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AGATA BORATYNSKA (Warszawa)

TWO-POINT PRIORS AND MINIMAX ESTIMATION
OF A BOUNDED PARAMETER UNDER CONVEX LOSS

Abstract. The problem of minimax estimation of a parameter § when 6
is restricted to a finite interval [0y, 6y + m] is studied. The case of a convex
loss function is considered. Sufficient conditions for existence of a minimax
estimator which is a Bayes estimator with respect to a prior concentrated
in two points #y and 8y + m are obtained. An example is presented.

1. Introduction. The problem of minimax estimation of a bounded real
parameter 6 has been considered in many particular models. The square loss
function and normal mean were considered by Casella and Strawderman [3],
the case of the Linex loss function and normal mean was treated by Bischoff,
Fieger and Wulfert [2], the Linex loss and Poisson model by Wan, Zou and
Lee [10], the scale invariant squared loss and Poisson model by Johnstone
and MacGibbon [8]. The binomial model was considered in Marchand and
MacGibbon [9].

There are also many papers which consider general distributions, namely:
DasGupta [4] (square loss function and multiparameter families), Eichen-
auer-Hermann and Fieger [6] (scale parameter family), Eichenauer-Hermann
and Ickstadt [7] (Lp-loss and location parameter family), Bischoff [1] (L,-
loss and scale parameter family), van Eeden and Zidek [5] (bounded scale
parameter and scale-invariant squared error loss). In several of the above
mentioned papers the minimax estimator obtained is a Bayes estimator with
respect to a prior concentrated in two points.

We show that suitable two-point priors on the endpoints of a sufficiently
small interval parameter space are least favourable and that the correspond-
ing Bayes estimators are minimax for many convex losses under general
conditions on density functions. The Linex loss, square loss, scale invariant
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squared loss are special cases, and many location parameter families and
scale parameter families satisfy our conditions for densities. Our result is a
generalization of some results obtained for particular loss functions (see [8],
[9]) and it is a generalization of DasGupta’s result [4] to the case of an asym-
metric loss and one-parameter families. We use the convexity technique. A
similar method has been used to find minimax estimators for various special
distributions by many authors. See references [2], [5] and [10] for examples.

Let X denote a sample space and X the observed random variable. Let
{Py : 0 € © = [6p,00 + m]}, where 0y and 6y + m are fixed real numbers,
m > 0, be a family of probability measures of X with densities f(-,6) with
respect to a fixed measure p on the space X. Let L(0,a) be a loss if an
estimate a is chosen when in fact 6 is the true value of the parameter. Let
6 : X — O be an estimator, and

R(0,0) = S L(0,6(x)) f(z,0) p(dx)
X

the risk function.

We will use the following general result (see van Eeden and Zidek [5]).

THEOREM 1. Suppose

(1) 0p is a Bayes rule with respect to a prior distribution II such that
1I{60} + {0 + m} = 1;

(2) R(bo,6B) = R(6o +m,0p);

(3) the function 6 — R(6,0p) is convex on 6.

Then 6 is a minimaz rule and II is a least favourable distribution. If 0 is
the unique Bayes rule, then dp is the unique minimazx rule. m

We now list our assumptions about the loss function:
L1. L(6,a) = h(c(0)(0 — a)).
L2. The function h: R — [0, 00) is of class C3.
L3. h(0)=0.
L4. HW(x)<0iff x <0; h'(x) > 0iff x > 0; h”(x) > 0 for all x.
L5. The function c: [fy,00) — (0, 00) is of class C2.
Our assumptions about the density function f(z,0) are:

F1. f(x,00) + f(x,00 +m) # 0 for all x € X.

F2. Py{x: f(z,00)f(z,00+m) >0} >0 for 6 =6y and § = by +m.

F3. The derivatives %f(a:, ) and g—;f(x, 6) exist for every 6 € [0, 6p+m]
and almost all x € X.

F4. There exist p-integrable functions g;(z), ¢ = 0,1, 2, such that

2
0l < mlo). |5iwo)| a@), |50 <nw

for all 6 € [0y, 0y + m] and almost all z € X.
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Let
A=A{z: f(x,00)f(x,00 +m) > 0},

Ao ={z: f(x,00) =0 A f(z,00 +m) > 0},

Ay ={z: f(z,60) > 0N f(z,0p +m) = 0}.
Let ¢y and ¢, denote c¢(fy) and c(6y + m), respectively. We will suppress
6 wherever possible and write ¢ instead of ¢(6), ¢’ instead of de(0)/d6, ¢’
instead of d?c(6)/d6>.

Let I, 8 € [0,1], be a prior such that
II5(00) = B, (6o +m)=1-p.
Let %™ be the Bayes estimator if the prior is IT5. Note that %™ (z) = p+m
if f(x,00) = 0, and 6%™(x) = @y if f(x,0y +m) = 0, when g € (0,1). If
B = 0 and f(x,00 + m) = 0 then we put §°™(z) = 6, and if 8 = 1
and f(z,0p) = 0 then we put 6“™(z) = 6y + m. The existence of §%™
for x satisfying f(z,00)f(x,00 + m) # 0 follows from the properties of the
function h. The estimator §%™ is a solution of the equation
Qﬁ,m(é) =0,
where
08,m(0) = —col(co(00—0))Bf (z,00) —cmh'(cm (00 +m—0))(1—PB) f (x,00+m)
is an increasing function of § and
08.m(00) = —cmh/ (com) (1 — B) f(x, 00 +m) <0,
08.m(00 +m) = —coh’(—com)Bf(x,0) > 0.

From now on we suppress x wherever possible and write ¢ instead of §(z).

2. Main result

THEOREM 2. There exists My > 0 such that for every m € (0, My) there
exists 3* € [0,1] such that the Bayes estimator 6°™ for a prior I« is the
minimaz estimator of 0 under the loss function L(0,a) = h(c(6)(0 — a)).
The value B* satisfies the equation

R(09,6"™) = R(0p + m,s°"™).
The two-point prior Ilg« is least favourable.
We have divided the proof into a sequence of lemmas.
LEMMA 1. For all x € X the estimator §°™ satisfies:

() if f(x,00)f(x,00+m) #0 then 6™ (x) = Oy + m and §Y™ = fp;
(ii) 6%™ is a differentiable function of 3 € (0,1);
(iii) 6%™ is a strictly decreasing function of 3 for every m > 0 and x
such that f(x,00)f(x,6p +m) # 0.
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Proof. If 3 = 0 then IIg(6y +m) =1, if 3 = 1 then II3(6y) = 1, which
proves (i). The estimator §%™ satisfies

coh/ (co(8o—30%"™)Bf (z,00) +cmh’ (cm(Bo+m—32"))(1—B) f(x, 0p+m) = 0.

Differentiating in § we obtain

%6B’m(x):
coh’(co(60 —8°™)) f (,60) — el (o (B0 +m = 67™)) f (2,00 +m)
cgh’(co(Bo —0%™)) B f (2,00) +cZ 1" (cm (00 +m —67™)) (1= 3) f (2,00 +m)
The denominator is greater than 0 for all 8 € (0,1), x and m > 0. If
f(z,00)f(x,00 +m) # 0 then for 5 € (0,1),
oM e (y,00+m), h (8 —67™) <0, K(B+m—5"")>0,

which proves (iii). =

LEMMA 2. The risk function R(0,0%™) is a continuous function of (3
and

R(0,8%™) = h(—com) Py, (A), R(6p +m, ™) =0
R(6y,0%™) =0, R0 +m,6"™) = h(cnm) Paym(A).
Proof. We have
R(9,6%™) = \ h(c(0 = 67™)) f (x,0) p(dx)
A
+ h(e(@ —0g —m))Py(Ap) + h(c(0 — 6y))Pyp( A1)
and %™ is a continuous function of 3 and
Vo 6y < 6%™(x) < 6y + m.
Thus from the Lebesgue dominated convergence theorem we obtain the con-
tinuity of R.
For 8 = 0 we obtain
R(9,6%™) = h(c(0 — 6o — m))(Po(A) + Py(Ao)) + h(c(0 — 0)) Py(A1).
For 8 = 1 we obtain
R(6,6"™) = h(c(6 — 60))(Py(A) + Pp(Ar)) + h(c(8 — 6o — m)) Py(Ao). w

LEMMA 3. For every m > 0 there exists a unique $*(m) € (0,1) such
that
R(0y,0m) = R(0p + m,dy,), where &y = 68 (m)m
Proof. Let F,,(3) = R(6p,0%™) — R(fg + m,6%™). Then F,, is a con-
tinuous function of # and F,,(0) = h(—com)Py,(A) > 0 and F,,(1) =
—h(cmm)Pgy+m(A) < 0.
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Both R(fy,6%™) and —R(fy + m,§?™) are decreasing functions of f3.
To show this for R(6y,6%™) (the proof for R(6y + m,d%™) is similar) take
B2 > (1 and f1, B2 € (0,1). From Lemma 1 and property L4 for = satisfying
f(z,00)f(x,00 +m) # 0 we have

h(co(Bo — 67™)) < h(co(Bo — 67™)).
Now assumption F2 gives
R(g,8%™) < R(fg,6°™).
Hence F), is decreasing as a sum of decreasing functions, and thus £*(m) is
unique. =

Let 8,,(z) = 67" (™)™ () for m > 0, and do(z) = 6p.

LEMMA 4. The function 6., is continuous in m for m > 0.

Proof (van Eeden and Zidek [5]). It is enough to show that 5* : [0, c0] —

[0,1] is continuous (see Lemma 1). Lemma 3 implies that 5* is a unique
solution of the equation

Fn(B8) = R(6y,6%™) — R(6y + m, 6%™) = 0.
The function F for fixed /3 is continuous in m, because 6*™(z) is continuous
in m and §%™ (z) is uniformly bounded as a function of 2 in a neighbourhood

of mg for every mg > 0.
Take € > 0. Let 81 and B2 be numbers such that

0< B <B(m)<Ba<1, |B1—pel<e
Then
En(B1) > Fn(6°(m)) = 0> Fin(B2)
and there exists B > 0 such that
VO<b<B |Fns(B1) = Fu(61)| < 5Fn(Br),
VO <b< B, [Fuws(62) = Fu(B2)| < glFm(B2)l.
Hence
Ferb(ﬁQ) <0< Ferb(/Bl)a
thus 81 < *(m +b) < B2 and
|8 (m) — B*(m+b)| <e. =
LEMMA 5. For every m>0 and 6 >0q the second derivative 59—922]%(0, Om,)

exists and is a continuous function of m uniformly in 0 € [0y, 0y + M] for
each M > 0.

Proof. We have
0

5910, 0m) = V[0 = 6m) + ] (c(0 = 6,)) f (x,6) u(da)
X
+

0
(66 = b)) 35.2.0) ).
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%RWJ =V 1W(e(0 = 6m)) [ (0 = 6m) + ¢ f (2, 0) p(dz)
i)g( (0 = ) + 2¢ 11 (c(6 — 6m)) f (2, 0) pu(dax)
+2 | 1(c(0-6 ))[C'(H—ém)—}—c]%f(az,@),u(dx)

X
# et s )5 1. 0) ().

The existence of the derivatives follows from the Lebesgue theorem and
assumptions F3, F4 and L2, L5. The continuity of £z R(H 0m) follows
from assumptions F3 and F4 and the continuity of §,,
It remains to prove that the continuity is uniform With respect to §. We
need to show that
0? 0?
062 gz 110 0m) = 062
if |/m —mq| < n and 0 € [0y, 6p + M]. We have
H(TTLl, m, 9)
< (0 + ¢ { [W(e(0 = 6my)) = B (e = 6))|go() u(di)
X
+2//(0¢ + )| § [1"(c(0 = 6my))omy — 1" (c(0 = 6m))Smlg0 (@) p(de)
X
2V IR (e(0 = 6my)) 0, — W (c(0 = 6,0))00]g0(x) p(da)
X
+21¢/| § 11/ (e(8 = 6n,))Smy — B (c(0 = 6m))Smln () p(d)
x
2006 + | § 11(e(0 = Gimy)) — B'(c(0 = )91 () p(de)
x
+ §11(e(0 = 6,)) = P(e(0 = 6,)) g2 (@) p(de)
X
+ 1" § 1P (e(8 = 6y ))Smy — ' (c(0 = 6m))Sml g0 () p(dx)
x
+10¢” +2¢| § [W(c(0 = 6my)) = 1 (e(0 = 6)|go() p(d),
X

Ve,m, M >03n>0 H(mi,m,0)=

= _R(0,5,)| <

and
[ (e(60 = 0m,)) — B (e(0 — 0m))| < I K" ()| 10my — 0mlC,
[ (e(0 = dmy)) — B (c(O — 0m))| < zis[gspﬁ] 1" ()] 16m, — 0ml|C,
[1(e(0 = 0m,)) — h(c(0 — dm))| < sup |1'(2)][0m, — 0m|C,
z€[-S,5]
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where S = supgeg, 9o+ ()M, C = supgeg, g,+11) €(0), h satisties L2,
c satisfies L5, 0 € [0p,0p + M], d,, is continuous and bounded for 0 €
[0, 600 + M] and gg, g1, g2 are integrable. m

LEMMA 6. There exists My such that for every m € (0, My),

2
%R(@,ém) >0 for every 0 € [0y, 00 + m].
Proof. We have
82 " 2
@R(Qa 6m) =h (O)C (00) >0,
m=0

and thus the assertion follows from Lemma 5. =

Now using Lemmas 3 and 6 and Theorem 1 we obtain the assertion of
Theorem 2.

3. Example. Let Xq,...,X,, be ii.d. random variables with the uni-
form distribution U(0, #), where 6 € [a,b] is unknown, a,b are known and
b>a>0.Let m=0b— a. We estimate 6 under the LINEX loss function

L(0,d) = exp(c(0 —d)) —c(0 —d) — 1,
where ¢ > 0 is fixed. Set X = (Xi,...,X,). If X = z then the Bayes
estimate 5/8’m(x) of 8 for a prior that puts mass 0 and 1 — 3 at a and b
respectively, is given by
1 | ecaﬂbn 4 BCb(l _ /B)an
—1In
§FmMx)=q ¢ Bb+ (1 B)an
b if 2., € [a,b),
where X,,., = max(Xy,..., X,).
The risk of the estimator §%™ is equal to

R(0,6%™) = (&9% —ch — 1n§ - 1> 2 (e — e +cb—1) (1 - “-),

if 0 < xpen < a,

om om
where
(3.1) B = 8"+ (1- B)a",
(3.2) A=e“B0" + ed’(l — B)a™.

We would like to find the value of M such that R(-,6”"™) is a convex function
of 0 € [a,a+m] if m < M and 8 € (0,1). We have

0 —na’ B B
Bymy cl _ _ cb—cb
_QHR(Q’ o7y it <e 1 In 7€ cb)

n n n
ca 6695 + 0" —a Cec&—cb —c
o A on ’

+
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82 m anecé B —cl cl—ci
57 (0, §hmy = — <Z —e b> (n(n+ 1) — 2cn + 20%) + 2ef=<
n(n+ 1)a” B

For every 6 > a and b > a > 0 the following inequalities hold:
B
A20? —2enf+n?+n=(ch —n)*+n>n, ZZe_Cb.

To prove convexity of R(-,6%™) if § > a it suffices to show that

B B
na'e <Z - e_Cb> —n(n+1)a" <ln 1 + cb> + a2t > 0,

Substituting (3.1) and (3.2) and dividing both sides by a™ we obtain

g(B,m) >0,
where
a8y + (1= B)a"]
- Bb" +ecm(1 — B)an
8" + (1 - Barle
B + e (1 — B)a™

—ne ™ 4 62a26—cm

g(B,m)

—n(n+1)ln

and m = b —a > 0. We have
_ nb"a"(e™ —1)
(ﬁa m) - [ﬁbn + ecm(l _ ﬂ)anp
n(n+ 1)0"a"™ (e — 1)
(66" + (1 — B)a][Bb™ + e“™(1 — B)a”]

_ —nb"a" (e — 1)[nBb" + (1 — B)a"((n + 1)e™ — 1)] <0
(66" + (1 — B)a][Bb™ + e“™(1 — B)a"]? ’

hence g is a decreasing function of § € (0,1). Therefore g(3,m) > 0 for

B e (0,1) iff

g(]., m) =n— n(n + l)cm + (02(12 _ n)efcm > 0.

O_ﬁg

The function ¢g(1,m) is a decreasing function of m > 0 and ¢(1,0) > 0 and
limy, 00 (1, m) = —00.

Hence, for a given a > 0, if m € (0, M), where M is a solution of the
equation

n—n(n+1)eM + (2a® —n)eM =0,

then R(0,0%™) is a convex function of @ € [a,a + m] for every 8 € (0,1).
It follows that the Bayes estimator 6%™ for g satisfying R(a,d?™) =
R(a +m,d%™) is a minimax estimator.

Table 1 presents the values of M for some n, a and c.
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Table 1. Values of M for some n, a and ¢

n=1 n=>5 n =10

(& C C

a |02 | 1 [ 3 02 [ 1 | 3 02 | 1 | 3

0.5 {| 0.049 | 0.190 | 0.262 || 0.002 | 0.010 | 0.027 || 0.0005 | 0.003 | 0.007
0.192 | 0.500 | 0.481 || 0.008 | 0.038 | 0.090 0.002 | 0.010 | 0.028
0.660 | 1.033 | 0.761 || 0.032 | 0.138 | 0.229 0.008 | 0.038 | 0.090
2.500 | 2.048 | 1.197 || 0.192 | 0.551 | 0.540 0.049 | 0.202 | 0.297
10 || 5.168 | 2.990 | 1.559 || 0.688 | 1.160 | 0.845 0.192 | 0.559 | 0.549

[10]
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