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WHAT IS THE BEST APPROXIMATION OF
RUIN PROBABILITY IN INFINITE TIME?

Abstract. We compare 12 different approximations of ruin probability in
infinite time studying typical light- and heavy-tailed claim size distributions,
namely exponential, mixture of exponentials, gamma, lognormal, Weibull,
loggamma, Pareto and Burr. We show that approximation based on the
Pollaczek—Khinchin formula gives most accurate results, in fact it can be
chosen as a reference method. We also introduce a promising modification
to the De Vylder approximation.

1. Introduction. In a very interesting paper Grandell (2000) demon-
strates that between possible simple approximations of ruin probabilities in
infinite time the most successful is the De Vylder approximation, which is
based on the idea to replace the risk process with the one with exponentially
distributed claims and ensuring that the first three moments coincide.

In Section 2 we recall exact results on the ruin probability in infinite time.
Next, in Section 3 we present 12 different approximations of ruin probability
in infinite time. We introduce a modification to the De Vylder approximation
by changing the exponential to the gamma distribution and fitting the first
three moments. This modification is promising and works in many cases
better than the original method. Second, in contrast to Grandell’s paper, we
drop the “simplicity” assumption and show in Section 4 that approximation
based on the Pollaczek—Khinchin formula gives the best results. Moreover, it
works for all possible distributions of claims and can be chosen as a reference
method (see Section 5).
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We start with the definition of a classical risk model (see e.g. Grandell,
1991, and Rolski et al., 1999). Let (£2, F,IP) be a probability space carrying
a Poisson process { N }+>¢ with intensity A, and a sequence {X},}7°, of inde-
pendent, positive, identically distributed random variables, with mean i and
variance o2. Furthermore, we assume that {X}} and {N;} are independent.
The classical risk process {R;}+>0 is given by

Ny
Rt :U—FCt—ZXi,
i=1
where c¢ is some positive constant and u is nonnegative.

This is the standard mathematical model for insurance risk. The initial
capital is u, the Poisson process NV; describes the number of claims in the
(0,¢] time interval, and claim severities are random, given by the sequence
{ Xk}, To cover its liability, the insurance company receives a premium
at a constant rate ¢, per unit time, where ¢ = (1 4+ #) A\ and 6 > 0 is often
called the relative safety loading. The loading has to be positive, otherwise
¢ would be less than Ap and thus with probability 1 the business risk would
become negative in infinite time.

For mathematical purposes, it is sometimes more convenient to work with
a claim surplus process {St}+>0 (see e.g. Asmussen, 2000), namely

Ny
Stzu—RtZZXZ‘—Ct.
=1

Now, we recall the definition of ruin probability, i.e. the probability that
the risk process drops below zero. The time to ruin is defined as
(1) 7(u) =inf{t > 0: R <0} =inf{t > 0: Sy > u}.
Let
M = sup {St}, Mr= sup {S}.
0<t<T

0<t<oo
DEFINITION 1.1. The ruin probability in finite time is given by
Y(u, T)=P(r(u) <T)=P(Mr > u)
and the ruin probability in infinite time is defined as

(2) Y(u) =P(1(u) < 00) =P(M > u).

In what follows we assume ¢ = 1, but this is not a restrictive assump-
tion. Following Asmussen (2000), let ¢ # 1 and define R, = Ryjc. Then
the relations between the ruin probabilities 1(u), 1(u, T') for the process Ry
and {E(u), {/;(u, T') for the process R; are given by the equations

V(w) =Pw),  Pu,T) = du,Te).
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In actuarial mathematics we distinguish between light- and heavy-tailed
distributions (see e.g. Embrechts et al., 1997). A distribution Fx () is said to
be light-tailed if there exist constants a,b > 0 such that Fx(z) = 1—Fx(z) <
ae™% or, equivalently, if there exists z > 0 such that Mx(z) < oo, where
Mx (z) is the moment generating function. A distribution F'x () is said to be
heavy-tailed if Fx (z) > ae~"* for all a,b > 0, or, equivalently, if Mx (z) = oo
for all z > 0.

In this paper we study claim size distributions as in Table 1.

Table 1. Claim size distributions

Light-tailed distributions

Name Parameters Pdf
exponential (3> 0 fx(z) = Be =, x>0
gamma a>0,6>0 fx(z) = Fﬁ(z)m"*le*m, x>0
Weibull c>0,7>1 fx(z) = era™ e x>0
mixed exp’s  (; > 0,31 ja; =1 fx(z) =" (a;Bie”Pi7) z>0
Heavy-tailed distributions
Name Parameters Pdf
Weibull c>0, 0<7<1 fx(z) = “lemeaT, x>0
lognormal LER >0 fx(z) = ﬁ ¢~ (os(2)—w)? /2” x>0
[e% a—1
loggamma a>0,8>0 fx(z)= %, z>1
Pareto a>0, v>0 fx(z) = 5 ()% x>0
Burr a>0,v>0,7>0 fx(x)= %, x>0

The adjustment coefficient (also called the Lundberg exponent) plays a
key role in calculating the ruin probability in the case of light-tailed claims.
Suppose v = sup, Mx(z) < co. A positive solution of the equation

(3) 1+ (1+0uR=Mx(R), R<n,

is called an adjustment coefficient.

An analytical solution to equation (3) exists only for few claim distribu-
tions. However, it is quite easy to obtain a numerical solution. The coefficient
R satisfies the inequality

2601

(4) R < Wa

where ;(2) = EX? (cf. Asmussen, 2000). Let D(z) = 1+ (1+80)uz — Mx(z).
Thus, the adjustment coefficient R > 0 satisfies the equation D(R) = 0. In
order to get a solution one may use the Newton—Raphson formula
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D(Rj)
(5) Rji1 = Rj — = =%,
=T Digy)
with the initial condition Ry = 201/, where D'(z) = (14 0)u — Mx(z)'.
Moreover, if it is possible to calculate the third raw moment 13, we can
obtain a sharper bound than (4) (see Panjer and Willmot, 1992):

126
< s
3 +1/9(u®)? + 2430

and use it as the initial condition in (5).

We note that most of the methods of estimating the ruin probability
discussed in the paper require only the existence of first two or three moments
of the claim size distribution, and some of them also the existence of the
moment generating function.

Now, consider the aggregate loss process S; with ¢ = 1. Put {(u) = Sr(u)—
u, where 7(u) is the time to ruin defined by (1). The following statement
presents a general formula for the ruin probability in infinite time (see e.g.
Asmussen, 2000). Assume that for some R > 0 the process {e/*5t},5¢ is a
martingale and S; — —oo a.s. on {7(u) = co}. Then

e

(6) lw) = E(ef®) | 7(u) < 00)

For the classical risk model the foregoing assumptions hold and R is an
adjustment coefficient.

R

—Ru

2. Exact ruin probabilities. Now, we are going to present a collection
of basic exact results on the ruin probability in infinite time.

No initial capital. When u = 0 it is easy to obtain the exact formula
1
v =175

For more details see e.g. Grandell (1991). Notice that the formula depends
only on 6, regardless of the claim size distribution.

Ezxponential claims. The explicit, easy-to-calculate formula exists for ex-
ponential claims, namely

(7) P(u) =
Gamma claims. It was shown by Grandell and Segerdahl (1971) that for
the gamma claim distribution with mean 1 and a < 1,
0(1 — R/a)e Fu af sin(am)
1+(1+0)R—(1+6)(1-R/w) T

1 —0Bu
e 1+0

(8) P(u) = 1,
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where

o0 :L,ae—(:c—‘rl)au dx

r= (S) [zo(1 + a(1 + 0)(z + 1)) — cos(an)]? + sin?(ar)’

The integral I has to be calculated numerically, but with some care near 0
this can be done precisely. We notice that the assumption on the mean is
no restriction since for claims X with arbitrary mean p we have ¢¥x(u) =
Yx/u(u/pn). As the gamma distribution is closed under scale changes we
obtain ¢ (a,8)(4) = YG(a,a)(Bu/a) and we can now calculate the exact ruin
probability via equation (8).

Mizture of n exponentials. For the claim size distribution being a mixture
of n exponentials with parameters 1 < --- < 3, and weights ay,...,an,
using the Laplace transform inversion, one may obtain an exact formula of

the form (Dufresne and Gerber, 1989)

9) Y(u) =) Cre ™,
k=1

where r1, ..., 7, are n positive solutions to the equation
1+0u=> ——,
=i

withO<r =R< 01 <ro< Pa < <rp < B
The coefficients C are given by the formula

1 >i-1 ﬁja—jrk s

Cy = . :
T Lt

In the case of mixture of two exponentials (n = 2) a simple analytic
result is given (Panjer and Willmot, 1992):

1
10 v = TramT
where

){(Q —ry)exp(—riu) + (r2 — o) exp(—rau)},

oot 0(B1+ Bo) — [{o+ 0(B1 + B2)}% — 46152001 + 0))/?
e 2(1+6) ’

0+ 0(B1+ Ba) + [{o+ 0(B1 + B2)}? — 451 820(1 + 0)]1/2
2(1+0)

T9 =

and
-1
alﬂl

Q:ﬁl(l_p)"i‘ﬂﬂ% P=—TG =
alﬁl ! +a262 !
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3. A survey of approximations. When the claim size distribution is
exponential (or closely related), simple analytic results for the ruin proba-
bility in infinite time are possible (see Section 2). For more general claim
amount distributions, e.g. heavy-tailed, the Laplace transform technique
does not work and one may need some estimates. In this section we present
12 different well known and not so well known approximations. We intro-
duce a promising modification to the De Vylder approximation called the
3-moment gamma De Vylder approximation. Numerical comparison of the
approximations is given in Section 4. We also note that new approximations
have recently been proposed in the literature (see e.g. Lima et al., 2002 and
Usébel, 2001), but as they work for specific classes of distributions and are
far from computational simplicity, we will not consider them.

3.1. Cramér-Lundberg approzimation. The following approximation
holds:

Ou
My (R) — p(1+60)

For the proof we refer to Grandell (1991). The classical Cramér—Lundberg
approximation yields quite accurate results; however, we must remember
that in order to use it an adjustment coefficient has to exist, therefore merely
the light-tailed distributions can be taken into consideration.

For exponential claims formula (11) yields the exact result.

(11) Yor(u) = Ce ™ where C =

3.2. Ezxponential approximation. This approximation was proposed and
derived by De Vylder (1996):

2ubu — () )
V(@) + (4/3)0up® )

3.3. Lundberg approximation. The following formula, called the Lundberg
approzimation, comes from Grandell (2000):

N 49,21,3)
_ B nop —2ubu/u?
vru) {” (9“ 2 ) 3(u(2))3]e |

3.4. Beekman—Bowers approrimation. The Beekman-Bowers approxi-
mation uses the following representation of the ruin probability:

V) =P(M >u) =P(M > 0)P(M > u|M > 0).

YE(u) = GXP<—1 -

The idea of the approximation is to replace the conditional probability
1—P(M > u|M > 0) with a gamma distribution function G(u) by fitting
the first two moments (see Grandell, 2000). This leads to

1

(12) YpB(u) = 150 (1-G(u)),
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where the parameters «, 5 of G are given by

1+ (4pu®/3(p®)? — 1)0 206

“= 1+6 ’ p= Iu(Q) + (4MN(3)/3N(2) — /1,(2))9.

The Beekman—Bowers approximation gives rather accurate results, in the
exponential case it becomes the exact formula. It can be used for distribu-
tions with finite first three moments, i.e. for example for exponential, gamma,
lognormal, truncated normal and Weibull distributions. For loggamma dis-
tribution we have to set 3 > 3, for Pareto distribution « > 3, and for Burr
distribution a7 > 3.

3.5. Rényi approximation. The Rényi approximation is based on a clas-
sical result about p-thinning, Rényi’s theorem (see Grandell, 2000). It may
also be derived from (12) when we replace the gamma distribution function
G with an exponential one, matching only the first moment. It could be re-
garded as a simplified version of the Beekman—Bowers approximation and is
given by 1

Yr(u) = 15

3.6. De Vylder approrimation. The idea of this approximation is to re-
place the risk process with the one with § = 6, A = A and exponential claims
with parameter (3, fitting the first three moments (De Vylder, 1978).

Let SO @ o o

6 - Wﬂ - W’ - 3H(2)2
Then De Vylder’s approximation is given by

o~ 2n0u/u) (1+0)

_ 1 B

vov(w) 1+0° '
Obviously, in the exponential case the method gives the exact result. For
other claim distributions in order to apply the approximation, similarly to
the Beekman—Bowers approximation, the first three moments have to exist.

3.7. 3-moment gamma De Vylder approximation. Here we introduce a
new approximation based on De Vylder’s idea to replace the risk process
with another one where the exact ruin probability is known. This time we
switch to gamma distributed claims by fitting the first three moments and
use the exact formula (8) for the ruin probability in the gamma case. How-
ever, the risk process with gamma claims is determined by four parameters
(X, 0,7, 71%), so now one additional equation is needed. Instead of the fourth
raw moment, we propose i = p. Since

ESy = —0Aut,
ES? = Mt + (0Aut)?,
ES; = At — 3P t)(0Aut) — (0Aut)?,
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and in the gamma case i(3) = %(Qﬂ@) —7i%), the parameters (X, 0,7, 7%)
must satisfy

_ _ _ 72
p=7, Ou=0xm @ =Xg®, @ =X (24— 2

o
and we get the solution

5o W) g _ O +p®p)
() + @ p)’ 2(u)2
__ o) _ #u® 4+ u®p)
- I
Finally, we obtain the approximation
0(1 — R/@)e PRu/@ @l sin(ar
Yamapv (u) = L=~ Rja)e — @m). I,
1+ (1+0)R—-(1+0)(1—- R/@) 7r
where
T 1%~ (@+1)Bu gy

§) A1 4+a(l+0)(z+1)) — cos(am)]? + sin?(ar)’
and @ = /(7 — %), 5 = 1/ (® - @°).

In the exponentlal and gamma case this method gives the exact result.
For other claim distributions in order to apply the approximation, similarly
to the De Vylder approximation, the first three moments have to exist. We
will show that the method is a slight improvement on the De Vylder approx-
imation which was said by Grandell (2000) to be the best among “simple”
approximations.

3.8. Heavy traffic approximation. The term “heavy traffic’ comes from
queuing theory. In risk theory it means that on the average the premiums ex-
ceed only slightly the expected claims. This implies that the safety loading 6
is positive and small. Asmussen (2000) suggests the following approximation:

20uu
'lpHT(’U,) = exp (—W> .

This method requires the existence of the first two moments of the claim
size distribution, so we assume: 3 > 2 for the loggamma case, o > 2 for the
Pareto case, and a7 > 2 for the Burr case.

3.9. Light traffic approrimation. As for heavy traffic, the term “light
traffic” comes from queuing theory, but has an obvious interpretation also in
risk theory, namely, on the average, the premiums are much larger than the
expected claims. This implies that the safety loading 6 is positive and large.
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We may obtain the following asymptotic formula:

1
(L+6)u

In risk theory heavy traffic is most often argued to be the typical case rather
than light traffic. However, light traffic is of some interest as a complement
to heavy traffic; it is also needed for the interpolation approximation to be
studied in the next subsection.

Yrr(u) = S Fx(z)dx.

u

3.10. Heavy-light traffic approzimation. The idea is to combine heavy
and light approximations:

0 0 1
Yurr(u) = H—ewLT<1 f0> + 07 0° Yy (u)

(see Asmussen, 2000). The particular feature of this approximation is that
it is exact for the exponential distribution and asymptotically correct both
in light and heavy traffic.

3.11. Heavy-tailed claims approzimation. First, let us introduce the class
S of subexponential distributions (see e.g. Embrechts et al., 1997):

S = {F : lim ??S) :2} = {F : wli%?if) —n,n> 2}.

This class contains lognormal and Weibull distributions (for 7 < 1).
Moreover, all distributions with a regularly varying tail (e.g. loggamma,
Pareto and Burr distributions) are subexponential. For subexponential distri-
butions we can formulate the following approximation of the ruin probability.
If ' € S, then the asymptotic formula for large w is given by

1 ¢ =
(13) Yure(u) = — (u — S F(x) da;)

O 5
(see Asmussen, 2000). This method can be used for Weibull, lognormal,
loggamma, Pareto and Burr distributions.

3.12. Computer approximation via the Pollaczek—Khinchin formula. This
time we use the representation (2) of the ruin probability and the decompo-
sition of the maximum M as a sum of ladder heights. Let L; be the value
that the process {S;} reaches for the first time above the zero level. Next,
let Ly be the value which is obtained for the first time above the level L;
L3, Ly, ... are defined in the same way. The values L, are called the ladder
heights. Since the process {S;} has stationary and independent increments,
{L;}?2, is a sequence of independent and identically distributed variables.
One can show that the number K of ladder heights until ruin time is given
by a geometric distribution with parameters p =1/(1+6) and ¢ = 6/(1+86).
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Thus, the random variable M may be expressed

K
M= ZL
=1

This implies that M has a compound geometric distribution given by the
distribution function

0 < o
Fu(z) = 110 ZG (2),
n=0

where G*" is the nth convolution of the distribution with the defective den-
sity

1 — 1
g(x) = mFX(x) =159 bo(x),
and the density
(14) bn(a) = 21

The above fact together with the representation (2) leads to the Polla-
czek—Khinchin formula for the ruin probability:

1) =P = Y (1) B
n=0

where By is the tail of the distribution function corresponding to the density
bo and BSO(U) = I{uzo}.

One can use this formula to derive explicit solutions for a number of
claim amount distributions (see e.g. Asmussen, 2000 or Panjer and Willmot,
1992). If that is not possible, the formula can be directly applied to calcu-
lating the ruin probability. However, it involves an infinite sum, hence we
use the Monte Carlo method to simulate the random variable M and calcu-
late the ruin probability. From (15) the ruin probability ¢(u) = EZ, where
Z = 1(M > u), may be generated as follows.

(1) Generate a random variable K from the geometric distribution with
parameters p = 1/(1+6) and ¢ =0/(1 + 0).

(2) Generate random variables X7, ..., Xk from the density bo(x).

(3) Calculate M = X + -+ + Xg.

(4) If M > u, let Z =1, otherwise let Z = 0.

The main problem seems to be simulating random variables with the
density bo(x).

PROPOSITION 3.1. The density bo(z) has a closed form only for four of
the distributions considered, namely
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(i) for exponential claims, by(x) is the density of the same exponential

distribution,
(i1) for mixture of exponential claims, by(x) is the density of the mizture

of exponential distributions with weights

a1/ an/Pn )>7

n

(Zn (ai/Bi)" "7 >0 (aif Bi

i=1
(iii) for Pareto claims, by(z) is the density of the Pareto distribution with

parameters o — 1 and v,
(iv) for Burr claims, bo(x) is the density of the transformed beta distri-

bution.

Proof. (i) For exponential claims
1

_ e 1
Fx(@)=e", p= 3
thus
bo(z) = BFx(z) = Be "7,
which yields again the exponential distribution, with parameter 3.

(ii) For mixture of exponential claims

Fx(x) :;aie—w = %+...+ %
hence
b(@) = S7m +1 Ta7h, Fx@
= a1/Bi+ al +an/Bn Fx,(2)+ -+ v an o e
_ a1/ fx @)+ + 5 fn/ﬁi — o

al/ﬁl ++an//ﬁn
which is again a mixture of exponential distributions, with weights

( al/ﬂl o an/ﬁn )
Soicalai/B)” T (ai/Bi))

(iii) For Pareto claims

SO

a—1 — a—1 v *“ a-—1 v a-l
b == F = —
ofw) = = Fx(a) = * (M) Vﬂ(yﬂ) ,

which again gives the Pareto distribution with parameters (a — 1, v).
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(iv) For Burr claims

= B v \“ e Da—1/n) (1 +1/7)
Fx(x)= (V+:I?T) . u=v' T ,  ar>1,
therefore
B I'a) v \“
bol@) = v —1/7)(1+1/7) <1/ + x7> '
Set
a=a—-1/1, b=1/r, c=71, d=uw.
Then
b (o Llath) d \*" I'(a+b)d®
@) = Fr@Ta+b) (d n x) = T()bI(b)(d + z°)a+b

_ I'(a+b)ediz®!
- T(@)D(b)(d + z)ett”

The foregoing formula represents the density of the transformed beta distri-
bution with parameters a, b, ¢ and d. This distribution comes as a quotient
of two variables with generalized gamma distribution with corresponding
parameters (for details see Panjer and Willmot, 1992). =

For other distributions treated in this paper, in order to generate random
variables X}, we use formula (14) and controlled, numerical integration. The
above described computer approximation via the Pollaczek—Khinchin for-

Table 2. Survey of approximations with an indication when they can be applied

Distribution
Method Exp. Gam. Wei- Mix. Log- Log- Pareto Burr
bull Exp. norm. gam.

Cramér—Lundberg + + + - - - -
Exponential + + + + + >3 a>3 ar>3
Lundberg + + + + + >3 a>3 ar>3
Beekman—-Bowers + + + + + 8>3 a>3 ar>3
Rényi + + + + + 6>2 a>2 ar>2
De Vylder + + + + + >3 a>3 ar>3
3M Gam. De Vylder + + + + + >3 a>3 ar>3
Heavy traffic + + + + + 6>2 a>2 ar>2

Light traffic + + + + + + + +
Heavy-light traffic + + + + + B>2 a>2 ar>2

Heavy-tailed - - T<1 - - + + +

Pollaczek—Khinchin + + + + + + + +
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mula will be briefly called the Pollaczek—Khinchin approximation. We note
that the approximation works for all distributions of claims considered.

3.13. Summary of the approrimations. Table 2 shows which approxima-
tion can be used for a particular choice of claim size distribution. Moreover,
the necessary assumptions on the distribution parameters are included.

4. Numerical comparison of the methods. We now aim to compare
the 12 approximations presented in the preceding section. To this end we
consider the ruin probability as a function of the initial capital u, with dif-
ferent claim amount distributions. In order to show the relative errors of the
methods we compare results of the approximations with the exact values,
which can be done in the exponential, gamma and mixture-of-exponentials
case, partially in the lognormal case, or with the results obtained via the
Pollaczek—Khinchin formula, which we feel, and justify it numerically, can
be a reference method. In the Pollaczek—Khinchin approximation, for the
Monte Carlo method purposes, we generate 100 blocks of 100000 simula-
tions. The simulated ruin probabilities result in 95% confidence intervals
with length at most 6 - 1074

For the exponential case the Cramér—Lundberg, Rényi, Beekman—Bowers,
De Vylder and 3-moment gamma De Vylder approximations yield the exact
result given by formula (7). We study other approximations for § = 0.01
(very small value), 8 = 5 (very large value) and 6 = 1 (large value).

In the figures below, diagram (a) represents the ruin probability, and (b)
the relative error of the approximations (with respect to the exact value, the
exponential approximation or the Pollaczek—Khinchin approximation).

First, we consider the case when 6 = 0.01. As we can clearly see in
Figure 1(a), the light traffic approximation shows a total lack of accuracy.
Figure 1(b) suggests that exponential and Lundberg approximations work
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Fig. 1. The exponential case with 5 =1, § = 0.01 and v < 1000
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Fig. 3. The exponential case with 5 = 0.01, § = 1 and v < 1000

extremely well, the Pollaczek—Khinchin formula holds a good accuracy and
the rest of the methods do not work so well. However, looking at the y-axis
scale (limits from —10% to 4%) we may say that all methods except the light
traffic give accurate results.
When 6 = 5 (see Figure 2), the Pollaczek—Khinchin formula works very
well. The heavy-light traffic approximation comes second. The other approx-
imations are clearly unacceptable.
In the case § = 1 (see Figure 3), the Pollaczek—Khinchin formula works
extremely well, the other approximations hold little accuracy.
Hereafter in this section we will usually assume that the mean of the
claim distribution is equal to 1 and 6 = 0.1.
In the gamma case we can obtain exact values via formula (8) and
use them in order to compare all methods except the heavy-tailed and
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Fig. 4. The gamma case with oo = 0.01, 5 = 0.01, § = 0.1 and » < 1000
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Fig. 5. The gamma case with a = 0.001, 3 = 0.001, § = 0.1 and » < 1000

3-moment gamma De Vylder approximations, which yield the exact result.
When o« = 0.01 and 5 = 0.01 (see Figure 4), all approximations except the
heavy, light (disastrous results) and heavy-light traffic, give a relative error
of less than 3%. When we increase the variance (o = 0.001 and 3 = 0.001,
see Figure 5), the situation is similar, but this time the heavy-light traffic
approximation looks much better and the Pollaczek—Khinchin formula comes
first with almost exact results.

When the claim distribution is a mixture of three exponentials (see Figu-
re 6), the Cramér—Lundberg, De Vylder, 3-moment gamma De Vylder and
exponential approximations give quite accurate results, while the Beekman—
Bowers and Lundberg approximations are just acceptable.

Since there are no exact methods for other distributions considered, we
are going to calculate the relative errors with respect to the most accu-
rate method. From Figures 1-6 the possible candidates are the Cramér—
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Fig. 6. The mixture of three exponentials with i = 0.014631, B2 = 0.190206, 53 =
5.514588, weight a1 = 0.0039793, a2 = 0.1078392, a3z = 0.8881815, § = 0.1 and w < 1000

Table 3. Comparison of the De Vylder, 3-moment gamma
De Vylder and Pollaczek—Khinchin approximations under the
mixture of three exponentials. Relative errors in %.

0 u ¥(u) Epx Epv Esmvcpv
0.05 10 0.8897 0.0151 —3.2089 —1.6062
0.10 10 0.7993 —0.0281 —5.4247 —2.6773
0.15 10 0.7242 —0.0320 —6.9981 —3.4102
0.20 10 0.6611 0.0075 —8.1485 —3.8859
0.25 10 0.6073 —0.00280 —8.9791 —4.1874
0.30 10 0.5610 —0.0366 —9.5811 —4.3583
1.00 10 0.2634 —0.0566 —10.6644 —2.9803
0.05 100 0.7144 -0,0018 0.3737 0.2967
0.10 100 0.5393 —0.0170 1.1125 0.6082
0.15 100 0.4247 —0.0590 1.9143 0.8429
0.20 100 0.3455 0.0179 2.7120 1.0304
0.25 100 0.2886 0.0237 3.3784 1.1019
0.30 100 0.2461 0.0264 3.9862 1.1418
1.00 100 0.0724 —0.2033 7.2086 —0.0773
0.05 1000 0.1149 —0.0159 0.0087 —0.0087
0.10 1000 0.0210 —0.2071 —0.9429 0.0190
0.15 1000 0.0054 —0.7574 —3.7000 —0.2889
0.20 1000 0.0018 —3.5056 —8.4000 —1.3167
0.25 1000 0.0007 0.2714 —-10.5714 1.4343
0.30 1000 0.0003 7.7333 —8.8700 9.7900

1.00 1000 0.0000 - - _
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Table 4. Comparison of De Vylder, 3-moment gamma De
Vylder and Pollaczek—Khinchin approximations under the log-
normal distribution. Relative errors in %.

0 u (u) Epx Epv Esmvcpv
0.05 100 0.55074 —0.0182 —20.6159 —19.2468

0.10 100 0.34395 0.0087 —19.4825 —18.4852
0.15 100 0.23573 —0.02545 —14.2281 —13.6088

0.20 100 0.17309 0.0983 —8.0883 —17.8052
0.25 100 0.13384 0.0448 —2.0547 —2.0622
0.30 100 0.10765 0.21367 3.5300 3.2606

1.00 100 0.02535 0.0789 41.7278 39.6726
0.05 1000 0.04199 2.6530 55.0917 53.1769
0.10 1000 0.01099 4.0218 85.5323 87.9436
0.15 1000 0.00574 3.92334 79.6690 87.7003
0.20 1000 0.00384 2.7917 68.6979 81.0365
0.25 1000 0.00288 3.2431 59.1632 74.5937
0.30 1000 0.00230 3.3304 51.8174 69.5435
1.00 1000 0.00060 6.3000 19.8233 46.7283
0.05 10000 0.00008 2.5000 —99.9996 —-99.999
0.10 10000 0.00004 —9.5000 —100.0000 —100.0000
0.15 10000 0.00002 27.0000 —100.0000 —100.0000
0.20 10000 0.00002 —15.0000 —100.0000 —100.0000
0.25 10000 0.00001 50.0000 —100.0000 —100.0000
0.30 10000 0.00001 22.0000 —100.0000 —100.0000
1.00 10000 0.00000 - - -

Lundberg, De Vylder, 3-moment gamma De Vylder and Pollaczek—Khinchin
approximations. However, the Cramér—Lundberg approximation works only
for light-tailed distributions, hence we have to choose between the De Vylder
and Pollaczek—Khinchin approximations.

To this end we take into consideration a mixture of three exponential
distributions and a lognormal distribution. For simple analytic results in the
former case see Section 2. In the latter case, with a choice of specific param-
eters, exact values of the ruin probability can be computed using numerical
inversion of the Laplace transform (see Wikstad, 1971, and Thorin and Wik-
stad, 1977). Let us now compare the three approximations. In Tables 3 and 4
the exact and approximate values, and relative errors are shown with respect
to v and 6 with the distribution parameters as in Grandell and Segerdahl
(1971); cf. Figures 6 and 8.

It is easy to notice that De Vylder and 3-moment gamma De Vylder
are no match for the Pollaczek—Khinchin approximation (see the boldface
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results). This and Figures 1-6 justify the statement that the Pollaczek—
Khinchin approximation can be chosen as a reference method. Moreover, it
is worth noting that in the light-tailed cases the 3-moment gamma De Vylder
approximation gives much more accurate results than the original method.
Henceforth we will compare the methods with respect to the values obtained
via the Pollaczek—Khinchin formula.

5. Pollaczek—Khinchin approximation as the reference method.
For the Weibull case (see Figure 7), the De Vylder, 3-moment gamma De
Vylder, exponential and Lundberg approximations produce an error from
about —25% to 15%. However, the most accurate results are obtained with
the Beekman—Bowers approximation (error less than 4%).
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Fig. 8. The lognormal case with y = —1.62, 0 = 1.8, § = 0.1 and « < 1000

(b)
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Fig. 10. The Burr case with « = 1.4, v = 0.6987, » = 1.5, 0 = 0.1 and » < 1000

In the lognormal case (see Figure 8), the situation is very interesting.
All methods give an error greater than 50%. The lognormal case is quite
important as loss data often appear to have the lognormal distribution. Thus
we may say that using the Pollaczek—Khinchin approximation is essential
when dealing with real-life data.

For the Pareto distributed claims (see Figure 9), all methods produce an
error of up to about 20%, light traffic and heavy-tailed approximations show
a total lack of accuracy. The parameters of the Pareto distribution imply
that the first three moments still exist. Now, we switch to the case when

that is not true.
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Fig. 11. The loggamma case with « = 1.2, 5 =1.8, § = 0.1 and u < 1000
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For the heavier case (see Figure 11), when the claim distribution is Burr
and only the first two moments exist, we cannot use the exponential, Lund-
berg, Beekman—Bowers, De Vylder and 3-moment gamma De Vylder approx-
imations. The rest show a total lack of accuracy, except for the heavy-tailed
approximation which for greater values of u seems to produce an error of up
to 10%.

In Figure 11 the very heavy-tailed case is considered, i.e. the loggamma
distribution with only the first moment finite (the mean still exists). This
time the parameters of the distribution cannot be matched in such a way
that the mean is equal to 1. The mean is now about 2.65. In that case
merely light traffic and heavy-tailed approximations still work, and again

the heavy-tailed approximation definitely comes first.

6. Final conclusions. The main finding of the paper is that the ap-
proximation via the Pollaczek—Khinchin formula is the best method for cal-
culating the ruin probability in infinite time:

e Only two of the 12 approximations considered work for all distribu-
tions, namely Pollaczek—Khinchin and light traffic. From Figures 1-6

it is clear that the former is much better.

e Figures 1-6 demonstrate that among all the presented approxima-
tions which work for the light- and heavy-tailed distributions only De
Vylder, 3-moment gamma De Vylder and Pollaczek—Khinchin behave

well.

e In Tables 3 and 4 the exact and approximate values of the three ap-
proximations, and relative errors with respect to v and 6, are shown. It
is easy to notice that both De Vylder approximations are no match for
the Pollaczek—Khinchin approximation (see the boldface results). This
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and Figures 1-6 justify the statement that the Pollaczek—Khinchin
approximation can be chosen as the reference method. Moreover, the
3-moment gamma De Vylder approximation produces more accurate
results than the original method.

e The Pollaczek—Khinchin approximation gives the most accurate re-
sults, even for the class of heavy-tailed distributions like lognormal.
We also note that in each case for the Monte Carlo method pur-
poses we generated 100 blocks of 100000 simulations and the vari-
ance within the results derived from the blocks was always relatively
small.

Finally, let us remark that methods of approximation of the ruin probabil-
ity in finite time are different from the ones in infinite time (see Asmussen,
2000, and Furrer et al., 1997). A detailed study will appear in a separate
paper.
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