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A NEW MAXIMALITY ARGUMENT FOR
A COUPLED FLUID-STRUCTURE INTERACTION,

WITH IMPLICATIONS FOR A
DIVERGENCE-FREE FINITE ELEMENT METHOD

Abstract. We consider a coupled PDE model of various fluid-structure
interactions seen in nature. It has recently been shown by the authors [Con-
temp. Math. 440, 2007] that this model admits of an explicit semigroup
generator representation A : D(A) ⊂ H → H, where H is the associated
space of fluid-structure initial data. However, the argument for the maxi-
mality criterion was indirect, and did not provide for an explicit solution
Φ ∈ D(A) of the equation (λI − A)Φ = F for given F ∈ H and λ > 0.
The present work reconsiders the proof of maximality for the fluid-structure
generator A, and gives an explicit method for solving the said fluid-structure
equation. This involves a nonstandard usage of the Babuška–Brezzi Theo-
rem. Subsequently, a finite element method for approximating solutions of
the fluid-structure dynamics is developed, based upon our explicit proof of
maximality.

1. Introduction. In this paper we shall consider a partial differential
equation (PDE) system which has been invoked in the existing literature to
model various fluid-structure interactions which occur in nature (see, e.g.,
[13] and [8]). Here, we shall deal strictly with the linearized version of the
said fluid-structure PDE model, since (as the reader will see below) the
setting of our ideas within a linear framework will be a technical enough
topic for one paper. In a follow-up paper, we will consider the Hadamard
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wellposedness of the fully nonlinear fluid-structure PDE, a model which
incorporates Navier–Stokes (rather than linear Stokes) flow. Throughout,
Ωf ⊆ Rn, n = 2 or 3, will denote the bounded domain on which the fluid
component of the coupled PDE system evolves. The boundary ∂Ωf of this
domain will be decomposed as ∂Ωf = Γs∪Γf , Γs∩Γf = ∅, with each boundary
piece being sufficiently smooth. In addition, Ωs will be the domain on which
the structural component evolves with time. The coupling between the two
distinct fluid and elastic dynamics occurs precisely because ∂Ωs = Γs; see
Figure 1. That is to say, Γs will serve as a boundary interface on which
certain (to be specified) boundary transmission conditions will exert a strong
coupling between the Stokes flow in Ωf and the elastic dynamics which are
evolving within Ωs.

Γf

Ω

Ω s

Γs

f

ν

Fig. 1. The fluid-structure geometry

Also, as depicted in Figure 1, ν(x) will always denote the unit normal
vector, which is exterior to Ωf , and so interior with respect to Ωs. (This
point will be important to bear in mind, as the direction of ν will influence
the computations to be done below.)

With the aforesaid geometrical notions in place, we now proceed to prop-
erly introduce the fluid-structure PDE model of our present concern. In de-
pendent variables u = [u1(t, x), . . . , un(t, x)] (the fluid velocity field), p(t, x)
(the scalar-valued pressure function), and w = [w1(t, x), . . . , wn(t, x)] (the
structural displacement field), the following fluid-structure PDE model will
be considered:

(PDE)


ut −∆u+∇p = 0 in (0, T )×Ωf ,
div(u) = 0 in (0, T )×Ωf ,
wtt −∆w + w = 0 in (0, T )×Ωs;

(1.1)

(BC)


u|Γf

= 0 on (0, T )× Γf ,
u = wt on (0, T )× Γs,
∂u

∂ν
− ∂w

∂ν
= pν on (0, T )× Γs;

(1.2)

(IC) [w(0, ·), wt(0, ·), u(0, ·)] = [w0, w1, u0] ∈ H,(1.3)
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with the space of wellposedness

H ≡ [H1(Ωs)]n × [L2(Ωs)]n ×Hf ,

and with the fluid component space Hf ⊂ [L2(Ωf)]n being defined as follows:

Hf = {f ∈ L2(Ωf) : div(f) = 0 in Ωf and [f · ν]Γf
= 0}.

(Recall that if f ∈ [L2(Ωf)]n and div(f) ∈ L2(Ωf), one has [f · ν]∂Ωf
∈

H−1/2(∂Ωf), and so Hf is well-defined (see [6, p. 5]). H is a Hilbert space
with the following norm inducing inner product:

v1v2
f

 ,
ṽ1ṽ2
f̃




H

= (∇v1,∇ṽ1)Ωs + (v1, ṽ1)Ωs + (v2, ṽ2)Ωs + (f, f̃)Ωf

(here of course, (f, g)Ω ≡
	
Ω fg dΩ).

Our objective here will be to ascertain wellposedness of the PDE model
(1.1)–(1.3) for initial data [w0, w1, u0] in the apparently “natural” space H
of finite energy. Here at the start, we should emphasize that even for this
purely linear problem, wellposedness of the dynamics is far from a pedes-
trian exercise. In fact, the primary difficulty, and one which will drive our
methodology below, lies in an appropriate elimination of the pressure term
p(t, x). In classical Navier–Stokes theory, which involves uncoupled fluid flow,
such pressure elimination is accomplished by means of the famed Leray (or
Helmholtz) projector (see [6]). However, a legitimate application of the Leray
projector is based upon a presupposition that the fluid velocity field satisfies
the so-called “no slip” boundary condition, i.e., u|∂Ωf

= 0. In our present
situation, the no slip boundary conditions will certainly not be in play, inas-
much as the fluid component of (1.1)–(1.3) is coupled to the structural com-
ponent via the boundary interface Γs. Thus, the use of the Leray projector
is wholly invalid here; consequently, the pressure term in our fluid-structure
interaction must be eliminated by nonstandard means.

In this connection, we should note the work in [4], which deals with linear
and nonlinear versions of the fluid-structure system (1.1)–(1.3). In [4], an
elimination of the pressure, which again is a sine qua non for the resolution
of the fluid-structure dynamics, is obtained by equating (1.1)–(1.3) with an
appropriate variational relation. Thus in [4], issues of wellposedness (and of
regularity) for (1.1)–(1.3) are subsequently considered within the context of
an associated variational relation, or weak form.

On the other hand, in [1], the pressure is eliminated by the very different
means of identifying the pressure term p(t, x) in (1.1)–(1.3) as the solution of
a certain elliptic boundary value problem (BVP). This BVP contains forcing
interior and boundary terms comprised of the fluid and structure variables
u and w, as well as (boundary traces) of their derivatives. By writing out
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p(t, x) as the solution of the said BVP (through relevant Green’s operators),
the authors in [1] are able to give an explicit semigroup generator represen-
tation for the fluid-structure dynamics (1.1)–(1.3). (And of course, having in
hand such a fluid-structure generator, one can, in principle, attempt to glean
useful qualitative information for solutions of (1.1)–(1.3); e.g., spectral re-
sults for the generator, stability of the semigroup, observability inequalities
which are dual to certain boundary controllability problems, and so on.)

A portion of the present paper is essentially a revisiting of the wellposed-
ness work in [1]: As we noted, the nonstandard elimination of the pressure
term p in [1], by its association with an appropriate elliptic BVP, eventually
allows for an explicit semigroup generator formulation of the fluid-structure
model (1.1)–(1.3). In fact, the generator A : D(A) ⊂ H → H is given
explicitly in (3.2) below.

It is justified in [1] that the fluid-structure generator A : D(A) ⊂ H→ H
is maximal dissipative, and so by an ostensibly classical invocation of the
Lumer–Phillips theorem, the fluid-structure modelA generates a contraction
semigroup on H; however, the proof of maximality in [1] is given by an
indirect argument. Namely, maximality is inferred by deriving a necessary
upper bound for the resolvent operator R(λ;A), where λ > 0, from which
the range condition Range(λI − A) = H can subsequently be deduced by
classical functional analysis; see, e.g., Theorem 1.2 of [16].

Thus, although the work in [1] justifies the maximality condition
Range(λI − A) = H for λ > 0, the following is not explicitly shown:
Given arbitrary fluid-structure data [v∗1, v

∗
2, f
∗] ∈ H, how can one find an

element [v1, v2, f ] ∈ D(A) (to be specified below) which solves the static
fluid-structure PDE,

(1.4) (λI −A)

v1v2
f

 =

v
∗
1

v∗2
f∗

 ?

(note that from the underlying dissipativity of the operator A : D(A) ⊂
H → H, as given below in (3.2), the solution [v1, v2, f ] to the equation
above will be unique).

Accordingly, the present paper is partially devoted to giving an explicit
methodology for solving the abstract equation (1.4). This work will involve
a nonstandard usage of the Babuška–Brezzi Theorem, as we shall see below.

As an immediate implication of our novel maximality argument, one
can subsequently devise a finite element method (FEM) by which to ap-
proximate solutions to the fluid-structure PDE model (1.1)–(1.3). This will
be illustrated at the tail end of our paper, within the context of a partic-
ular static example. (And of course having in hand a systematic way to
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solve (1.4), one can subsequently proceed to solve the time evolving system
(1.1)–(1.3), for Cauchy data [w0, w1, u0] ∈ H, by invoking the exponential
formula for {eAt}t≥0, and corresponding implicit schemes; see, e.g., [15].)
We should also emphasize here that due to our nonstandard invocation
of Babuška–Brezzi in the course of solving (1.4), the fluid basis functions,
adopted in the FEM for numerically approximating the solution of (1.4),
will not need to be divergence free.

2. Elimination of the pressure. As we have said, a successful resolu-
tion of the fluid-structure system (1.1)–(1.3) depends upon an appropriate
elimination of the pressure, which by circumstance cannot involve the Leray
projector. To this end, we will maneuver as in the paper [1], so as to identify
the pressure term p(t, ·) as the solution of a certain elliptic BVP. (We might
also note that, at least formally, the association of pressure functions with
elliptic BVP’s, at least in the context of uncoupled fluid flow problems, has
been long known, but generally not exploited; see, e.g., [7].)

Because of the overarching importance of these steps to eliminate the
pressure, we will include them here, rather than merely appeal directly to
[1]; else the reader would have absolutely no insight as to why the fluid-
structure generator A : D(A) ⊂ H→ H assumes the appearance it does in
(3.2).

The elimination of the pressure is based upon the following observation:
For fixed t ∈ (0, T ), the scalar-valued function p(t, x) solves the following
elliptic BVP:

∆p = 0 in Ωf ,(2.1)

p =
∂u

∂ν
· ν − ∂w

∂ν
· ν on Γs,(2.2)

∂p

∂ν
= (∆u) · ν on Γf .(2.3)

This BVP is derived, pointwise in time, in the following way: (i) Taking the
divergence of both sides of the fluid PDE in (1.1), and using div(u) = 0, one
has (2.1). (ii) Moreover, the expression (2.2) on the boundary interface Γs is
attained by taking the dot product of both sides of the Neumann boundary
condition in (1.2), with respect to the unit normal vector ν(x). (iii) Finally,
the boundary condition (2.3) is obtained by taking the dot product of both
sides of the fluid PDE with respect to an appropriate extension of the normal
vector ν(x), and restricting the resulting quantity to Γf (implicitly using the
fact that [u · ν]Γf

= 0). We now proceed to “solve” this system (2.1)–(2.3),
by means of abstract Green’s maps which account for the contribution of
boundary data (see, e.g., the many references in [12], wherein this ostensibly
classical idea first germinated in PDE control theory): Let the respective
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Dirichlet and Neumann maps Ds : L2(Γs)→ L2(Ωf), Nf : L2(Γf)→ L2(Ωf)
be given by:

h = Ds(g)⇔


∆h = 0 in Ωf ,
h = g on Γs,
∂h

∂ν
= 0 on Γf ,

(2.4)

h = Nf(g)⇔


∆h = 0 in Ωf ,
h = 0 on Γs,
∂h

∂ν
= g on Γf ,

(2.5)

(and so each map gives rise to a harmonic extension of boundary data).
Then by elliptic regularity (see, e.g., [14]), the maps satisfy, for all real r,

Ds ∈ L(Hr(Γs), Hr+1/2(Ωf)), Nf ∈ L(Hr(Γf), Hr+3/2(Ωf)).

With this operator-theoretic machinery in hand, the solution of (2.1)–(2.3)
can then be written, for fixed t ∈ (0, T ), as

(2.6) p(t) = Ds

[(
∂u(t)
∂ν

· ν − ∂w(t)
∂ν

· ν
)
Γs

]
+Nf [(∆u(t) · ν)Γf

] in Ωf .

If we now define the linear maps G1 and G2 via

G1w ≡ ∇
(
Ds

[(
∂w

∂ν
· ν
)
Γs

])
,(2.7)

G2u ≡ −∇
(
Ds

[(
∂u

∂ν
· ν
)
Γs

]
+Nf [(∆u · ν)Γf

]
)
,(2.8)

then these and the expression in (2.6) allow one to write the fluid PDE
component of the system (1.1)–(1.3) in terms of u and w alone; that is,
pressure is eliminated from the Stokes equation in (1.1)–(1.3), so as to have

(2.9) ut = ∆u+G1w +G2u in (0, T )×Ωf .

3. The fluid-structure generator and its domain of definition

3.1. The explicit form of the generator. Owing to the maps Gi, defined
in (2.7) and (2.8), which allow the fluid flow component of (1.1)–(1.3) to
be rewritten as the pressure-free equation (2.9), we can now construct a
linear operator A : D(A) ⊂ H→ H which can be used to abstractly model
(1.1)–(1.3): To wit, the fluid-structure system (1.1)–(1.3) may be written as

d

dt

wwt
u

 = A

wwt
u

 ,
[w(0), wt(0), u(0)] = [w0, w1, u0] ∈ H,

(3.1)
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where

(3.2) A ≡

 0 I 0
∆− I 0 0
G1 0 ∆+G2

 .
Of course, the domain of definition, D(A) ⊂ H→ H, must also be specified
here. In addition, and much more to the point: If A : D(A) ⊂ H→ H is to
generate a semigroup {eAt}t≥0⊂L(H)—and so the solution [w(t), wt(t), u(t)]
to (1.1)–(1.3) is obtained by applying eAt to initial data [w0, w1, u0]—then
the domain D(A) should be constructed so as to allow for the existence of
just such a semigroup. In particular, if A : H → H is maximal dissipative
with respect to the specified domain D(A), then {eAt}t≥0 ⊂ L(H) would
exist as a contraction C0 semigroup, by the Lumer–Phillips theorem.

Therefore, an appropriate definition of D(A) is all important here. Our
statement concerning the D(A) will be explicit and outright. This is in
contrast to what was done in [1], wherein Range(A) is first carefully char-
acterized (1), and then the domain D(A), with all its intrinsic features, is
given via the relation D(A) = A−1(Range(A)); see Theorem 2.1 of [1]. (We
should also make mention of the paper [2], in which a generator represen-
tation is derived for a more complicated fluid-structure system, involving
Stokes flow and the Lamé system of elasticity, with the generator domain
also being explicitly identified.)

Before stating D(A) explicitly, we first need some preliminaries.

Proposition 1. Suppose an L2(Ωf)-function % satisfies ∆% ∈ L2(Ωf).
Then one has the following boundary trace estimate:

(3.3) ‖%|∂Ωf
‖H−1/2(∂Ωf)

+
∥∥∥∥∂%∂ν

∣∣∣∣
∂Ωf

∥∥∥∥
H−3/2(∂Ωf)

≤ C{‖%‖L2(Ωf) + ‖∆%‖L2(Ωf)}.

Proof. Since the Sobolev trace map

γ ∈ L(H2(Ωf), H3/2(∂Ωf)×H1/2(∂Ωf))

is surjective, where γf =
[
f
∣∣
∂Ωf

, ∂f∂ν
∣∣
∂Ωf

]
for f ∈ C∞(Ωf), there exists a

continuous right inverse γ+ ∈ L(H3/2(∂Ωf)×H1/2(∂Ωf), H2(Ωf)). That is,
γγ+([φ1, φ2]) = [φ1, φ2] for all [φ1, φ2] ∈ H3/2(∂Ωf) ×H1/2(∂Ωf). Thus, by
Green’s Theorem we have for % (initially smooth enough) and any [φ1, φ2] ∈
H3/2(∂Ωf)×H1/2(∂Ωf),

(1) In fact, it is shown in [1] that Range(A) = {[g0, g1, f0] ∈ H :
	
Γs
g0 · ν dΓs = 0}.
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�

∂Ωf

%φ2 d∂Ωf

=
�

Ωf

%∆γ+([φ1, φ2]) dΩf +
�

Ωs

∇% · ∇γ+([φ1, φ2]) dΩf

=
�

Ωf

%∆γ+([φ1, φ2]) dΩf −
�

Ωf

∆%γ+([φ1, φ2]) dΩf +
�

∂Ωf

∂%

∂ν
φ1 d∂Ωf ,

whence we obtain the estimate (3.3), for smooth %. A density argument
concludes the proof.

Lemma 2. Suppose a pair (µ, %) ∈ [L2(Ωf)]n × L2(Ωf) has the following
properties:

(i) µ ∈ [H1(Ωf)]n;
(ii) div(µ) = 0;
(iii) −∆µ+∇% = h, where h ∈ [L2(Ωf)]n and div(h) = 0.

Then one has the additional boundary regularity for the pair (µ, %):

%|∂Ωf
∈ H−1/2(∂Ωf),

∂%

∂ν

∣∣∣∣
∂Ωf

∈ H−3/2(∂Ωf),

∂µ

∂ν

∣∣∣∣
∂Ωf

∈ [H−1/2(∂Ωf)]n, [(∆µ) · ν]∂Ωf
∈ H−3/2(∂Ωf).

Proof. From the assumption in (iii) we infer that the L2-function % is
harmonic: in fact, taking the divergence of both sides of the equation in (iii),
we have

∆% = div(∆µ) + div(h) = 0,

since µ and the forcing term h are each solenoidal. Consequently, Proposi-
tion 1 provides a meaning (continuously) to the boundary traces

(3.4) %|∂Ωf
∈ H−1/2(∂Ωf),

∂%

∂ν

∣∣∣∣
∂Ωf

∈ H−3/2(∂Ωf).

In turn, the given Dirichlet trace for square integrable %, combined with an
application of Green’s formula, shows that ∇% is in [(H1(Ωf))n]′, not merely
in (H−1(Ωf))n. Therefore, the variable µ ∈ [H1(Ωf)]n satisfies the elliptic
equation

−∆µ = −∇%+ h ∈ [(H1(Ωf))n]′.

Appealing then to elliptic theory (see, e.g., p. 71, Theorem 3.8.1 of [10]), we
see that continuously,

(3.5)
∂µ

∂ν

∣∣∣∣
∂Ωf

∈ [H−1/2(∂Ωf)]n.
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Finally, taking the dot product of both sides of the equation in (iii) with
an appropriate extension of the normal vector, and restricting the resulting
relation to ∂Ωf , we obtain

(3.6) [(∆µ) · ν]∂Ωf
=
∂%

∂ν

∣∣∣∣
∂Ωf

− [h · ν]∂Ωf
∈ H−3/2(Ωf)

(implicitly, we are also using the fact that since h∈ [L2(Ωf)]3 and div(h) = 0,
the trace [h · ν]∂Ωf

is well-defined as an element in H−1/2(∂Ωf); see Propo-
sition 1.4 of [6]). The procurement of (3.4), (3.5) and (3.6) now completes
the proof of Lemma 2.

3.2. Domain of A : H → H. We are now in a position to set the
domain of the operator A : H→ H, as defined in (3.2). The subspace D(A)
is composed of all [w0, w1, u0] ∈ H which satisfy the following:

(A.1) [w0, w1, u0] ∈ [H1(Ωs)]n × [H1(Ωs)]n × ([H1(Ωf)]n ∩Hf .
(A.2) On the boundary portion Γf , the fluid component u0|Γf

is zero.
(A.3) The structural component w0 satisfies ∆w0 ∈ [L2(Ωs)]n. (So by

elliptic theory ∂w0
∂ν

∣∣
Γs

is well-defined as an element of [H−1/2(Γs)]n;
see, e.g., p. 71, Theorem 3.8.1 of [10].)

(A.4) The components obey the following relation on the boundary in-
terface Γs:

u0 = w1 on Γs.

(A.5) For the given data [w0, w1, u0], there exists a corresponding “pres-
sure” function π0 ∈ L2(Ωf) such that:

(A.5a) The pair (u0, π0) satisfies

−∆u0 +∇π0 ∈ Hf .

Consequently, we have, continuously, by Lemma 2,

π0|∂Ωf
∈ H−1/2(∂Ωf),

∂π0

∂ν

∣∣∣∣
∂Ωf

∈ H−3/2(∂Ωf),

∂u0

∂ν

∣∣∣∣
∂Ωf

∈ [H−1/2(∂Ωf)]n, [(∆u0) · ν]∂Ωf
∈ H−3/2(∂Ωf).

(A.5b) The components [u0, w0] and the associated pressure func-
tion π0 obey the following relation on the boundary inter-
face Γs:

∂u0

∂ν
− ∂w0

∂ν
= π0ν on Γs.
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Note that, as we showed outright in generating the BVP (2.1)–(2.3), the
function π0 a fortiori satisfies the following BVP:

∆π0 = 0 in Ωf ,

∂π0

∂ν
= (∆u) · ν on Γf ,

π0 =
(
∂u0

∂ν
− ∂w0

∂ν

)
· ν on Γs.

Consequently, we can then use the elliptic maps Ds and Nf , defined respec-
tively in (2.4) and (2.5), so as to identify this pressure π0 associated with
the triple [w0, w1, u0], through the relation

π0 = p(u0, w0)(3.7)

= Ds

{[(
∂u0

∂ν
− ∂w0

∂ν

)
· ν
]
Γs

}
+Nf{[(∆u0) · ν]Γf

},

whence we obtain

∇π0 = ∇p(u0, w0) = −G1w0 −G2u0,

where the Gi are as defined in (2.7) and (2.8). Note how the trace regularity
result in Lemma 2 has allowed for a meaningful application of the maps G1

and G2. This means that our definition (A1)–(A5) of D(A) is consistent in
that one truly has w0

w1

u0

 ∈ D(A)⇒ A

w0

w1

u0

 ∈ H.

3.3. Semigroup wellposedness of (1.1)–(1.3). For the fluid structure mo-
del A : D(A) ⊂ H → H, as defined in (3.2) and (A1)–(A5), we do in fact
have semigroup generation.

Theorem 3.

(i) The operator A : D(A) ⊂ H → H generates a contraction C0-
semigroup {eAt}t≥0 on H. Thus, given [w0, w1, u0] ∈ H, the solution
[w,wt, u] ∈ C([0, T ]; H) of (1.1)–(1.3) is given byw(t)

wt(t)
u(t)

 = eAt

w0

w1

u0

 .
Moreover , the fluid component has the additional regularity

(3.8) u ∈ L2(0, T ; [H1(Ωf)]n).

(ii) If [w0, w1, u0] ∈ D(A), then one has the additional regularity for the
solution [w,wt, u] of (1.1)–(1.3):
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(ii.a) [w,wt, u] ∈ C([0, T ];D(A)), p ∈ C([0, T ];L2(Ωf)), with pres-
sure p being given by the expression

(ii.b) p = Ds

{[(
∂u

∂ν
− ∂w

∂ν

)
· ν
]
Γs

}
+Nf{[(∆u) · ν]Γf

}.

Combining the regularity for u in (3.8) with the Sobolev Trace Theorem
and the boundary condition in (1.2), we also have

Corollary 4. Given [w0, w1, u0] ∈ H, the mechanical velocity compo-
nent of the solution [w,wt, u] to (1.1)–(1.3) satisfies

wt|Γs ∈ L2(0, T ; [H1/2(Γs)]n).

The proof of Theorem 3(i) is given in the next section. On establishing
the existence of a fluid-structure semigroup {eAt}t≥0 ⊂ L(H), Theorem 3(ii)
is an immediate consequence of semigroup theory (see, e.g., [15]) and the
necessary expression for the pressure function given in (3.7).

As we said in our earlier remarks, Theorem 3 was originally proved in [1].
We will give here, however, a very different maximality argument than that
presented in [1], an argument which will ultimately allow for a divergence
free FEM method.

4. The proof of Theorem 3

4.1. The proof of the dissipativity of A : D(A) ⊂ H→ H. The dissipa-
tivity argument has been provided in [1], but we sketch it here for the sake
of completeness, at least for real-valued functions. If [v1, v2, f ] ∈ D(A), then
there exists a pressure function π ∈ L2(Ωf) such that [v1, v2, f, π] has the
properties (A1)–(A5) above. Thus, all the computations to be done below
are wholly justified: Through the definition of A : D(A) ⊂ H→ H in (3.2),
we have

(4.1)

A
v1v2
f

 ,
v1v2
f




H

=


 v2

∆v1 − v1
∆f −∇π

 ,
v1v2
f




H

= (∇v2,∇v1)Ωs + (v2, v1)Ωs + (∆v1 − v1, v2)Ωs + (∆f −∇π, f)Ωf

= (∆v1, v2)Ωs + (∇v2,∇v1)Ωs + (∆f, f)Ωf
− (∇π, f)Ωf

(note that we are implicitly using the fact that ∆f,∇p ∈ [[H1(Ωf)]n]′ (from
(A.5a), and ∆v1 ∈ [L2(Ωs)]n (from (A.3)).

(i) A subsequent invocation of Green’s Theorem to the first term on the
right hand side of (4.1) gives

(4.2) (∆v1, v2)[L2(Ωs)]n = −(∇v1,∇v2)Ωs −
〈
v2,

∂v1
∂ν

〉
Γs

,
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where 〈·, ·〉Γs denotes the duality pairing of [H1/2(Γs)]n with [H−1/2(Γs)]n

(we are also implicitly using the fact that the normal vector ν(x) is interior
with respect to Ωs). Using again the definition of D(A), we note that f |Γs =
v2|Γs (from (A.4)), and ∂f

∂ν −
∂v1
∂ν = πν on Γs (from (A.5b)), which combined

with (4.2) yields

(4.3) (∇v1,∇v2)Ωs + (∆v1, v2)Ωs = 〈π, v2 · ν〉Γs −
〈
f,
∂f

∂ν

〉
Γs

.

(ii) For the third term on the right hand side of (4.1): Another invocation
of Green’s Theorem, and the fact that f |Γf

= 0 (from (A.2)) yields

(4.4) (∆f, f)Ωf
= −

�

Ωf

|∇f |2 dΩf +
〈
f,
∂f

∂ν

〉
Γs

.

(iii) For the fourth term on the right hand side of (4.1): By Green’s
formula, (A.2), the divergence free imposition in (A.1), and (A.4),

−(∇π, f)Ωf
= −〈π, f · ν〉∂Ωf

+ (π,div(f))Ωf
= −〈π, v2 · ν〉Γs .(4.5)

Applying now (4.3)–(4.5) to the right hand side of (4.1) producesA
v1v2
f

 ,
v1v2
f




H

= −
�

Ωf

|∇f |2 dΩf ≤ 0,

which demonstrates the asserted dissipativity of A.

4.2. The proof of the maximality of A : D(A) ⊂ H → H. As we have
said, our maximality argument here is very different than that presented in
[1] in that it is constructive. It will make use of the classical Babuška–Brezzi
Theorem, which we recall here:

Theorem 5 (see, e.g., p. 116 of [11]). Let Σ,Υ be Hilbert spaces and
a : Σ ×Σ → R, b : Σ × Υ → R bilinear forms which are continuous. Let

Z = {η ∈ Σ : b(η, %) = 0 for every % ∈ Υ}.
Assume that a(·, ·) is Z-elliptic, i.e., there exists a constant α > 0 such that

a(η, η) ≥ α‖η‖2Σ for every η ∈ Z.
Assume further that there exists a constant β > 0 such that

(4.6) sup
τ∈Σ

b(τ, %)
‖τ‖Σ

≥ β‖%‖Υ for every % ∈ Υ.

Then for any κ ∈ Σ and l ∈ Υ , there exists a unique pair (η̂, %̂) ∈ Σ × Υ
such that

a(η̂, τ) + b(τ, %̂) = (κ, τ)Σ for every τ ∈ Σ,
b(η̂, %) = (l, %)V for every % ∈ Υ.
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We will use this result to show that for any λ > 0, Range(λI −A) = H.
To this end, we consider the task of finding, for given [v∗1, v

∗
2, f
∗] ∈ H, a

solution [v1v2, f ] ∈ D(A) of the equation

(4.7) (λI −A)

v1v2
f

 =

v
∗
1

v∗2
f∗

,
where again A is as defined in (3.2) and (A.1)–(A.5). Componentwise, the
equation yields:

[v1, v2, f ] ∈ [H1(Ωs)]n × [H1(Ωs)]n × ([H1(Ωf)]n ∩Hf),(4.8)
λv1 − v2 = v∗1 in [H1(Ωs)]n,(4.9)

λv2 −∆v1 + v1 = v∗2 in [L2(Ωs)]n,(4.10)
λf −∆f +∇π = f∗ in Hf .(4.11)

As [v1, v2, f ] ∈ D(A), we also have the additional relations

f |Γf
= 0 on Γf ,(4.12)

f |Γs = v2 on Γs,(4.13)
∂f

∂ν
− ∂v1
∂ν

= πν in Γs,(4.14)

div(f) = 0 a.e. in Ωf ,(4.15)

(note that from (A.3) and (A.5), the equality in (4.14) is taken to be in
[H−1/2(Γs)]n). Substituting (4.9) into the PDE (4.10) and the boundary
condition (4.13) yields now the BVP

(4.16)
{
λ2v1 −∆v1 + v1 = v∗2 + λv∗1 in Ωs,
v1 = 1

λ [f + v∗1] on Γs.
We will write out the “solution” of this system. To do this, we first define
Dλ : [L2(Γs)]n → [L2(Ωs)]n as follows: g = Dλ(h) if and only if g solves the
following elliptic problem:

(4.17)
{

(λ2 + I −∆)g = 0 in Ωs,
g|Γs = h on Γs.

By elliptic theory, Dλ ∈ L([Hr(Γs)]n, [Hr+1/2(Ωs)]n) for all real r (see [14]).
Secondly, we define Aλ : D(Aλ)→ [L2(Ωs)]n by

(4.18) Aλω = (λ2 + I −∆)ω, D(Aλ) = H2(Ωs) ∩H1
0 (Ωs).

As defined, Aλ is positive self-adjoint, with bounded inverse on [L2(Ωs)]n.
With the operators defined in (4.17) and (4.18), the solution v1 of (4.16)
then admits of the expression

(4.19) v1 =
1
λ
Dλ(f |Γs) +

1
λ
Dλ(v∗1|Γs) + A−1

λ (v∗2 + λv∗1) ∈ [H1(Ωs)]n.
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Since the variable f is unknown, we of course have not really solved any-
thing yet. But let us turn our attention now to finding the fluid component
of (4.7), which solves the system (4.11), vanishes on Γf , and is divergence
free. Using the Hilbert space H1

Γf ,0
(Ωf) ≡ {φ ∈ [H1(Ωf)]n : φ|Γf

= 0}, we
multiply (4.11) by φ ∈ H1

Γf ,0
(Ωf), and subsequently invoke Green’s formula,

to obtain

(4.20) λ(f, φ)Ωf
+ (∇f,∇φ)Ωf

−
〈
φ,
∂f

∂ν

〉
Γd

+ (∇π, φ)Ωf

= (f∗, φ)Ωf
for all φ ∈ H1

Γf ,0
(Ωf)

(in this computation, we are again implicitly using the fact that [v1, v2, f ] ∈
D(A) ⇒ f ∈ [H1(Ωf)]n, ∆f ∈ ([H1(Ωf)]n)′, ∂f/∂ν ∈ [H−1/2(∂Ω)]n).
Moreover, since π ∈ L2(Ωf) (from (A.1)), and ∇π ∈ ([H1(Ωf)]n)′ and
π|Γ ∈ H−1/2(∂Ωs) (from (A.5a)), we can use Green’s formula to have

(4.21) (∇π, φ)Ωf
= −(π,div(φ))Ωf

+ 〈π, φ · ν〉Γs for all φ ∈ H1
Γf ,0

(Ωf).

Combining relations (4.20) and (4.21), and considering the boundary con-
dition in (A.5b), we then have the variational relation

(4.22) λ(f, φ)Ωf
+ (∇f,∇φ)Ωf

−
〈
∂v1
∂ν

, φ|Γs

〉
Γs

− (π,div(φ))Ωf

= (f∗, φ)Ωf
for all φ ∈ H1

Γf ,0
(Ωf).

We further refine the boundary term on the left hand side: With the elliptic
map Dλ as defined in (4.17), and recalling the elliptic BVP (4.16) satisfied
by v1, we have, for all φ ∈ H1

Γf ,0
(Ωf),

(4.23) −
〈
∂v1
∂ν

, φ|Γs

〉
Γs

= (∆v1, Dλ(φ|Γs
))Ωs + (∇v1,∇Dλ(φ|Γs

))Ωs

= (∇v1,∇Dλ(φ|Γs
))Ωs + ([λ2 + 1]v1 − v∗2 − λv∗1, Dλ(φ|Γs

))Ωs

(note that we are also implicitly using the fact that the normal vector ν is
interior to Ωs). Substituting the expression (4.23) into the right hand side
of (4.22), and recalling (4.19), we finally arrive at the following abstract
equation in unknowns f and π:

aλ(f, φ)− (π,div(φ))Ωf
= F(φ) for all φ ∈ H1

Γf ,0
(Ωf),

where the bilinear form aλ(·, ·) : H1
Γf ,0

(Ωf)×H1
Γf ,0

(Ωf)→ R is defined by

(4.24) aλ(ψ, φ) = λ(ψ, φ)Ωf
+ (∇ψ,∇φ)Ωf

+
1
λ

(∇Dλ(ψ|Γs),∇Dλ(φ|Γs))Ωs

+
λ2 + 1
λ

(Dλ(ψ|Γs), Dλ(φ|Γs))Ωs for all ψ, φ ∈ H1
Γf ,0

(Ωf),
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and the forcing term F ∈ [H1
Γf ,0

(Ωf)]′ is given by

(4.25) F(φ) ≡ (f∗, φ)Ωf
+ (v∗2 + λv∗1, Dλ(φ|Γs))Ωs

− (λ2 + 1)
(

1
λ
Dλ(v∗1|Γs) + A−1

λ (v∗2 + λv∗1), Dλ(φ|Γs)
)
Ωs

−
(
∇Dλ

(
1
λ
v∗1|Γs

)
+∇A−1

λ [v∗2 + λv∗1],∇Dλ(φ|Γs)
)
Ωs

for all φ ∈ H1
Γf ,0

(Ωf).

If we now define the bilinear form b(·, ·) : H1
Γf ,0

(Ωf)× L2(Ωf)→ R by

(4.26) b(φ, %) ≡ −(%, div(φ))L2(Ωf)

for all φ ∈ H1
Γf ,0

(Ωf) and % ∈ L2(Ωf), then we are steered into the problem
of finding a pair [f, π] ∈ H1

Γf ,0
(Ωf)× L2(Ωf) which solves

(4.27)
aλ(f, φ) + b(φ, π) = F(φ) for all φ ∈ H1

Γf ,0
(Ωf),

b(f, %) = 0 for all % ∈ L2(Ωf)

(note that the second equation in this system comes from the need to have
the fluid component of the solution to (4.7) divergence free).

Lemma 6. The coupled variational system of equations (4.27), for the
given data [v∗1, v

∗
2, f
∗] ∈ H, has a unique solution [f, π] ∈ H1

Γf ,0
(Ωf)×L2(Ωf).

Proof. We wish to employ Theorem 5, with Σ ≡ H1
Γf ,0

(Ωf), Υ ≡ L2(Ωf),
and

Z ≡ {φ ∈ H1
Γf ,0

(Ωf) : div(φ) = 0}.

As defined respectively in (4.24) and (4.26), aλ(·, ·) and b(·, ·) are readily
seen to be continuous (after taking in account the regularity of Dλ and Aλ

in (4.17) and (4.18).
Moreover, aλ(·, ·) is elliptic in all of H1

Γf ,0
(Ωf): In fact, using the definition

of aλ(·, ·) in (4.24), we have, for all φ ∈ H1
Γf ,0

(Ωf),

aλ(φ, φ) ≥ ‖∇φ‖2Ωf
,

which establishes the asserted ellipticity (of course we are also using Poin-
caré’s inequality, valid here since the test function φ vanishes on Γf). The
main issue here, then, is the verification of the inf-sup condition (4.6). To
this end, let η ∈ L2(Ωf) be given. Subsequently, let ω ∈ H1

Γf ,0
(Ωf) be the

solution of the boundary value problem

(4.28)


div(ω) = −η in Ωf ,
ω|Γf

= 0 on Γf ,

ω|Γs = −
(
	
η dΩs)

meas(Γs)
ν on Γs.
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That such a solution ω ∈ H1
Γf ,0

(Ωf) exists follows from [9, p. 127] (inasmuch
as the data in (4.28) satisfy the needed compatibility conditions). More-
over, one has in [9] the following estimate for the solution for some positive
constant C:

‖∇ω‖Ωf
≤ C‖η‖Ωf

.

We then have, for the given L2-function η,

sup
φ∈H1

Γf ,0
(Ωf)

b(φ, η)
‖∇φ‖Ωf

= sup
φ∈H1

Γf ,0
(Ωf)

−
	
η div(φ) dΩf

‖∇φ‖Ωf

≥
−
	
η div(ω) dΩf

‖∇ω‖Ωf

=
	
η2 dΩf

‖∇ω‖Ωf

=
‖η‖2Ωf

‖∇ω‖Ωf

≥ 1
C
‖η‖Ωf

.

Thus, the inf-sup condition (4.6) is satisfied, and the Babuška–Brezzi The-
orem can be applied so as to yield a unique pair [f, π] ∈ H1

Γf ,0
(Ωf)×L2(Ωf)

which solves the system (4.27).

We now finish the proof of maximality by using the pair [f, π] obtained
from Lemma 6, and the relation (4.19), to recover the solution components
v1 and v2 of (4.7) (and of course we must also justify that [v1, v2, f ] ∈ D(A),
as given in (A.1)–(A.5)).

To start, since [f, π] ∈ H1
Γf ,0

(Ωf)×L2(Ωf) solves the variational relation
(4.27), we infer from the second equation that

(4.29) f ∈ H1
Γf ,0

(Ωf) with div(f) = 0 in Ωf .

Moreover, from (4.27) we infer, after integrating by parts in the first equa-
tion, that f ∈ H1

Γf ,0
(Ωf) ∩Hf satisfies

λ(f, φ)Ωf
− (∆f, φ)Ωf

+ (∇π0, φ)Ωf
= (f∗, φ)Ωf

for all φ ∈ [D(Ωf)]n.

Thus,

(4.30) λf −∆f +∇π0 = f∗.

Hence, from Lemma 2, we have the additional regularity for the pair [f, π] ∈
(H1

Γf ,0
(Ωf) ∩Hf)× L2(Ωf):

(4.31)

π0|∂Ωf
∈ H−1/2(∂Ωf),

∂π0

∂ν

∣∣∣∣
∂Ωf

∈ H−3/2(∂Ωf),

∂f

∂ν

∣∣∣∣
∂Ωf

∈ [H−1/2(∂Ωf)]n, [(∆f) · ν]∂Ωf
∈ H−3/2(∂Ωf).

In turn, we can recover the elastic variable v1 by means of the relation
in (4.19). Thus, by construction we have

v1 ∈ [H1(Ωs)]n
{
λ2v1 −∆v1 + v1 = v∗2 + λv∗1 in Ωs,
v1 = 1

λ [f + v∗1] on Γs.
(4.32)
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From this expression, we also infer that

(4.33) ∆v1 ∈ [L2(Ωs)]n.

We now show that this newly found variable v1 also satisfies the needed
boundary relation (4.14). Since [f, π] ∈ H1

Γf ,0
(Ωf)×L2(Ωf) solves (4.27), we

then have the relation (after again using the expression for v1 in (4.19))

λ(f, φ)Ωf
+ (∇f,∇φ)Ωf

+ (∇v1,∇Dλ(φ|Γs))Ωs

+ [λ2 + 1](v1, Dλ(φ|Γs))Ωs − (π,div(φ))Ωf

= (f∗, φ)Ωf
+ (v∗2 + λv∗1, Dλ(φ|Γs))Ωs for all φ ∈ H1

Γf ,0
(Ωf).

Integrating by parts, and using the trace regularity posted in (4.31), we have

λ(f, φ)Ωf
− (∆f, φ)Ωf

+
〈
∂f

∂ν
, φ|Γs

〉
Γs

− (∆v1, Dλ(φ|Γs))Ωs −
〈
∂v1
∂ν

, φ|Γs

〉
Γs

+ [λ2 + 1](v1, Dλ(φ|Γs))Ωs + (∇π, φ)Ωf
− 〈πν, φ|Γs〉Γs

= (f∗, φ)Ωf
+ (v∗2 + λv∗1, Dλ(φ|Γs))Ωs for all φ ∈ H1

Γf ,0
(Ωf).

Applying now the equations in (4.30) and (4.32), solved by f and v1 respec-
tively, we obtain〈

∂f

∂ν
, φ|Γs

〉
Γs

−
〈
∂v1
∂ν

, φ|Γs

〉
Γs

− 〈πν, φ|Γs〉Γs = 0 for all φ ∈ H1
Γf ,0

(Ωf),

from which (and the surjectivity of the Sobolev trace map) we now infer
that

(4.34)
[
∂f

∂ν
− ∂v1
∂ν

]
Γs

= πν|Γs
in [H−1/2(Γs)]n.

Finally, we set

(4.35) v2 = λv1 − v∗1 ∈ [H1(Ωs)]n.

From the boundary value in (4.16), we see in turn that

(4.36) v2|Γs
= [f + v∗1]Γs

− v∗1|Γs
= f |Γs

.

Collecting now the properties (4.29)–(4.33) and (4.34)–(4.36) establishes
the range condition (4.7), with solution [v1, v2, f ] ∈ D(A), as prescribed in
(A.1)–(A.5). This concludes the proof of maximality.

Having thus shown that the fluid-structure generator A : D(A)⊂H→H
is maximal dissipative, contraction semigroup generation follows from the
Lumer–Phillips Theorem. The proof of the extra regularity (3.8) follows
from a standard energy method applied to the system (1.1)–(1.3), which
starts by multiplying the fluid equation of (1.1) by u, the elastic equation
in (1.1) by wt and integrating in time and space. This concludes the proof
of Theorem 3.
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5. A numerical algorithm for approximating the solution of the
fluid-structure equation (4.7). Here, we give a brief description of how
the maximality argument set down in Section 4.2 can be used to numerically
approximate the solution to the given fluid-structure interactive system. We
put emphasis here on formulation and implementation; convergence analysis
of the FEM below will be provided in another paper. Also, we will focus on
the static equation in (4.7); however, this static equation can in turn be
invoked to approximate solutions of the time evolving system (1.1)–(1.3),
via the exponential formulaw(t)

wt(t)
u(t)

 = eAt

w0

w1

u0

 = lim
n→∞

(
I − t

n
A
)−n w0

w1

u0

 for

w0

w1

u0

 ∈ H

(see, e.g., p. 91 of [15], as well as the approximation schemes of Corollary
5.6 therein).

5.1. The numerical procedure. We will operate here with a view to
finding a finite-dimensional approximation [(v1)h, (v2)h, fh] to the solution
[v1, v2, f ] of the equation (4.7), for given [v∗1, v

∗
2, f
∗] of H. With h being (as

usual) a parameter of discretization with respect to the geometry {Ωf , Ωs},
then: (i) Let Vh ⊂ H1

Γf ,0
(Ωf) be a finite-dimensional approximating subspace

of H1
Γf ,0

(Ωf); (ii) let Πh ⊂ L2(Ωf) be an approximating subspace of L2(Ωf);
(iii) let Wh ⊂ [H1

0 (Ωs)]n be an approximating subspace of [H1
0 (Ωs)]n. Our

Ritz–Galerkin method will take its cue from the maximality argument out-
lined in Section 4.2. Namely, we find a pair (fh, πh) which uniquely solves
the following variational relation (cf. (4.27)):

(5.1)
aλ(fh, φh) + b(φh, πh) = F(φh) for all φh ∈ Vh,

b(fh, %h) = 0 for all %h ∈ Πh,

where the bilinear forms aλ(·, ·) and b(·, ·) are respectively defined in (4.24)
and (4.26), and the functional F(·) is as given in (4.25) (note that we are
making no assumptions that the approximating fluid subspace Vh comprises
divergence free functions; this is the positive virtue of such a mixed formu-
lation; see [5]). Assuming we can solve the finite-dimensional system for the
unknowns [fh, πh] ∈ Vh × Πh (in particular, assuming the approximating
subspaces {Vh, Πh} are such that the inf-sup condition (4.6) is satisfied, see
[5]) we can subsequently recover the approximation (v1)h in the following
manner: Let a fixed υ∗ ∈ [H1(Ωs)]n satisfy υ∗|Γs

= λ−1[f + v∗1]. Then with
W̃h ≡ {ξh = ψh + υ∗ : ψh ∈ Wh}, we obtain (v1)h to be the unique element
in W̃h which solves

λ2((v1)h, ψh)Ωs + (∇[(v1)h],∇ψh)Ωs = (v∗2 + λv∗1, ψh)Ωs for all ψh ∈Wh
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(cf. (4.16)). In turn, an approximation (v2)h to the structural term v2 can
be obtained via the relation

(v2)h = λ(v1)h − v∗1
(cf. (4.9)).

5.2. A numerical example. The procedure described above is considered
in the context of a specific numerical example, with solid domain Ωs =
(1/3, 2/3)2, and fluid domain Ωf = (0, 1)2 \ [1/3, 2/3]2; see Figure 2.

Fig. 2. The fluid-structure geometry of the numerical example

We will consider the task of approximating the solution of equation (4.7),
with data

(5.2)

v
∗
1

v∗2
f∗

 = λ

η0
0

 ,
where η is the unique solution of the elliptic problem

(5.3) ∆η − η = 0 in Ωs,
∂η

∂ν
= ν on Γs

(where again ν is the unit normal vector, interior with respect to Ωs). It is
shown in [1] that [η, 0, 0] is an eigenfunction corresponding to the eigenvalue
zero of the fluid-structure generator A : D(A) ⊂ H → H, as given in (3.2)
and (A.1)–(A.5). (So the actual solution is [v1, v2, f ] = [η, 0, 0].) For the
canonical geometry Ωs = (1/3, 2/3)× (1/3, 2/3), the solution η of (5.3) can
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be explicitly computed as:

η(x, y) = [1− (cosh(1/3)−cosh(2/3)) sinh(1/3)
sinh(2/3) cosh(1/3)−sinh(1/3) cosh(2/3)

] sinh(x)

cosh(1/3) + (cosh(1/3)−cosh(2/3)) cosh(x)
sinh(2/3) cosh(1/3)−sinh(1/3) cosh(2/3)

[1− (cosh(1/3)−cosh(2/3)) sinh(1/3)
sinh(2/3) cosh(1/3)−sinh(1/3) cosh(2/3)

] sinh(y)

cosh(1/3) + (cosh(1/3)−cosh(2/3)) cosh(y)
sinh(2/3) cosh(1/3)−sinh(1/3) cosh(2/3)

.
Moreover, from (A.5b), we see immediately that the pressure function

corresponding to data [η, 0, 0] is π = −1. This initial data (5.2) thus provides
a verifiable test problem for the Ritz–Galerkin method we described above.

Fig. 3. The fluid finite element mesh

Subsequently, we invoked here a basic FEM for the elliptic BVP (see, e.g.
[3]), which involves taking the aforesaid spaces Vh and Wh to be the linear
span of piecewise quadratic basis functions defined on triangular elements,
and Πh the linear span of piecewise linear basis functions defined over the
same triangular elements. In fact, our particular elements are uniform right
triangles, but this is only for computational ease here and of course is not
necessary in practice; see Figure 3.

Table 1. Finite element solution error

No. of elements Length of hypothenuse ‖fh − f‖1,Ωf ‖πh − π‖L2(Ωf )
‖(v1)h − v1‖1,Ωs

18 0.471405 3.36 · 10−4 2.08 · 10−4 3.01 · 10−3

72 0.235702 6.12 · 10−5 1.41 · 10−5 7.47 · 10−4

288 0.117851 1.11 · 10−5 1.53 · 10−6 1.85 · 10−4

1152 0.058926 2.04 · 10−6 1.81 · 10−7 4.58 · 10−5

4608 0.029463 3.85 · 10−7 2.39 · 10−8 1.14 · 10−5
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Table 1 details the error between the approximate and actual solution,
with λ = 1. In particular, the graphs of the solid displacement approximation
(v1)h are visually identical to those of the true solution v1 = η, with η as
given above. As we have said, a rigorous convergence analysis will be in our
forthcoming paper, and it will include the all-important verification of the
discrete inf-sup condition for the mixed variational formulation (5.1); see [5]
and references therein.
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PDE model of certain fluid-structure interactions, preprint, 2007.

[3] O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Prob-

lems: Theory and Computation, Academic Press, New York, 1984.
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