑe2x/3, p(Tf ) = g,

q′ = −p, q(Tf ) = h,

switching functions fs and bang-bang candidates for optimality:

q = −r/σ, u =
{

1
0
⇐ minH,(51)

p = s/v + qζ/v, v =
{

1
0
⇐ minH.(52)
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Thus (51) is the same as (34), leading to the same conclusions about opti-
mal antiangiogenic strategy while for (52) we can use the Legendre–Clebsch
necessary conditions of optimality for singular control. In this case the order
of singularity is k = 1 and the Legendre–Clebsch condition has the form

(53) (−1)k
∂

∂v

d2k

dt2k
fs ≥ 0,

but:

(54)
∂

∂u

d2

dt2
fs =

4
9
qv2βϑe2x/3 > 0,

implying that the necessary condition for optimality of singular control is
violated.

This leads to the conclusion that intermediate doses of the drug and ra-
diation are not optimal and that the optimal protocol contains only switches
between maximal dose and resting intervals.

Yet another possibility, even more reasonable from the oncologic point
of view, is to combine chemotherapy and antiangiogenic therapy. The first
attempt in analysis and optimization of the model of such combined therapy
was presented in Świerniak (2008). In this case however the two-compart-
mental model seems to be inadequate. A realistic model should take into
account drug resistance of cancer population treated by chemo-toxic agents
and phase dependence of the drugs (see e.g. Kimmel and Świerniak, 2006).
The simplest model which takes into account emergence of drug resistance in
tumor chemotherapy and parallel treatment by antiangiogenic agents may be
defined in the following form which combines probably the simplest model of
drug resistance (Ledzewicz et al., 2004) with one of the previously discussed
models of antiangiogenic therapy:

(55)

Ṡ = −aS + (1− v)(2− q)aS + rcR,

Ṙ = −cR+ (2− r)cR(1−R/K) + (1− v)qS,

K̇/K = γ − (λN2/3 + µ)− ηu− ξv,
where S and R (S + R = N) denote the average number of tumor cells
in sensitive and resistant compartments with growth parameters a and c
respectively, q and r denote, respectively, the probability of mutation from
sensitive to resistant state and the one for the back mutation, and the other
parameters have the same meaning as in the previously analysed models.
Although the class of models and optimization problems looks very similar to
the ones analysed previously, we are led to a third order system of differential
equations and therefore synthesis of the optimal control law is much more
difficult. Therefore analysis of this problem will be the subject of our further
studies. It is difficult to predict if in this case singular arcs will be present
and feasible or only bang-bang controls are optimal.
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