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A MODEL OF EVOLUTION OF TEMPERATURE
AND DENSITY OF IONS IN AN ELECTROLYTE

Abstract. We study existence and nonexistence of solutions (both sta-
tionary and evolution) for a parabolic-elliptic system describing the electro-
diffusion of ions. In this model the evolution of temperature is also taken
into account. For stationary states the existence of an external potential is
also assumed.

1. Introduction. In this paper we are interested in the temporal evo-
lution of the spatial density of ions in an electrolyte confined to a container
2 C R" n = 2,3. We consider a simplified, idealized situation when the
electrolyte contains only cations, i.e. positively charged particles. The rea-
soning in the more realistic case when several species u1,...,u; of charged
particles are considered is similar but the notations would be a bit more
complicated (cf. [7], [15], [16]).

The model we consider consists of three equations

) W= (Vut 5v¢),
1
(3) E:q0¢9+§ Swpdw.
n

The first one, a nonlinear parabolic equation of drift-diffusion type, describes
the evolution of the density u = u(z,t) of the ions in the field generated by
the electric potential ¢ = ¢(x,t), produced by the ions through collective
effects, and coupled with the density via the Poisson equation (2). These
equations are supplemented with the energy relation (3) which determines
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the temperature § = 6(¢) uniform in the domain 2 C R". The constant
g =1 o u denotes the total charge of the ions.

The system can be considered as a version of the so-called Chavanis—
Sommeria—Robert model, with the electrical interaction replacing the grav-
itational one in [11].

The motivation to study such a model lies in its location midway between
isothermal models of mean field type for electrolytes and semiconductors
going back to Nernst, Planck, Debye and Hiickel ([1], [4], [7], [13]) and general
energy-transport models of Streater type which include a nonlinear heat
equation for evolution of temperature ([3], [2], [5], [10], [17], [18]).

Although these three models are strongly related, there are also impor-
tant differences between them. The isothermal model has a long history and
is well studied. The model of Streater type (with § = 6(z,t)), which is
relatively new, is much more complicated and causes many difficulties. In
particular, there are (to the best of my knowledge) no results on local exis-
tence of solutions for the general Streater model with interaction ([2], [3]).
The model with temperature depending only on time is much simpler than
the general one, but retains its mathematical properties and on the other
hand is more complicated than the isothermal model. However, the model
with temperature depending on time and space is usually more realistic, but
because of mathematical difficulties we have restricted ourselves only to time
dependence.

On the other hand, the model can be treated as an extension of those
studied in [7], [13], [14] but with nonconstant temperature.

The next problem we will consider is the existence of stationary solutions
for the model (1)—(3) in the presence of an external potential. Thus, the
model reads

(4) utZV-<Vu+%V(QD+V)),
(6) E=q09+%§uw+SuV,
(04 2

where V : R” — R denotes a given external potential.

For more physical details we refer the reader to [7], [9], [15].

In this paper we assume that the external potential V' is singular, of the
form V(z) = —¢*E,(z), where ¢* # 0 and E,, is the fundamental solution
of the Laplacian (Fs(z) = (27) !log|z|, En(z) = —((n — 2)0,) " 2[*>~™ for
n > 3, where o, is the area of the unit sphere in R"). This means that V is
produced by an additional point charge ¢* fixed at the origin. Such a singular
potential may lead to difficult questions considered in [15, Section 2.4], [16,
Chapter 2, Section 2| and [7].
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The problem (4)-(6) with ¢* < 0 describes the situation when a charge
q* fixed at the origin is surrounded by ions of opposite sign moving in a
solute. The case ¢* > 0 means that the ions and the charge are of the same
sign.

The system (1)—(3) is supplemented with the initial condition

(7) u(z,0) = uo(z)

and with the boundary conditions

ou udp
(8) 5 T, =0 ondw
(9) ¢=0 on 02,

where v denotes the exterior unit normal to 0f2. Those conditions are a
mathematical simplification of the situation when the total charge of ions in
(2 is preserved (because of the no-flux condition (8) across the boundary), i.e.
§ou(x,t)de =, ug(x)dx =: go. The condition (9) means that the boundary
0f2 is grounded. Let us notice that the condition ¢ = const on the boundary
is equivalent to (9) since the equations (4)—(5) are invariant under the shift
¢ — ¢ + const (only in (6) the additional term %qo const should be added).
This means that in the radially symmetric case all Dirichlet conditions are
equivalent to (9).

A given value of the energy E determines the initial temperature 6y due
to the relation (3) (the potential ¢y is obtained from ug via (2)).

Similarly, the system (4)—(6) is supplemented with the initial condition
(7), boundary condition (9) and

ou u 0
(10) ov + 0 81/(

It was proved in [1], [2] and [4] that a local-in-time solution to (1)-
(2), (7)—(9) with constant temperature § = 1 exists. Moreover, under some
assumptions imposed on the dimension n or the initial data wug, this solution
is global and tends to a unique steady state as t goes to co.

It is worth noting that the existence of solutions of the isothermal problem
with ¢* < 0 depends on n and ¢* ([7]). For instance, in the radially symmetric
case, if n = 2 and ¢* > —4x the solution is global, whereas for ¢* < —4m or
n > 3 and ¢* < 0 there are no local-in-time solutions. In case ¢* > 0, the
global solution exists for each ¢* > 0 and tends asymptotically, as time goes
to infinity, to the unique steady state solution ([13]).

We are interested in the existence and uniqueness of stationary solutions
to the problem (4)—(7), (9), (10). In this paper we prove the existence of
radially symmetric solutions for all values ¢*, go > 0 and E > Ej (for n = 2).
For n = 3 we get an analogous conclusion for ¢* > 0 and nonexistence of
solutions for ¢* < 0.

¢+V)=0 on 02
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Considering the evolution problem (with V' = 0) we will prove the exis-
tence of local weak solutions of the problem (1)—(3), (7)—(9). Next we will
prove that the solutions obtained can be continued in time for all ¢ > 0 (for
n=2).

Energy. In our models we assume that the energy is the sum of the
potential energy SQ (%uap + uV) and the one connected with the thermal
motion of the particles (also connected with the thermal energy), {, uf. By
assumption (6) the energy is constant.

Since we consider the idealized situation and take only ions of one sign
into account we do not take the thermal capacity of the electrolyte into
consideration. In a more realistic situation of a classical electrolyte (with
ions of opposite signs) the isothermal case would be a better approximation
of a real situation since the thermal capacity of the electrolyte is much larger
then the ions’ contribution to the thermal energy.

Entropy. For sufficiently smooth solutions the function W (t) defined as
(11) W=W({)= Su(logu —log6)

plays the role of (neg)entropy.

Indeed, from the energy relation (6) we have qofy = —3 §,(up):+§,, V.
Due to (4) and (5) the sum of these integrals is equal to {, V(p+V)- (Vu+
W (p+V)).

Thus, we arrive at

2
(12) Z—T:—Su1<Vu+%V(cp+V)> ,
%)

so dW/dt < 0, which implies that W is a decreasing function of time.

Notation. |f|, (resp. ||f||x) is the LP(§2) (resp. H*(£2)) norm of the func-
tion f. The constant C' denotes various inessential constants and may vary
from line to line.

2. Evolution problem without external potential. In this section
we prove the existence of solutions of the problem (1)—(3), (7)—(9).

We begin with an a priori lower bound estimate for the temperature valid
in any bounded n-dimensional domain.

LEMMA 2.1. Each solution (u,0, ) of the problem (1)—(3), (7)—(9) with
By > 0 has its temperature bounded from below by a constant depending on
the initial data,

G(t) >0 = 91(U0,90, .Q) >0

for each t > 0 for which the solution exists.
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Proof. The proof is based on the fact that the entropy W is a nonin-
creasing function. Indeed, for W (t) = {, u(logu — log #) we have

qologh = Sulog@ > Sulogu— W (0)
Q Q

Q.

42|

The second inequality is a consequence of the Jensen inequality applied to
the convex function s — slog s, and the last one follows from the fact that
mingcp+ slog s = —e~ 1. Therefore, the lower bound in Lemma 2.1 is satisfied
with a temperature 61 > 0. =

> max{—e‘l\()\,qo log } —W(0) > —e 2] — W(0).

The next lemma gives an a priori upper bound for the temperature.
Let us notice that this is valid in all dimensions and is not a specifically
two-dimensional result as in the gravitational case (see [8]).

LEMMA 2.2. Let (u,0,p) be a solution of the problem (1)—(3), (7)—(9).
Then

Q(t) <0y = (92(11,0,00, .Q) < 00
for each t > 0 for which the solution exists.

Proof. We have

1 1 )
qOH—E:—§§u¢:—§S|V¢| <0,
9] 02
SO
E
0< —=:05. n
4o

2.1. Local existence of solutions. Before we prove the existence of solu-
tions for (1)—(3), (7)—(9), let us recall the definition of weak solutions.

We call function u € L*((0,T); L?(£2)) N L?((0,T); H'(£2)) a weak so-
lution of the problem (1)—(3), (7)—(9) if it satisfies the equations below for
v = u, and for each test function n € H(2 x (0,T)) and for a.e. t € (0,T),

t

(13) S u(x, t)n(z,t) de — S S ung dv dr —I—S S <Vu +
Q 00 00

u

7 V@) -Vndzdr

— [ uo(@)n(,0) da,
9]
(14) ASO =0,

1
(15) E = qo0 + 3 S vpdz,
Q
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The temperature # determined from the formula (15), i.e
wwwmwm)

should be a continuous function.

For a given Ty > 0 define the space X = L*((0,7p); L*(£2)) and the
operator 7 : X — X such that u := 7 (v) is a solution of (13)—(15) with the
given function v. Let B = Br(0) be the ball of radius R > 0 in X.

The assumption ug € LP({2), with p > 1, implies local existence of solu-
tions.

THEOREM 2.3. The problem (13)—(15) considered in bounded domains
QCR" (n=2,3) with0 < ug € LP(£2), p > n/2 and 6y > 0 has a unique
local solution u. This solution belongs to LS ((0,T); LP(S2)) for some T > 0,
and satisfies u > 0, 6 > 0.

loc

Proof. Let us begin with the case p = 2; the general case of p > n/2 can
be treated by a standard approximation procedure as in [4, Th. 2(ii)]

We will prove that any weak solution u satisfies u; € L2((0,T); (H'(£2))’ )
so 0 determined from (15), i.e. O(u)(t) = q5 ' (E — 3§, u(z, t)p(z,t) dx), is
a continuous function on [0, 7).

The Sobolev inequality for the functions ¢ and v connected by (14), i.e.
(16) Vol < Clvlp for1>1:(>)1—l, n>p>ﬁ,

q p n 2

taken for n =2, ¢ =4/3, p=4/5 (resp. n = 3, ¢ = 4, p = 12/7) and the
additional assumption 0(v) > 6p/2 > 0 for t < T} allow us to obtain the
inequality

Vo C

— 1

F| < g ko4 ).

On the other hand, the Calderén—Zygmund inequality for bounded domains
([12, Chapter 9.4]) implies ([6])

Ve
v(F),*
Inequality (16) allows us to get |Vl < C(Jv]2 + 1) (for n = 2, we take
q=6,p=3/2;forn=3,¢q=6,p=2).

These inequalities, as in [6, Th. 1], guarantee the existence of a unique
solution v = 7 (v) to the problem (13)—(15) on some interval [0,71] (11 =
T1 (UO, _Q))

Now we prove that u; € L2((0,T); (H'(£2))"). The interpolation inequal-
ity

< ¢
= %o

(lvf2 +1).

[uls < CV2|jully?|uly?  forue H'NL* (n=2,3),
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and the energy inequality for the problem (13)—(15), ie.

1d
—|ul3 + |Vul3 < S Vu-Vo|dr < C’ IVols
2 dt ) 0
C 172, 11/2
< g [Vulaljull Pluly(Jols + 1)
C 3 2 1/2
< g Iz Fiayluly (ol +1)
< 5 Huul ot © |u3(folz + 1)°
imply that
1d
5 b+ 3 Lvug < 7 C Lul3lola + D™

Integrating the above inequality over [0, ¢] and using the Gronwall lemma we
get, forve B C X,

t

C

WO+ {Vuldr < Juol exp(% (ol oy + D)
0

< [uol3 exp(C(R+1)/63).
This implies that
HUH%“((DJ);LQ(Q)) < At forte [0, Tl],
(17) IVullZa o222y < B-

Now we estimate the required norm for ;. For any function y € H'(£2) we
have

‘ Sutxdx‘ < ‘ Vu dea:‘ +
2

Vso Vx‘
Q

< llullelixlh + 5= IU\3!V<P\6H><111

1/2
< Jlull il + 5 IIUII Pl 2(Jo]z + Dl

Thus
lulln oy < llul + - |ru||”2!u|”2<rv|2 +1)
and
o 1/2, 1/2 2
ol ooy < S(||u||1+ R <rv|2+1>)
0

< C(A7 BvTI) Qv R)
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SO

(18) luell 20,101 (2))) < D-

Let W be the subset of B C L*((0,T3); L?(£2)), Ty < Ti, of v’s which
satisfy v(x,0) = wp, and the estimates above ((17) and (18)) for v instead
of u. These conditions guarantee the compactness of W in X.

Now we need to guarantee that the condition for the temperature, i.e.
O(u) > 60p/2, is satisfied.

Indeed, we have

d
aew)(t)\ = | § vrg| < lluellam oy llells < Cllullanayylulz
Q
The last inequality is a consequence of (16) for n =2, ¢ = 2, p = 3/2 (resp.
n=3,q=4,p=12/7). We have

0(v)(t) > 0o — CDAL.

Thus 6(t) is a continuous function and for ¢ small enough (¢t < 260/CAD
=: Ty) the condition 6(u) > 6y/2 is satisfied, which allows us to apply a fixed
point theorem.

The conditions above guarantee that the operator 7 is continuous. Hence
the nonlinear operator transforms )V into itself, and is continuous. The ex-
istence of a fixed point of 7, which solves the problem (13)—(15), is a conse-
quence of the Schauder theorem applied to the compact and convex subset
W C X. The positivity and uniqueness of u can be proved as in [6].

2.2. Global existence of solutions. Before we prove the existence of so-
lutions for any ¢ > 0, we will recall some estimates for the temperature,
|ulogul; and |V|s. We have

0<61 <6 <by <0,
const = 04¢glogfy < S ulogu = W (t)+qologd < W(0)+qplog 63 = const,
2

and
0< | |Vel* = | up = 2F — 2q90 < 2E — 2qo0>.
2 2

A useful lemma from [4] will be the main tool in the proof of global
solvability.

LEMMA 2.4 ([4, Th. 3]). For any v € HY(£2), 2 C R? and each ¢ > 0,
there exists a constant C. such that

[0[3 < ellvll3]vlog [v] [1 + Celols.
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THEOREM 2.5. For every (ug, 0y) with finite energy (3) and finite entropy
(11), local solutions of the problem (13)—(15) in two-dimensional bounded
domains can be continued for all t > 0.

Proof. Using a priori estimates for |ulogul, and |Vl due to the energy
inequality we have

1d
2 dt

w3 + [Vul3 < C|Vulaluls| Vel < C|Vulaluly* | Vely?

1/2
< Clulli(ellul3luloguly + Celul)?|Vely
1/2 1
< Cllul}e + Cllulsluly” < Cllull?e + 1 [ull} + Clulx

1
< < lullt + Cluly

for some constant C' = C(6p).
Adding |u|3 — $|Vu|3 to both sides we get

d
E!U@ + 2|ul3 + [Vul3 < 3[ul3 + Cqo < Cllull1]ulr + Cqo

1
<5 [ull3 + Cqo(qo + 1) < ||ul|? + Cqolgo + 1).

Let us notice that the second inequality is valid only for n = 2. Thus we
arrive at

d
Sluli+ ulf < €,

which yields the uniform boundedness of the norm |u(t)]s.
So the solution obtained in the previous section can be continued for all
t>0.m

To prove global solvability in the three-dimensional case we cannot use
Lemma 2.4 (valid only for n = 2), and estimates using the Sobolev—Gagliar-
do—Nirenberg inequalities do not work for the term on the right hand side
of the energy inequality. In the analogous case in the isothermal model (see
[1]) the only way to prove existence of global solutions was to connect them
with a stationary solution. Unfortunately, in this model this idea cannot be
used since we are not able to estimate |u/0 — U/O)| by const|u — U]|.

3. Stationary solutions

Radially symmetric solutions. Considering stationary solutions we as-
sume that 2 = {|z| < R} is a ball of radius R, and we look for radially
symmetric solutions of (4)—(7), (9), (10). In this case the problem reads
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U = rln (Tn_l <ur + % (p+ V)r)) )

(R, t) =0, u (R,t)+

u(r,0) = up(r).

Let @(7‘, t) denote the total charge of moving ions in the ball of radius r at
time ¢, i.e.
-
Q(r,t) = on S s Lu(s,t) ds.

0

It is easy to check that Q) = ¢ + @ satisfies the equation
(19) Qt = er - (n - 1)T_1QT' - (O-ne)_lrl_nQQr-

The last equation has the following scaling property: if ) is a solution then
Q(r,t) = N27"Q()r, \?t) is also a solution. Hence, without loss of generality,
we can consider our problem on the interval [0,1] with the boundary and
initial data

(20) Q(0,1) = ¢,
(21) Q(Lt)=q"+q =7,
(22) Q(r,0) = Qo(r),

where Qo(r) is a given, nonnegative, nondecreasing function on [0, 1] such
that Qo(0) = q*, Qo(1) = 7

The physical motivation to study radially symmetric solutions is as fol-
lows.

For n = 2 the system (19)—(22) describes the situation when the moving
ions are confined to the infinite cylinder {(z,v,2) : 22 + y?® < 1} with fixed
charge density ¢* on the z-axis.

The case n = 3 corresponds to the physical model of an electrolyte con-
tained in the unit ball in R with a fixed point charge ¢* at the origin.

Stationary radially symmetric solutions. If Q(r) denotes a stationary ra-
dially symmetric solution to the problem (19)—(22) in 2 = B;(0), then Q(r)
satisfies

(23) Qrr(r) — (n = 1)r71Q(r) — (Q0); 'r~ ”Q( )Qr(r) =0,
(24) QRO)=¢", Q)=q +q" =
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with the total charge qg and the total energy E given by
1

1 _ _
(25)  E=q@+V(1)+3 o, \ Q) — ) (Q(r) + g7 dr.
0
The equation (23) (as mentioned earlier) has the following scaling prop-
erty: if @ is a solution then so is Q(r) = R*>""Q(Rr).
Hence if  and @) are solutions on [0, 1] and [0, R] respectively, then they
satisfy the following boundary conditions:

QO =q", Q) =1,
QO)=R"¢", Q(R)=R""q.

Notice that in the two-dimensional case both @} and @ satisfy the same
boundary conditions

Q(0) =¢" =Q(0), Q(1)=7=Q(R).

For fixed energy E we have

R R
1
E = q06 + 3 S Q*(r)r' "o Y dr + qoV(R) + ¢*o; " S rrQ(r) drr
0 0
. 1 1 _
= 00 + 3R )(Q(0)%0, " do+ @V (R) + ¢, [ o' Qo) do,
0 0

thus denoting by Er and E; the energy of the solution () and @, respectively,
for n = 2 (for the same temperature 6 treated as a parameter) we have

. 1
Er = FE1 —qoq glogR.

This means that in the two-dimensional case it is enough to find solutions
on [0, 1]. Such a solution (after rescaling) gives a solution on [0, R] with the
same temperature 6 but with energy E equal F; — qoq*%log R. Hence,
without loss of generality, we will consider our problem on the interval [0, 1]
with the boundary data (24) and energy (25).

In the three-dimensional case the situation is a bit more complicated.
Since we do not know an explicit formula for the solution ) we cannot get
an explicit formula for E(6). So we must act differently (we will consider this
case in the next section).

For n = 2 the stationary solutions to (19)—(22), (25) can be expressed
in analytic form. In dimension 3 such a form of stationary solutions is not
known and probably the equation is not integrable. In this case we resort to
the phase plane method to prove the existence and uniqueness of solutions.
The same method, though unnecessary, can also be used in the much simpler
two-dimensional case. Moreover, the phase plane method allows us to find
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a very simple proof of existence and uniqueness when analytic arguments
require some tedious calculations.

3.1. Two-dimensional case. For n = 2 stationary solutions to the prob-
lem (19)—(22) in 2 = B;(0) satisfy

(26) Qrr — T_IQT‘ - (271—@)_17"_1@@7“ =0
with the boundary conditions
(27) QO)=¢", Q()=7=:q"+qo,
and the energy given by
1. 1
(28) E=qb+ - 1 (Q(r) = a)(Q(r) + ¢*) = dr.
™2 r

The idea of the proof is as follows. First we choose ¢y and ¢*, and solve
(26)—(27) treating 6 as a parameter. Then we show that the energy E de-
pending on the (unique) solution @ = Q(0) is a strictly increasing function
of the temperature. So, given E we find a unique § = 0(E, qo, ¢*), and finally
we get a solution Q = Q(0) = Q(E, qo, ¢*). Monotonicity of F(f) guarantees
the uniqueness of Q.

The equal signs case (¢* > 0)

THEOREM 3.1. For any q*, qo > 0 and energy E > 0 there exists a unique
solution (Q(r),0) to the problem (26)—(28).

Proof. Using the existence of the first integral 2r@Q), — 4Q — %QQ =C
of the equation (26) we obtain the solution in the form

87O + 2¢*

_ q0 2+4q* /27O "
= g tsmo” /

Q(r)=—-8mO+¢") +

The energy for such a solution is given by the formula

q0
FE =20 + 870%log( 1 — —————— |.
W= em g( 87r9+q*+§>
Observe that the energy F is a strictly increasing function of ©. Indeed,

OFE : .
20 > 0, @h_r)nooE(Q) = 00, éli% E©)=0.

These conditions imply that for all values of ¢*,qy > 0 and energy E > 0
there exists a unique solution of (26)—(28). =

REMARK 3.2. According to the considerations of the previous section,
there exists a unique solution Q(r), € to the problem (26), (28) on [0, R] for
any ¢*,qo > 0 and energy F > Ey = —q;% log R.
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The opposite signs case (¢* < 0). To simplify notation we change ¢* < 0
to —¢* and assume that ¢* > 0. In this case we solve the following problem:

(29) Qrr —17'Qr = (270) 1 1QQ, = 0
with the boundary conditions
(30) Q) =—-¢", Q)=7=q -7,
and the given energy

1. 1
(31) B =m0+ 1 §(Q0) - )@ +a) L

THEOREM 3.3. For all values of qo > 0, ¢* > 0 and energy E € (—o00, 00)
there ezists a unique solution (Q(r),0) of the problem (29)—(31).

Proof. Just as in the previous case, we can get an analytical solution.
Integrating the equation (29) we get

1
err—4Q—%Q2:a

Now we consider two cases: ¢* < 470 and ¢* = 476 (for ¢* > 47O the
above equation is not integrable due to the boundary conditions (30)).
For ¢* < 47O the solution of (29)—(30) has the form

81O — 2¢*
Q(r)=—(8m0 —¢*) + — 5
——

For ¢* = 476 we have

q0 * q0
=4 ]l — | = — 1]—-— .
Qr) WQ( 47O — qo logr) 9 ( q* — qo logr>

The energy F for ¢* < 47O is given by the formula

4q0
E =290 + 8760%log(1—- — 10
&+ om Og( 87r@—q*+a>

= 2¢00 — 870%log 1+ —L
qo® — 87O og( +87r@—2q*)’

while for ¢* = 47O the energy is equal to —oo.
Now let us examine the energy function E. Since

. q0 q0
| Ol l1-— ) =—-=
e og( 81O — ¢* + §> 87’
we have

lim E(O) = oc.

O—00
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Now we should examine limg_, ¢+ /4 E(©) (since the condition ¢* /47 < ©
must be satisfied). We have
lim FE(O)=—oc.
O—q* /4T
So E : (—00,00) — (—00,00).
To prove the uniqueness of the solution it is enough to check the mono-
tonicity of F(©) which is obvious since 0E/06 > 0. =

3.2. Three-dimensional case. For n = 3 a stationary solution @ of the
problem (19)—(22) satisfies

(32) Qrr —2r71Q, — 071 (4m) " 72QQ, = 0,
(33) Q(0) = ¢,
(34) Q(1) =17,

and the energy is given by
1

(85) EB=q(0+q"(4m)") + % (4m) " §(Q(r) = ¢)(Q(r) +¢")r 2 dr
0

The case of equal signs (¢ > 0). Since the analytical solution of the
problem (32)—(35) is not known we use the phase plane method.

THEOREM 3.4. For all q*,q0 > 0 and energy £ > Ey > 0 there ezists a
solution of (32)—(35).

Proof. Introducing the new variables
(36) v(s) = (4mO) Q. (1), w(s) = (470)~'Q(r)/r, s=logr,
we transform the problem of existence of stationary solutions to (32)—(34)
into the problem

(37) w =v—w, ’:dii,
(38) v =0(2+w),
(39) w(0) = (4760) 717, Jim_w(s)e” = (47O) " 1¢*.

Figure 1 shows the phase portrait of (37)—(38).

The origin is a saddle (with two eigenvalues 2 and —1), v is its unstable
manifold. Let us choose any q. Let (w(s),v(s)) be a solution to (37)—(38)
with initial data w(0) = (470)~1g, v(0) = v € [0,7) (see Fig. 1).

This solution is defined on some maximal interval («, 3). It follows from
(37) that & = —oo. The function e®w(s) is increasing (since its derivative
is e®v(s)), hence lims_,_o e*w(s) =: L(v) exists. Obviously L(0)= g and
L(v) = 0, so there exists v* € [0,7) such that L(v*) = ¢*. The uniqueness of
v* follows from the monotonicity of L(v).
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(47O)~ g (\/\\///Z/: v

Fig. 1. The phase portrait of (37)—(38)

The solution obtained is well defined since the integral in the formula for
the energy F exists. Indeed, dividing (32) by Q, we get

Q?"?"

Qr

— o1 - @_1(47T)_27"_2§ <0= %M — o1 = 9_1(471')_21“_262

QT"I‘
Q

r

<

—or - 8_1(47r)_2r_2q*.

Integrating over [e, 7] we arrive at

) (g (11)) £ 2 < Ol (o (1 1))

The second inequality implies that lim. .o Q. (¢)/e2 = 0, so the integral
1 By N
§0(Q — a")(Q + ¢*)r~? exists.

Moreover the same inequality implies that Q,(¢)/e? — 0 as © — 0, so
E(©)— Ey>0as© —0.

For ©® — oo we have E — 0o so E : (0,00) — (Ep,00). =

REMARK 3.5. The idea of the proof for n = 3 is also valid for n > 3.
Indeed, introducing new variables:

(40) v(s) = (0,0) 37 Q, (1),

(41) w(s) = (0,0) "2 7"Q(r),

where s = logr, we get the following problem:

(42) W = (2= n)w +o,

(43) v =0(2 + w),

(44) w(0) = (6,0)717, im w(s)e" 2 = (5,0)"1¢".

The phase portrait for (42)—-(44) is the same as for n = 3.
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The opposite signs case (¢* < 0). As in the two-dimensional case, we
change ¢* < 0 to —¢* and assume that ¢* > 0. So stationary solutions
satisfy

(45) Qrr —2r7'Qr — 07 (4m) T ?QQ, = 0
with the boundary conditions

(46) Q0) = —¢,

(47) Q) =q — ¢,

and the energy given by

—_

(48) E=a(®—q'(4m) )+ % (4m) Q) = )(Q(r) + ¢")r 2 dr.
0

THEOREM 3.6. For any values of q*,qo > 0 there exists no solution to
the problem (45)—(48).

Proof. Let us introduce the new variable y = r3. Taking Q = Q + ¢* we
transform (45) into
Qy

(49) 3y'°Qyy — (470)7H(Q — ¢)

Suppose that there exists a solution @) # 0 of (49). Since Q(0) = 0 we see
for small y (y < y1) that Q(y) < ¢*/2 — Q — ¢* < —¢*/2. So

Qy
5,

=0.

0> 3y"2Qy, — (470)~" %*

Dividing by 3ny4/ 3 we get
g, + Crle)y ) <o,
which implies monotonicity of the above function, so
logQy + C1(O)y™1/* > C5(0)

for y € (0,92), y2 < y1. Integrating the inequality above we get
y

Q(y) — Q(0) > {exp(—C1(©)z™V/3 + C5(0)) da.
0

Since the function exp(z~1/?) is not integrable near 0, we obtain Q(y) > oc.
The singularity of () near 0 implies that we are not able to define a solution,
so there is no solution to our problem. =
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