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DEFAULTABLE BONDS WITH AN INFINITE NUMBER
OF LÉVY FACTORS

Abstract. A market with defaultable bonds where the bond dynamics
is in a Heath–Jarrow–Morton setting and the forward rates are driven by
an infinite number of Lévy factors is considered. The setting includes rat-
ing migrations driven by a Markov chain. All basic types of recovery are
investigated. We formulate necessary and sufficient conditions (generalized
HJM conditions) under which the market is arbitrage-free. Connections with
consistency conditions are discussed.

Introduction. The paper is concerned with the market containing
a risk-free bond and defaultable bonds issued by companies. A default-
able bond will default with a certain probability before or at maturity
time T . The probabilities of defaults depend on economic conditions of the
firms and are reflected by rating classes assigned by rating agencies like
Standard&Poor’s or Moody’s. If a default does not occur an owner of the
bond receives, as in the case of default-free bond, one currency unit. In the
case of default the owner obtains a part of the promised payoff. This part
depends on the credit rating of the issuer of the bond and on the adopted
recovery scheme. To model defaultable bonds we use the intensity based mod-
els which are the basic way of modeling (see e.g. Bielecki and Rutkowski [1],
Lando [24]). In contrast to most papers on the subject, which use Brow-
nian motion for modeling (see e.g. Duffie and Singleton [12], Bielecki and
Rutkowski [1], [3]), we apply the theory of Lévy processes which admit dis-
continuous trajectories and contain many standard processes like Brownian
motion, Poisson processes, and generalized hyperbolic Lévy motion.

It is well known that using Lévy processes to modeling has many ad-
vantages (see e.g. Eberlein and Özkan [14], Eberlein and Kluge [13], Cont
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and Tankov [9], Özkan and Schmidt [25]) such as better calibration proce-
dure for real-world and also risk-neutral data. Eberlein and Raible [15] and
Eberlein and Özkan [14] used finite-dimensional Lévy processes with expo-
nential moments in some neighborhood of zero to model the term structure
of defaultable forward rates. They generalize the approach of Bielecki and
Rutkowski [1] to defaultable bonds with rating migration. This approach is
in the spirit of the Heath, Jarrow and Morton (hereafter HJM) methodo-
logy [17]. They assume that the real-world defaultable forward rates dynam-
ics as well as recovery schemes are exogenously specified and they establish
existence of an arbitrage-free model that supports these objects. More pre-
cisely, they show that if the intensity matrix process satisfies the so called
“consistency condition” then one can construct a rating migration process
and price processes of defaultable bonds with credit migration that are,
under an appropriate measure, local martingales after discounting. The con-
sistency conditions are interpreted as conditions on the intensity matrix of
the rating migration process. We should stress that these conditions do not
determine the intensity matrix process uniquely, so actually there can be
infinitely many transition matrix processes satisfying those systems of equa-
tions. Neither Bielecki and Rutkowski nor Eberlein and Özkan attempt to
generalize the HJM condition to a condition on the drift term which guaran-
tees that the HJM postulate is satisfied, i.e. that the discounted bond prices
are local martingales (see Definition 1.1).

In this paper we do this in the case of defaultable bonds. We cover all situ-
ations of practical importance. The same question in the infinite-dimensional
case was considered by Schmidt [27] with Brownian motion as a noise and by
Özkan and Schmidt [25] with Lévy noise and recovery of market value. [27]
gives necessary and sufficient conditions for discounted prices of defaultable
bonds to be martingales in the case of rating based recovery of market value
and recovery of treasury value. Özkan and Schmidt’s [25] approach is based
on Musiela parameterization and requires more stringent conditions on the
model than ours, since the Itô formula for processes with values in Hilbert
spaces is used. As we notice in Remark 3.3 their result is not true without
some additional assumptions.

In this paper we give the generalized HJM conditions in the case of
defaultable bonds and typical recovery schemes. We consider fractional re-
covery of market value, fractional recovery of treasury value and fractional
recovery of par value. The multiple default case introduced by Schönbu-
cher [29], which allows one to consider company reorganization, is discussed
as well. From the very beginning we assume that the Lévy processes may
be infinite-dimensional. The importance of treating models with an infinite
number of factors was stressed in recent papers of Carmona and Tehran-
chi [7], Ekeland and Taflin [16], Cont [8] and Schmidt [27].
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In Section 1 we recall basic facts on forward rates driven by Lévy pro-
cesses and the HJM-type condition for non-defaultable bonds provided that
the market is arbitrage-free. Next, in Section 2, we describe credit risk mod-
els with and without rating migration. The rating classes vary according to
a conditional continuous time Markov chain and the default time is equal to
the time of entering the worst rating class. In the main part (Section 3) we
give HJM-type conditions for defaultable bonds with credit migration. These
conditions depend on the form of recovery and the rating migration process.
From a structural point of view, all equations follow a similar pattern, where
one has the classical HJM drift condition plus an additional term, depending
on the particular recovery rate. All is proved under a natural assumption on
the default risk-adjusted short-term interest rate (Hypothesis (H1)). More
precisely, under Hypothesis (H1) we prove that in the general case the HJM
postulate is equivalent to the generalized HJM condition. It is worth men-
tioning that in a model in which all processes are continuous, we do not need
to assume (H1). Namely, (H1) plus the generalized HJM condition is then
equivalent to the HJM postulate. We also formulate generalized HJM con-
ditions in terms of the derivative of the logarithm of the moment generating
function of the Lévy noise (Section 4). These forms are much more useful
in applications (see e.g. [18]). In Section 5 we formulate, following [2], con-
sistency conditions involving the recovery structure, default intensities and
bond prices. We prove that these conditions are equivalent to the HJM type
conditions derived in the previous sections. Hence, under (H1), we can extend
and generalize the results of [1] and [14] to the case of infinite-dimensional
Lévy processes. The proofs of our results are given in the last section of the
paper. The present paper is a version of the preprint [20].

Summing up, the main contributions of the paper are necessary and suf-
ficient conditions (generalized HJM conditions) on the coefficients in the
definition of the forward rates ensuring that the discounted prices of de-
faultable bonds are martingales. These conditions are given for all typical
recovery schemes and with infinite-dimensional Lévy noise as the source of
uncertainty in the dynamics of defaultable forward rates, which is the most
general Lévy noise one can use. Our assumptions on the Lévy processes are
weaker than having exponential moments in some neighborhood of zero, as
in [14], [13] and [25].

1. Preliminaries. We will consider processes on a complete probabil-
ity space (Ω,F ,P). We take Lévy processes with values in some abstract
separable Hilbert space U as the source of uncertainty in our model. Let
Z be a Lévy process, i.e. a càdlàg process with independent and station-
ary increments and values in U with inner product denoted by 〈·, ·〉U . Let
F0
t = σ(Z(s); s ≤ t) be the σ-field generated by Z(t), t ≥ 0, and Ft be the
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completion of F0
t by all sets of P probability zero. It is known that this

filtration is right continuous, so it satisfies the “usual conditions”. We can as-
sociate with Z(t) a measure of its jumps, denoted by µ, i.e. for any A ∈ B(U)
such that A ⊂ U \ {0} we have

µ([0, t], A) =
∑

0<s≤t
1A(∆Z(s)).

The measure ν defined by

ν(A) = E(µ([0, 1], A))

is called the Lévy measure of the process Z. Stationarity of increments implies
that E(µ([0, t], A)) = tν(A). The Lévy–Khinchin formula shows that the
characteristic function of the Lévy process has the form

Eei〈λ,Z(t)〉U = etψ(λ),

with

ψ(λ) = i〈a, λ〉U −
1
2
〈Qλ, λ〉U +

�

U

(ei〈λ,x〉U − 1− i〈λ, x〉U1{|x|U≤1}(x)) ν(dx),

where a ∈ U , Q is a symmetric nonnegative nuclear operator on U , ν is a
measure on U with ν({0}) = 0 and�

U

(|x|2U ∧ 1) ν(dx) <∞.

Let b be the Laplace transform of ν restricted to the complement of the ball
{y : |y|U ≤ 1},

(1.1) b(u) =
�

|y|U>1

e−〈u,y〉U ν(dy),

and set
B = {u ∈ U : b(u) <∞}.

Z has the well-known Lévy–Itô decomposition:

Z(t) = at+W (t) + Z0(t),

where

Z0(t) =
t�

0

�

|y|U≤1

y (µ(ds, dy)− ds ν(dy)) +
t�

0

�

|y|U>1

y µ(ds, dy),

and W is a Wiener process with values in U and covariance operator Q.
Let r(t), t ≥ 0, be the short rate process and

Bt = e
	t
0 r(σ) dσ.

Let B(t, θ), 0 ≤ t ≤ θ ≤ T ∗, be the market price at time t of a risk-free bond
paying 1 at maturity time θ; T ∗ is a finite horizon of the model. The forward
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rate curve is a function f(t, θ) defined for t ≤ θ and such that

(1.2) B(t, θ) = e−
	θ
t f(t,s) ds.

It is convenient to assume that once a bond has matured its cash equivalent
goes to the bank account. Thus B(t, θ), the market price at time t of a bond
paying 1 at maturity time θ, is also defined for t ≥ θ by the formula

(1.3) B(t, θ) = e
	t
θ r(σ) dσ.

We postulate here the following dynamics for forward rates:

(1.4) df(t, θ) = α(t, θ)dt+ 〈σ(t, θ), dZ(t)〉U ,

where for each θ the processes α(t, θ), σ(t, θ), t ≤ θ, are assumed to be pre-
dictable with respect to the given filtration (Ft) and such that the integrals
in (1.4) are well defined. Sometimes we use another form of SDE for forward
rates,

(1.5) df(t) = α̃(t)dt+ σ̃(t)dZ(t),

where α̃(t) is a function on [0, T ∗] given by α̃(t)(θ) = α(t, θ) and σ̃(t) is a
linear operator from U into L2[0, T ∗] defined by

(σ̃(t)u)(θ) = 〈σ(t, θ), u〉U .

For t > θ we put

(1.6) α(t, θ) = σ(t, θ) = 0.

So we will assume that for given T ∗, the integrals in the definition of f exist
in the sense of the Hilbert space H = L2[0, T ∗] with scalar product (·, ·). We
will regard the coefficients α and σ as, respectively, H- and L(U,H)-valued
predictable processes.

It follows from (1.4) that for t ≤ θ,

f(t, θ) = f(0, θ) +
t�

0

α(s, θ) ds+
t�

0

〈σ(s, θ), dZ(s)〉U ,

and for t ≥ θ, according to (1.6),

f(t, θ) = f(0, θ) +
θ�

0

α(s, θ) ds+
θ�

0

〈σ(s, θ), dZ(s)〉U .

Thus the process f(t, θ) for t ≥ θ is constant for each θ > 0, say equal to
f(θ, θ), and it can be identified with the short rate process

r(θ) = f(θ, θ) = f(0, θ) +
θ�

0

α(s, θ) ds+
θ�

0

〈σ(s, θ), dZ(s)〉U .
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Definition 1.1. We say that the HJM postulate holds if the discounted
bond prices

B̂(t, θ) =
B(t, θ)
Bt

, t ≤ θ,

are local martingales for each θ ∈ [0, T ∗].

Since for t > u we have f(t, u) = f(u, u), it follows that

Bt = e
	t
0 f(u,u) du = e

	t
0 f(t,u) du,

and thus the discounted bond prices can be written as

B̂(t, θ) = e−
	θ
t f(t,u) due−

	t
0 f(t,u) du = e−

	θ
0 f(t,u) du,

and hence the HJM postulate is that the processes B̂(·, θ) , θ ∈ [0, T ∗], given
by

B̂(t, θ) = e−
	θ
0 f(t,u) du = e−(f(t),1[0,θ]),

are local martingales. We will assume that the processes Z, α and σ satisfy
the following conditions:

(A1a) The processes α and σ are predictable and with probability one
have bounded trajectories (the bound may depend on ω).

(A1b) For arbitrary r > 0 the function b given by (1.1) is bounded on
{u : |u| ≤ r, b(u) <∞}.

(A2) For all θ ≤ T ∗, P-almost surely,

(1.7)
θ�

t

σ(t, v) dv ∈ B

for almost all t ∈ [0, θ].

Our goal is to find a condition which ensures that the HJM postulate
holds (in fact this condition will, under some assumptions, be equivalent to
the HJM postulate). By analogy to the classical case we call this condition
the generalized HJM condition or the HJM-type condition.

It is convenient to express the generalized HJM condition in terms of the
Laplace exponent of the Lévy process Z, i.e. of the logarithm of the moment
generating function of Z, that is, the functional J : U → R given by

J(u) = − 〈u, a〉U +
1
2
〈Qu, u〉U +

�

{|y|U≤1}

(e−〈u,y〉U − 1 + 〈u, y〉U ) ν(dy)

+
�

{|y|U>1}

(e−〈u,y〉U − 1) ν(dy).

The following theorem, under other assumptions, goes back to the paper
[4] by Björk, Di Massi, Kabanov and Runggaldier (see also Eberlein and
Özkan [14]). We present it following Jakubowski and Zabczyk [21].
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Theorem A. Assume (A1) and (A2) hold. The discounted bond prices
are local martingales if and only if the following HJM-type condition holds:

(1.8) A(t, θ) = J(Σ(t, θ))

for each θ ∈ [0, T ∗] and almost all t ≤ θ, where

A(t, θ) :=
θ�

t

α(t, v) dv, Σ(t, θ) :=
θ�

t

σ(t, v) dv.

Using integration by parts and the dynamics of the bond, we obtain

Theorem 1.2. The processes of discounted price of the bond have the
following dynamics:

dB̂(t, θ) = B̂(t−, θ)
(
ā(t, θ)dt

+
�

U

[e−〈Σ(t,θ),y〉U − 1](µ(dt, dy)− dtν(dy))− 〈Σ(t, θ), dW (t)〉U
)
,

where

ā(t, θ) = −A(t, θ) + J(Σ(t, θ)).

Corollary 1.3. The process of discounted bond price can be written in
the following integral form:

B̂(t, θ) = B̂(0, θ) exp
(
−
t�

0

A(s, θ) ds−
t�

0

〈Σ(s, θ), dZ(s)〉U
)
,

and if the HJM-type condition (1.8) holds, then

B̂(t, θ) = B̂(0, θ) exp
(
−
t�

0

J(Σ(s, θ)) ds−
t�

0

〈Σ(s, θ), dZ(s)〉U
)
.

In what follows we assume that condition (1.8) is fulfilled.

2. Description of credit risk models. In the default-free world, by a
bond maturing at time θ with face value 1 we mean a financial instrument
whose payoff is 1 at time θ. In a defaultable case we have several variants
describing the amount and timing of so called recovery rate which is paid to
bondholders if default has occurred before the bond’s maturity. If we denote
by τ the default time, then, generally speaking, the payoff of the defaultable
bond is as follows:

D(θ, θ) = 1{τ>θ} + 1{τ≤θ} · recovery payment.

If δ is a recovery rate process, then the recovery payment can take different
forms (see e.g. [2] and references there):



282 J. Jakubowski and M. Niewęgłowski

• δ(t)D(τ−, θ)Bθ/Bτ , fractional recovery of market value: at time of de-
fault bondholders receive a fraction of the pre-default market value of
the defaultable bond (i.e. of D(τ−, θ)):

D(θ, θ) = 1{τ>θ} + 1{τ≤θ} · δτD(τ−, θ)Bθ
Bτ

,

where δ(t) is an F-predictable process with values in [0, 1].
• δ, fractional recovery of treasury value: a fixed fraction δ of the bond’s

face value is paid to bondholders at the bond’s maturity date θ:

Dδ(θ, θ) = 1{τ>θ} + 1{τ≤θ} · δ.

• δBθ/Bτ , fractional recovery of par value: a fixed fraction δ of the bond’s
face value is paid to bondholders at default time τ :

D∆(θ, θ) = 1{τ>θ} + 1{τ≤θ} · δ
Bθ
Bτ

.

Our objective is to derive the HJM drift condition for models with dif-
ferent kinds of recovery and with migration of credit ratings.

2.1. Models with rating migration. We give a short description of
a model with rating migration; for details see Bielecki and Rutkowski [2].
We assume that the credit rating migration process C1, which is a càdlàg
process, is modeled by a conditional Markov chain relative to F with values
in the set of rating classes K = {1, . . . ,K}, where state i = 1 represents
the highest rank, i = K − 1 the lowest rank, and i = K the default event.
With state i, i ≤ K−1, there is associated the pre-default term structure gi.
We assume that the instantaneous defaultable forward rates have dynamics
gi(t, θ) given by

dgi(t, θ) = αi(t, θ)dt+ 〈σi(t, θ), dZi(t)〉U , i ∈ {1, . . . ,K − 1},

where Zi(t) are Lévy processes with values in U . By the Lévy–Itô decompo-
sition, each Zi(t) has the form

Zi(t) = ait+Wi(t) +
t�

0

�

|y|U≤1

y (µi(ds, dy)− ds νi(dy)) +
t�

0

�

|y|U>1

y µi(ds, dy),

where ai ∈ U and µi is the jump measure of Zi. Let

Di(t, θ) = e−
	θ
t gi(t,u) du

and denote the discounted values of Di by D̂i(t, θ) = Di(t, θ)/Bt. Applying
the Itô lemma as in the default-free case we have (below, Ji corresponds to
Zi in the same way as J corresponds to Z)
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Theorem 2.1. The dynamics of the process D̂i(t, θ) is given by

dD̂i(t, θ) = D̂i(t−, θ)
(

(gi(t, t)− f(t, t) + āi(t, θ)) dt

+
�

U

[e−〈Σi(t,θ),y〉U − 1] (µi(dt, dy)− dt νi(dy))− 〈Σi(t, θ), dWi(t)〉U
)
,

where āi(t, θ) satisfies

āi(t, θ) = −Ai(t, θ) + Ji(Σi(t, θ)),(2.1)

and we denote

Ai(t, θ) =
θ�

t

αi(t, v) dv, Σi(t, θ) =
θ�

t

σi(t, v) dv.

To preserve the interpretation of rating classes, i.e. the fact that higher
rated bonds are more expensive than lower rated ones, it is reasonable to
assume that

gK−1(t, θ) > gK−2(t, θ) > · · · > g1(t, θ) > f(t, θ)

for all t ∈ [0, θ] and all θ ∈ [0, T ∗]. This condition implies that inter-rating
spreads are positive.

Given two filtrations F and G, the F-conditional infinitesimal generator
of the process C1 describing the credit rating migration at time t given the
σ-field Ft has the form

Λ(t) =


λ1,1(t) · · · λ1,K−1(t) λ1,K(t)

...
. . .

...
...

λK−1,1(t) · · · λK−1,K−1(t) λK−1,K(t)
0 · · · 0 0


where the off-diagonal processes λi,j(t), i 6= j, are nonnegative processes
adapted to F ⊆ G, and the diagonal elements are negative and determined
by off-diagonals,

λi,i(t) = −
∑

j∈K\{i}

λi,j(t).

For our purposes we specify G = F ∨ H where F = FẐ ∨ FΛ, Ẑ =
(Z,Z1, . . . , ZK) and H = FC1 , i.e. Ft = F Ẑt ∨FΛt , Gt = F Ẑt ∨FΛt ∨FC

1

t . A de-
tailed construction of C1 in this case can be found in Bielecki and Rutkowski
[2], [3] or Lando [23].

To describe the credit risk we also need, besides the credit migration
process C1 defined above, the process C2 of the previous ratings. If we denote
by τ1, τ2, . . . the consecutive jump times of the credit migration process C1,
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then for t ∈ [τk, τk+1),

C1(t) := C1(τk), C2(t) := C1(τk−1).

We denote by C(t) the two-dimensional credit rating process defined by

C(t) = (C1(t), C2(t)).

Therefore the pre-default term structure depending on C1(t) is given by

g(t, u) = gC1(t)(t, u) = 1{C1(t)=1}g1(t, u) + · · ·+ 1{C1(t)=K−1}gK−1(t, u).

We sum up to K − 1, since the last Kth rating corresponds to the default
event

τ = inf{t > 0 : C1(t) = K}.

It is obvious that each recovery rate depends on the credit rating before
default, i.e.

δ(t) = δC2(t)(t) = 1{C2(t)=1}δ1(t) + · · ·+ 1{C2(t)=K−1}δK−1(t),

where δi is a recovery rate process connected with the ith rating and such
that δi(t) ∈ [0, 1).

We make a standard assumption on the relationship between short term
spread, recovery and the intensity of migration into the default state for
defaultable bonds (see e.g. Jarrow et al. [22], Duffie and Singleton [11]).

Hypothesis (H1).

gi(t, t)− f(t, t) = λi,K(t)(1− δi(t)), i = 1, . . . ,K − 1, t < T ∗.(2.2)

Hypothesis (H1) postulates that the intensity of migration from rating i
into the default state K is equal to the short term credit spread for rating i
divided by one minus recovery from rating i. Of course, this does not mean
that the forward rates f, g are strongly linked. It only means that we cannot
arbitrarily specify the intensities of the migration into the default state K if
we have specified f , gi and the recovery δ. Of course, (2.2) implies

gC1(t)(t, t) = f(t, t) + (1− δC1(t)(t))λC1(t),K(t), t < T ∗.(2.3)

Hypothesis (H1) is natural, which can be seen from the following facts.

Remark 2.2. If the price of a defaultable bond with fractional recovery
of market value is given in a traditional way (see Duffie and Singleton [12]),
then it is given by the intensity proces λ and the risk-free short term rate r
in the following way:

1{τ>t}D̂(t, θ) = 1{τ>t}E(e−
	θ
t [r(u)+(1−δ(u))λ(u)]du | Ft).
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Then, for bounded λ and r, we have

g1(t, t) := − lim
θ↓t

∂

∂θ
ln E(e−

	θ
t [r(u)+(1−δ(u))λ(u)] du | Ft)

= − lim
θ↓t

∂
∂θE(e−

	θ
t [r(u)+(1−δ(u))λ(u)] du | Ft)

E(e−
	θ
t [r(u)+(1−δ(u))λ(u)] du | Ft)

= − lim
θ↓t

E( ∂∂θe
−

	θ
t [r(u)+(1−δ(u))λ(u)] du | Ft)

E(e−
	θ
t [r(u)+(1−δ(u))λ(u)] du | Ft)

= lim
θ↓t

E([r(θ) + (1− δ(θ))λ(θ)]e−
	θ
t [r(u)+(1−δ(u))λ(u)] du | Ft)

E(e−
	θ
t [r(u)+(1−δ(u))λ(u)] du | Ft)

= r(t) + (1− δ(t))λ(t),

so (2.2) holds.

For models with ratings we can make a similar observation. We illustrate
this in the next propositions where we assume that the price of a bond has
a natural form (2.4) (see e.g. Jakubowski and Niewęgłowski [19]) and we
demonstrate that this form of price implies (2.2).

Proposition 2.3. Let a market of defaultable bonds with fractional re-
covery of par value be such that the price D of a bond maturing at θ > 0 is,
on the set {Ct = i}, i 6= K, equal to

(2.4) D(t, θ)1{Ct=i}

= 1{Ct=i}

K−1∑
j=1

E
(
e−

	θ
t r(v) dvpi,j(t, θ)+δj

θ�

t

e−
	u
t r(v) dvpi,j(t, u)λj,K(u) du

∣∣∣Ft)
for t < θ, where δj is the recovery rate for rating j and p(t, u) is the solution
to the (random) conditional Kolmogorov forward equation

dp(t, u) = p(t, u)Λ(u)du, p(t, t) = I,

with the intensity matrix process Λ. Assume that r and Λ are bounded pro-
cesses. Then

gi(t, t) = r(t) + (1− δi)λi,K(t)

for i < K and t < θ.

As we announced in the Introduction, the proof of this proposition, as
well as other proofs, are given in the last section of the paper.

It is worth noticing that the same conclusions can be drawn for other
kinds of recovery. Next, we assume that the credit migration process and
bond price processes have no common jumps.



286 J. Jakubowski and M. Niewęgłowski

Hypothesis (H2). For the consecutive jump times (τk)k≥0 of the credit
migration process and for all θ ∈ [0, T ∗] we have

P(∆B(τk, θ) 6= 0) = 0, P(∆Di(τk, θ) 6= 0) = 0, ∀i = 1, . . . ,K − 1.

Remark 2.4. For the credit migration process (C1(t))t∈[0,T ∗] construct-
ed in Bielecki and Rutkowski [2], [3], Hypothesis (H2) is satisfied. This follows
from Proposition 2.7 below.

We also impose the following natural assumption (see [2] and Blanchet-
Scalliet and Jeanblanc [5]):

Hypothesis (H3). For given filtrations F and G with F ⊆ G, every
F-local martingale is a G-local martingale.

In the rest of the paper we assume (H1)–(H3) for all semimartingales
under consideration.

2.2. Models without rating migration. We recall the classical de-
scription of such models. The default time τ is a G-stopping time, and G =
F∨H, where F = (Ft)t≥0 and H = (Ht)t≥0 are filtrations generated by observ-
ing the market and observing the default time, i.e. Ht = σ({τ ≤ u} : u ≤ t),
respectively. Let (H(t))t≥0 be the default indicator process, i.e.

(2.5) H(t) = 1{τ≤t}.

We assume that τ admits an F-martingale intensity (λt)t≥0 which is an
F-adapted process such that Mt given by the formula

(2.6) Mt = H(t)−
t∧τ�

0

λu du = H(t)−
t�

0

(1−H(u))λu du

follows a G-martingale (see Bielecki and Rutkowski [1]).
Since we allow for enlarging the filtration, we need some additional as-

sumptions under which an F-Lévy process is a G-Lévy process. So we assume
Hypothesis (H3) holds for filtrations F and G. In Bielecki and Rutkowski [1]
Hypothesis (H3) is also called Condition (M.1) or Martingale Invariance
Property of F with respect to G. In our case, if τ is an F-stopping time, then
G = F by definition, so Hypothesis (H3) holds. If τ is not an F-stopping
time, then Hypothesis (H3) is equivalent to conditional independence of the
σ-fields F∞ and Gt given Ft for any t ∈ R+ (see Lemma 6.1.1 in Bielecki
and Rutkowski [1]).

Moreover, if τ is not an F-stopping time, the assumption that τ has
intensity can be given in an alternative form, through the assumption that
the process Ft := P(τ ≤ t | Ft) is increasing and absolutely continuous with
respect to Lebesgue measure. This means that there exists a nonnegative
F-adapted process ft such that
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Ft := P(τ ≤ t | Ft) =
t�

0

fu du.

If we assume that Ft < 1, t ≥ 0, then we can find an F-adapted process
(λt)t≥0 such that

(2.7) 1− Ft = P(τ > t | Ft) = e−
	t
0 λu du.

This process (λt)t≥0 is given by the formula

(2.8) λt :=
ft

1− Ft
,

and one can easily check that (λt)t≥0 is the F-martingale intensity of τ .
Moreover,

P(τ > T | Gt) = 1{τ>t}E(e−
	T
t λu du | Ft).

If

(2.9) P(τ ≤ t | Ft) = P(τ ≤ t | F∞) ∀t ∈ R+,

then Ft is increasing. Bielecki and Rutkowski [1] show that this condition
(called Condition (F.1a)) is equivalent to Hypothesis (H3) (see Lemma 6.1.2
in [1]).

Example 2.5. Assume that τ is a random time with density f > 0 and
probability distribution F independent of the σ-field F. Then the F-intensity
of τ is a deterministic function given by

λt =
ft

1− Ft
.

Indeed, independence implies P(τ ≤ t | Ft) = P(τ ≤ t) = Ft. Moreover M
given by (2.6) is a G-martingale, so λt is an F-martingale intensity.

Example 2.6 (Canonical construction of default time, see Section 6.5
in [1]). If the probability space is sufficiently rich to support a random vari-
able U uniformly distributed on [0, 1] and independent of F, then for a given
F adapted nonnegative process (λt)t≥0 satisfying

	∞
0 λu du =∞ we can con-

struct a default time τ with intensity (λt)t≥0 by the formula

τ := inf{t ≥ 0 : e−
	t
0 λudu ≤ U}.

One can easily show that (λt)t≥0 is the F-intensity of τ (formula (2.7) holds),
and hence also the F-martingale intensity. Under this construction (2.9)
holds, which implies Hypothesis (H3).

We also have

Proposition 2.7. Let (Xt) be an F-semimartingale, and τ a random
time given by the canonical construction with (λt) a strictly positive F-
intensity of τ . Then P(∆Xτ 6= 0) = 0.
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We do not want to assume that τ is given through the canonical construc-
tion, so we assume (H3) throughout the rest of the paper. But we emphasize
that if τ is given through the canonical construction, then Hypothesis (H3)
is redundant.

Remark 2.8. This model is a special case of the model with rating
migration. Indeed, taking K = 2, C(t) = 1 +H(t) and the intensity λ given
by (2.8), we obtain the previous model (for details see [2, p. 396]). The
conditional generator of C is of the form

Λ(t) =
(
−λt λt

0 0

)
.

3. The generalized HJM conditions for credit risk. We consider
three types of recovery payment described in the previous section and frac-
tional recovery with multiple defaults. Since we investigate them separately,
we use the same notation D for price processes with different recovery pay-
ments (so D has different meanings in different subsections). Let us recall
that all results are obtained under assumptions (A1), (A2) for all Lévy pro-
cesses considered, and (H1)–(H3).

3.1. Models with rating migration

3.1.1. Fractional recovery of market value with rating migration. Let us
focus on defaultable bonds with fractional recovery of market value D(t, θ).
This kind of bond pays one unit of cash if default has not occurred before
maturity θ, i.e., if the default time satisfies τ > θ, and if the bond defaults
before θ we have recovery payment at the default time which is a fraction
δ(t) of its market value just before the default time, so the recovery payment
is equal to δ(τ)D(τ−, θ). Therefore, in the case of rating migration, the price
process of the defaultable bond with credit migration and fractional recovery
of market value should satisfy

D(θ, θ) = 1{τ>θ} + 1{τ≤θ}δC2(τ)(τ)DC2(τ)(τ−, θ)
Bθ
Bτ

,

where τ = inf{t > 0 : C1(t) = K}. Hence we postulate that for t ≤ θ,

D(t, θ) = 1{C1(t)6=K}DC1(t)(t, θ) + 1{C1(t)=K}δC2(τ)(τ)DC2(τ)(τ−, θ)
Bt
Bτ

=
K−1∑
i=1

1{C1(t)6=K}1{C1(t)=i}Di(t, θ)

+
K−1∑
i=1

1{C1(t)=K}1{C2(t)=i}δi(τ)Di(τ−, θ)
Bt
Bτ

.
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For i 6= K we define an auxiliary process Hi,K by the formula

Hi,K(t) =
∑

0<u≤t
H i(u−)HK(u), ∀t ∈ R+.

This process counts the number of jumps of the migration process C1(t)
from state i to state K up to time t. Using the processes Hi and Hi,K we
can write D in the form

(3.1) D(t, θ) =
K−1∑
i=1

(
Hi(t)Di(t, θ) +Hi,K(t)δi(τ)Di(τ−, θ)

Bt
Bτ

)
.

Theorem 3.1. The processes of discounted prices of a defaultable bond
with credit migration and fractional recovery of market value are local mar-
tingales if and only if the following condition holds: for all θ ∈ [0, T ∗] and
for almost all t ≤ θ, on the set {τ > t},

AC1(t)(t, θ) = JC1(t)(ΣC1(t)(t, θ))(3.2)

+
K−1∑

i=1, i 6=C1(t)

[
Di(t−, θ)

DC1(t)(t−, θ)
− 1
]
λC1(t),i(t).

It is worth pointing out that from the proof of Theorem 3.1 we immedi-
ately obtain

Theorem 3.2. If the processes Di, āi, Λ have continuous trajectories then
the HJM postulate is equivalent to the following two conditions: (2.3) and the
HJM-type condition (3.2).

So in this case the HJM postulate implies the HJM-type condition (3.2)
without assuming Hypothesis (H1). Theorem 3.2 has appeared for the first
time in [27], but in terms of the derivative of the Laplace exponent (see
items (i) and (ii) of Theorem 4.2). The same conclusion is true for other
types of recovery with analogous proofs, but we do not formulate these facts
as separate statements.

Remark 3.3. Theorem 3.2 is not true in the case of Lévy noise: see an
example in the last section. Therefore, Theorem 4.2 in [25], which was proved
under the stronger assumption than ours (since in the proof the Itô formula
for processes with values in Hilbert spaces is used), is not true without some
additional assumption.

3.1.2. Fractional recovery of treasury value with rating migration. The
holder of a defaultable bond with fractional recovery of treasury value re-
ceives 1 if there is no default by θ, and if default has occurred before matu-
rity θ, then a fixed amount δ ∈ [0, 1] is paid to the bondholder at maturity.
Therefore, since paying δ at maturity θ is equivalent to paying δB(τ, θ) at
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the default time τ , in the case of fractional recovery of treasury value with
rating migration we have

D(θ, θ) = 1{τ>θ} + 1{τ≤θ}δC2(τ),

hence

D(t, θ) = 1{C1(t)6=K}DC1(t)(t, θ) + 1{C1(t)=K}δC2(t)B(t, θ)

=
K−1∑
i=1

1{C1(t)=i}Di(t, θ) +
K−1∑
i=1

1{C1(t)=K}1{C2(t)=i}δiB(t, θ),

or equivalently,

(3.3) D(t, θ) =
K−1∑
i=1

(Hi(t)Di(t, θ) +Hi,K(t)δiB(t, θ)).

Theorem 3.4. The processes of discounted prices of a defaultable bond
with fractional recovery of treasury value are local martingales if and only if
the following condition holds: for all θ ∈ [0, T ∗] and for almost all t ≤ θ, on
the set {τ > t},

AC1(t)(t, θ) = JC1(t)(ΣC1(t)(t, θ))(3.4)

+ δC1(t)

[
B(t−, θ)

DC1(t)(t−, θ)
− 1
]
λC1(t),K(t)

+
K−1∑

j=1, j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1
]
λC1(t),j(t).

3.1.3. Fractional recovery of par value with rating migration. In the case
of fractional recovery of par value the holder of a defaultable bond receives
one unit of cash if there is no default prior to maturity, and if the bond
has defaulted, a fixed fraction δ of the par value is paid at the default time.
Therefore the payoff at maturity has the form

D(θ, θ) = 1{τ>θ} + 1{τ≤θ}δC2(t)
Bθ
Bτ

,

hence

D(t, θ) = 1{C1(t) 6=K}DC1(t)(t, θ) + 1{C1(t)=K}δC2(t)
Bt
Bτ

=
K−1∑
i=1

1{C1(t)6=K}1{C1(t)=i}Di(t, θ) +
K−1∑
i=1

1{C1(t)=K}1{C2(t)=i}δi
Bt
Bτ

,

or equivalently,

D(t, θ) =
K−1∑
i=1

(
Hi(t)Di(t, θ) +Hi,K(t)δi

Bt
Bτ

)
.
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Theorem 3.5. The processes of discounted prices of a defaultable bond
with fractional recovery of par value are local martingales if and only if the
following condition holds: for all θ ∈ [0, T ∗] and for almost all t ≤ θ, on the
set {τ > t},

AC1(t)(t, θ) = JC1(t)(ΣC1(t)(t, θ))(3.5)

+ δC1(t)

[
1

DC1(t)(t−, θ)
− 1
]
λC1(t),K(t)

+
K−1∑

j=1, j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1
]
λC1(t),j(t).

3.1.4. Fractional recovery with multiple defaults and rating migration.
The HJM models with fractional recovery with multiple defaults were intro-
duced by Schönbucher [29]. This model describes a situation where a com-
pany that has had to declare default is not liquidated but is restructured.
After restructuring the firm may again default in the future. Schönbucher
investigated defaultable bonds whose face value is reduced by a fraction Lτi
at each default time τi, where Ls is an F-predictable process taking values in
[0, 1]. Therefore, a holder of such a defaultable bond receives, at maturity θ,

Dm(θ, θ) =
∏
τi≤θ

(1− Lτi).

If we introduce a process Vt by the formula

Vt =
∏
τi≤t

(1− Lτi),

then Dm(θ, θ) = Vθ and for t ≤ θ, we give a natural definition

(3.6) Dm(t, θ) = Vte
−

	θ
t g1(t,u) du = VtD1(t, θ).

Moreover, we assume that τi are jump times of a Cox process Nt (doubly
stochastic Poisson process) with stochastic intensity process (γt)t≥0. It can
be shown that Vt solves the following SDE:

(3.7) dVt = −Vt−LtdNt,

and the process

(3.8) Mt = Nt −
t�

0

γu du

is a G-martingale (Lando [23]).
In this paper we add a rating migration process to the model. We assume

that the default times are jumps of a Cox process with intensity (γt)t≥0.
Since the company is restructured after default, the rating migration process
has no absorbing state and for the rating migration process C we take a
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càdlàg process, which is an F-conditional Markov chain with values in the
set {1, . . . ,K − 1} without absorbing state. Moreover, we assume that the
process describing fractional losses does not depend on the credit migration
process.

Remark 3.6. Note that 1−Lt can be interpreted as a recovery process
and therefore we will denote it by δ(t). Thus δ(t) = 1− Lt.

Thus the bond price process should satisfy the following terminal condi-
tion:

D(θ, θ) = Vθ =
∏
τi≤θ

(1− Lτi) =
∏
τi≤θ

δτi ,

and before maturity it should be given by the formula

D(t, θ) = VtDC1(t)(t, θ) = Vt

K−1∑
i=1

Hi(t)Di(t, θ).

Remark 3.7. In this case the filtration G is specified as G = F∨FN∨FC ,
i.e. Gt = Ft ∨ FNt ∨ FCt , and Hypothesis (H1), i.e. formula (2.2), takes the
form

gC1(t)(t, t) = f(t, t) + (1− δ(t))γt .

Theorem 3.8. The discounted prices of a bond with fractional recovery
with multiple defaults and rating migration are local martingales if and only
if the following condition holds: for all θ ∈ [0, T ∗] and for almost all t ≤ θ,
on the set {Vt− > 0},

AC1(t)(t, θ) = JC1(t)(ΣC1(t)(t, θ))(3.9)

+
K−1∑

j=1, j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1
]
λC1(t),j(t).

3.2. Models without rating migration. As we know, taking K = 2
in the model with rating migration we obtain results for models of default-
able bonds with one credit rate, so for models without rating migration. To
give a clear picture of markets with defaultable bonds, and for the sake of
completeness, we formulate the HJM drift conditions for these models:

Theorem 3.9. The discounted prices of a defaultable bond are local mar-
tingales if and only if the following condition holds for all θ ∈ [0, T ∗] and for
almost all t ≤ θ, on the set {τ > t}:

(1) for fractional recovery of market value,

(3.10) A1(t, θ) = J1(Σ1(t, θ));
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(2) for fractional recovery of treasury value,

(3.11) A1(t, θ) = J1(Σ1(t, θ)) + δ

(
B(t−, θ)
D1(t−, θ)

− 1
)
λt;

(3) for fractional recovery of par value,

(3.12) A1(t, θ) = J1(Σ1(t, θ)) + δ

(
1

D1(t−, θ)
− 1
)
λt.

Theorem 3.10. The discounted prices of a defaultable bond with multi-
ple defaults and fractional recovery are local martingales if and only if the
following condition holds: for all θ ∈ [0, T ∗] and for almost all t ≤ θ, on the
set {Vt− > 0},

A1(t, θ) = J1 (Σ1(t, θ)) .(3.13)

4. The generalized HJM condition in terms of the derivative of
the Laplace exponent. If the derivative of the Laplace exponent exists,
then the generalized HJM conditions have simpler forms. To obtain these
forms we use some facts on such derivatives, including

Lemma 4.1. Let G be a functional defined on an open subset B1 of U ,
of the form

G(x) =
�

U

(e−〈x,y〉U − 1 + 1|y|U≤1(y)〈x, y〉U ) ν(dy),

where ν is a Lévy measure which has exponential moments

(4.1)
�

{|y|U>1}

e〈c,y〉U ν(dy) <∞

for all c ∈ B1. Then G is differentiable at each x ∈ B1 and

DG(x) = −
�

U

(e−〈x,y〉U − 1|y|U≤1(y))y ν(dy).

The proof is straightforward. We use the existence of exponential mo-
ments of the form (4.1) for all c ∈ B1.

Hence, for models with ratings, after straightforward calculations we ob-
tain the HJM conditions in terms of the derivatives of the Laplace exponents
Ji, i = 1, . . . , k − 1.

Theorem 4.2. Assume that for i = 1, . . . ,K − 1,

(4.2)
�

{|y|≥1}

e−〈u,y〉U νi(dy) <∞

for all u from some neighborhood of the set in which Σi(t, θ) takes values.
Then



294 J. Jakubowski and M. Niewęgłowski

(i) Condition (3.2) for fractional recovery of market value and condition
(3.9) for fractional recovery with multiple defaults have the form

αC1(t)(t, θ) = 〈DJC1(t)(ΣC1(t)(t, θ)), σC1(t)(t, θ)〉U

+
K−1∑

i=1, i 6=C1(t)

λC1(t),i(t)(gC1(t)(t−, θ)− gi(t−, θ))e
	θ
t (gC1(t)(t−,u)−gi(t−,u)) du

.

(ii) Condition (3.4) for fractional recovery of treasury value has the form

αC1(t)(t, θ) = 〈DJC1(t)(ΣC1(t)(t, θ)), σC1(t)(t, θ)〉U

+
K−1∑

i=1, i 6=C1(t)

λC1(t),i(t)(gC1(t)(t−, θ)− gi(t−, θ))e
	θ
t (gC1(t)(t−,u)−gi(t−,u)) du

+ δC1(t)λC1(t),K(gC1(t)(t−, θ)− f(t−, θ))e
	θ
t (gC1(t)(t−,u)−f(t−,u)) du

.

(iii) Condition (3.5) for fractional recovery of par value has the form

αC1(t)(t, θ) = 〈DJC1(t)(ΣC1(t)(t, θ)), σC1(t)(t, θ)〉U

+
K−1∑

i=1, i 6=C1(t)

λC1(t),i(t)(gC1(t)(t−, θ)− gi(t−, θ))e
	θ
t (gC1(t)(t−,u)−gi(t−,u)) du

+ δC1(t)λC1(t),KgC1(t)(t−, θ)e
	θ
t gC1(t)(t−,u) du

.

For infinite-dimensional Brownian motion items (i) and (ii) of Theo-
rem 4.2 were proved in [27]. As a simple consequence of Theorem 4.2 we
obtain

Corollary 4.3. Under the assumption of Theorem 4.2 on J1, the con-
ditions for models without ratings have a simpler form, namely:

(i) Condition (3.10) for fractional recovery of market value has the form

α1(t, θ) = 〈DJ1(Σ1(t, θ)), σ1(t, θ)〉U .
(ii) Condition (3.11) for fractional recovery of treasury value has the

form
α1(t, θ) = 〈DJ1(Σ1(t, θ)), σ1(t, θ)〉U

+ δλt(g1(t−, θ)− f(t−, θ))e
	θ
t (g1(t−,u)−f(t−,u)) du.

(iii) Condition (3.12) for fractional recovery of par value has the form

α1(t, θ) = 〈DJ1(Σ1(t, θ)), σ1(t, θ)〉U + δλtg1(t−, θ)e
	θ
t g1(t−,u) du.

5. Comparison of consistency conditions and generalized HJM
conditions. In this section we investigate the relationships between consis-
tency conditions formulated by Bielecki and Rutkowski and the generalized
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HJM conditions introduced in the previous section. The papers [1] and [14]
provide an exogenously specified term structure of defaultable forward rates
corresponding to a given finite collection of credit ratings and then the au-
thors look for an arbitrage-free model that supports these objects. They are
interested in whether there exists a rating migration process such that de-
faultable bond price processes have prespecified defaultable forward rates.
They require this system of prices to be consistent in the sense that the
discounted defaultable price processes are local martingales under an appro-
priately chosen equivalent probability measure. They provide conditions for
the intensity matrix processes which guarantee this kind of “consistency”,
which means that the HJM postulate is satisfied. Hence the “consistency
condition” should be related in some way to the HJM drift condition derived
in the previous section.

Now we investigate this relation. First, note that the consistency condi-
tions in Bielecki and Rutkowski [1] and Eberlein and Özkan [14] are given
under a real-world probability measure, and our generalized HJM conditions
are related to a risk-neutral world. So we formulate consistency conditions
assuming that we are in a risk-neutral world. We start with the case of
fractional recovery of market value with rating migration. We say that the
consistency condition (cf. [2], [14]) holds if the equalities

(5.1)
K−1∑

i=1, i 6=C1(t)

[(Di(t−, θ)−DC1(t)(t−, θ))λC1(t),i(t)]

+ (δC1(t)(t)DC1(t)(t−, θ)−DC1(t)(t−, θ))λC1(t),K(t)

+ (gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ))DC1(t)(t−, θ) = 0

are satisfied on the set {C1(t) 6= K} for all θ ∈ [0, T ∗] and all t ≤ θ. We
recall that āi(t, θ) is defined by (2.1).

The following theorem states that the consistency condition and HJM
type condition are equivalent under Hypothesis (H1).

Theorem 5.1. Assume that Hypothesis (H1) holds. For defaultable
bonds with credit migration and fractional recovery of market value the con-
sistency condition (5.1) holds if and only if the HJM type condition (3.2)
holds.

This theorem allows us to generalize, under (H1), the results of [1] and
[14] to the case of infinite-dimensional Lévy processes.

Corollary 5.2. Assume that Hypothesis (H1) holds. If the consistency
condition (5.1) holds, then the market is arbitrage-free.

Moreover, we also have an inverse implication:
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Corollary 5.3. Assume that Hypothesis (H1) holds. If the HJM postu-
late is satisfied, then the consistency condition (5.1) holds.

In the case of other kinds of recovery we have a similar situation although
consistency conditions have a slightly different form. For fractional recovery
of treasury value with rating migration the consistency condition is of the
form

(5.2)
K−1∑

i=1, i 6=C1(t)

[(Di(t−, θ)−DC1(t)(t−, θ))λC1(t),i(t)]

+ (δC1(t)B(t−, θ)−DC1(t)(t−, θ))λC1(t),K(t)

+ (gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ))DC1(t)(t−, θ) = 0

on the set {C1(t) 6= K} for all θ ∈ [0, T ∗] and all t ≤ θ.
In the case of fractional recovery of par value with rating migration the

consistency condition has the form

(5.3)
K−1∑

i=1, i 6=C1(t)

[(Di(t−, θ)−DC1(t)(t−, θ))λC1(t),i(t)]

+ (δC1(t)(t)−DC1(t)(t−, θ))λC1(t),K(t)

+ (gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ))DC1(t)(t−, θ) = 0.

In the case of fractional recovery with multiple defaults with rating migration
the consistency condition has the form

(5.4)
K−1∑

i=1, i 6=C1(t)

[(Di(t−, θ)−DC1(t)(t−, θ))λC1(t),i(t)]

+ (δtDC1(t)(t−, θ)−DC1(t)(t−, θ))λt
+ (gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ))DC1(t)(t−, θ) = 0.

Arguing as in Theorem 5.1 we obtain

Theorem 5.4. Assume that Hypothesis (H1) holds. Then

(i) The HJM-type condition (3.4) for defaultable bonds with credit mi-
gration and fractional recovery of treasury value is equivalent to the
consistency condition (5.2).

(ii) The HJM-type condition (3.5) for defaultable bonds with credit mi-
gration and fractional recovery of par value is equivalent to the con-
sistency condition (5.3).

(iii) The HJM-type condition (3.9) for defaultable bonds with credit mi-
gration and multiple defaults with fractional recovery is equivalent
to the consistency condition (5.4).
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It is worth noticing that we can formulate and prove results analogous to
those in Corollaries 5.2 and 5.3 for all kinds of recovery. We have just shown
that if Hypothesis (H1) holds then the HJM-type conditions are equivalent
to equalities known as consistency conditions. We should stress, however,
that Bielecki and Rutkowski [1] and also Eberlein and Özkan [14] treated
these conditions as conditions on the intensity matrix process. They show
that if we specify a real-world dynamics of defaultable forward rates, and
then construct a migration process with intensity matrix satisfying the “con-
sistency condition”, then we obtain an arbitrage-free model of defaultable
bonds. Note that if we specify the transition intensity matrix then we can-
not specify the volatilities arbitrarily. More precisely, this means that if the
transition intensity matrix is specified and we are in an arbitrage-free frame-
work then we calculate prices (conditional prices, i.e. on the sets {Ct = i})
and then extract from them the defaultable forward rates, to finally get
the volatilities. In our framework Hypothesis (H1) gives the intensities of
migration to the default state, and by specifying the volatilities and then
choosing λi,j for j 6= K in such a way that the generalized HJM condi-
tion holds we have specified a risk-neutral dynamics of defaultable forward
rates.

6. Proofs. In what follows we use the following facts from Bielecki and
Rutkowski [2] (see also [26], [6]). If Hi(t) = 1{i}(C1(t)), then

Mi(t) = Hi(t)−
t�

0

λC1(u),i(u) du

is a G-martingale. Recall that

Hi,j(t) =
∑

0<u≤t
H i(u−)Hj(u), ∀t ∈ R+.

For arbitrary i, j ∈ K, i 6= j, the processes

Mi,j(t) = Hi,j(t)−
t�

0

λi,j(u)Hi(u) du = Hi,j(t)−
t�

0

λC1(u),j(u)Hi(u) du

and

MK(t) = HK(t)−
t�

0

K−1∑
i=1

λi,KHi(u) du = HK(t)−
t�

0

λC1(u),K(1−HK(u)) du

are G-martingales.
Using these facts and assumption (H2) we obtain very useful representa-

tions of d(Hi(t)Di(t, θ)/Bt):
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d

(
Hi(t)

Di(t, θ)
Bt

)
= d(Hi(t))

Di(t−, θ)
Bt

+Hi(t−)d
(
Di(t, θ)
Bt

)
(6.1)

+ d

[
Hi(·),

Di(·, θ)
B·

]c
t︸ ︷︷ ︸

=0

+ ∆Hi(t)∆
Di(t, θ)
Bt︸ ︷︷ ︸

=0

= d(Hi(t))
Di(t−, θ)

Bt
+Hi(t−)d

(
Di(t, θ)
Bt

)
.

Since the process Mi(t) = Hi(t) −
	t
0 λC1(u),i(u) du is a G-martingale, using

(6.1) we obtain

(6.2) d

(
Hi(t)

Di(t, θ)
Bt

)
=
Di(t−, θ)

Bt

(
dMi(t) + λC1(t),i(t)dt

+Hi(t−)(gi(t, t)− f(t, t) + āi(t, θ))dt

+Hi(t−)
�

U

[e〈Σi(t,θ),y〉U − 1] (µi(dt, dy)− dt νi(dy))

−Hi(t−)〈Σi(t, θ), dWi(t)〉U
)
.

Proof of Proposition 2.3. Let Di(t, θ) be the price process on the set
{Ct = i}, i.e.

Di(t, θ) := D(t, θ)1{Ct=i} =
K−1∑
j=1

E
(
e−

	θ
t rv dvpi,j(t, θ)

+ δj

θ�

t

e−
	u
t rv dvpi,j(t, u)λj,K(u) du

∣∣∣Ft).
Obviously,

gi(t, t) := − lim
θ↓t

∂

∂θ
lnDi(t, θ) = − lim

θ↓t

∂
∂θDi(t, θ)
Di(t, θ)

.(6.3)

First note that, by definition of Di,

lim
θ↓t

Di(t, θ) = 1

for i 6= K. Let

Ai,j(t, θ) := e−
	θ
t rv dvpi,j(t, θ),

Bi,j(t, θ) := δj

θ�

t

e−
	u
t rv dvpi,j(t, u)λj,K(u) du.
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Then

∂

∂θ
Di(t, θ) =

K−1∑
j=1

E
(
∂

∂θ
Ai,j(t, θ) +

∂

∂θ
Bi,j(t, θ)

∣∣∣Ft)
since r and Λ are bounded processes. Next we calculate the derivatives using
the conditional Kolmogorov forward equation for P (t, θ), and letting θ ↓ t
we obtain

lim
θ↓t

∂

∂θ
Ai,j(t, θ) = −rt%i,j +

K∑
k=1

%i,kλk,j(t) = −rt%i,j + λi,j(t),

lim
θ↓t

∂

∂θ
Bi,j(t, θ) = δj%i,jλj,K(t),

where %i,j denotes the Kronecker delta. Therefore, by passing to the limit
inside the conditional expectation we have

lim
θ↓t

∂

∂θ
Di(t, θ) = −rt +

K−1∑
j=1

λi,j(t) + δiλi,K(t) = −rt − (1− δi)λi,K(t),

since
∑K−1

j=1 λi,j(t) = −λi,K(t). This and (6.3) complete the proof.

Proof of Proposition 2.7. Let σ be a jump time of (Xt), and τ be a
random time given by the canonical construction. Since e−

	σ
0 λu du is Fσ-

measurable, and U is uniformly distributed on [0, 1] and independent of Fσ,
we obtain

P(τ = σ) = P(e−
	τ
0 λu du = e−

	σ
0 λu du) = P(U = e−

	σ
0 λu du)

= E(E(1{U=e−
	σ
0 λu du} | Fσ)) = E(E(1{U=x})|x=e−

	σ
0 λu du

) = 0.

Since a semimartingale is a càdlàg process, the set of jump times of X is
countable, so

P(∆Xτ 6= 0) = P
( ⋃
n≥1

{τ = σn}
)
≤
∞∑
n=0

P(τ = σn) = 0.

Proof of Theorem 3.1. By (3.1),

d

(
D(t, θ)
Bt

)
=

K−1∑
i=1

(
d

(
Hi(t)

Di(t, θ)
Bt

)
(6.4)

+ d

(
Hi,K(t)δi(τ)

Di(τ−, θ)
Bτ

))
.

The first term in this sum is given by (6.2), and the second has the form

d

(
Hi,K(t)δi(τ)

Di(τ−, θ)
Bτ

)
= δi(t)

Di(t−, θ)
Bt

d(Hi,K(t)).
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Since the process Mi,K(t) = Hi,K(t)−
	t
0 λi,K(u)Hi(u) du is a G-martingale,

we have

δi(t)
Di(t−, θ)

Bt
d(Hi,K(t)) =

Di(t−, θ)
Bt

δi(t)dMi,K(t)

+
Di(t−, θ)

Bt
δi(t)λi,K(t)Hi(t)dt.

Combining these results we see that the drift term I of (6.4) is given by

I(t, θ) =
t�

0

K−1∑
i=1

Hi(s)
Di(s−, θ)

Bs
(gi(s, s)− f(s, s) + āi(s, θ) + δi(s)λi,K(s)) ds

+
t�

0

K−1∑
i=1

Di(s−, θ)
Bs

λC1(s),i(s) ds

=
t�

0

(1−HK(s))
DC1(s)(s−, θ)

Bs
(gC1(s)(s, s)− f(s, s) + āC1(s)(s, θ)

+ δC1(s)(s)λi,K(s)) ds+
t�

0

K−1∑
i=1

Di(s−, θ)
Bs

λC1(s),i(s) ds.

Since DC1(s) > 0 and

K−1∑
i=1

Di(s−, θ)
DC1(s)(s−, θ)

λC1(s),i(s)

=
K−1∑
i=1

i 6=C1(s)

Di(s−, θ)
DC1(s)(s−, θ)

λC1(s),i(s) + λC1(s),C1(s)(s)

=
K−1∑
i=1

i 6=C1(s)

[
Di(s−, θ)

DC1(s)(s−, θ)
− 1
]
λC1(s),i(s)− λC1(s),K(s),

we can split I into two parts: I1(s), independent of θ, and I2(s, θ), depending
on both s and θ, i.e.

I(t, θ) =
t�

0

(1−HK(s))
DC1(s)(s−, θ)

Bs
(I1(s) + I2(s, θ)) ds,

where

I1(s) = gC1(s)(s, s)− f(s, s)− (1− δC1(s)(s))λC1(s),K(s)

and



Defaultable bonds with Lévy factors 301

I2(s, θ) = āC1(s)(s, θ) +
K−1∑
i=1

i 6=C1(s)

[
Di(s−, θ)

DC1(s)(s−, θ)
− 1
]
λC1(s),i(s).

If (2.3) and (3.2) hold, then I1(t) = 0 and I2(t, θ) = 0, which implies that
the drift term I(·, θ) vanishes for any θ, so the HJM postulate is satisfied.

Conversely, if the drift term vanishes for each θ ∈ [0, T ∗], then on the set
{C1(t) 6= K} = {τ > t},
(6.5) I1(t) + I2(t, θ) = 0 for almost all t ∈ [0, θ],

since DC1(s)(s−, θ)/Bs > 0. From (2.3) we obtain I1(t) = 0. Therefore
I2(t, θ) = 0 for almost all t ∈ [0, θ], which is equivalent to (3.2).

Proof of Theorem 3.2. Since I1 and I2(·, θ) are right continuous, vanish-
ing of the drift term I for each θ ∈ [0, T ∗] implies that

I1(t) + I2(t, θ) = 0, ∀t < θ.

Since I2(θ, θ) = 0 by definition, we obtain I1(θ−) = 0 for θ < T ∗. Hence we
deduce that I1(t) = 0 for t < T ∗, which is equivalent to (2.3).

Proof of Remark 3.3. The reason why we could not omit the assumption
(2.3) in Theorem 3.1, so Theorem 3.2 is not true without the continuity
assumption, is that (6.5) does not imply I1(θ) + I2(θ, θ) = 0 for θ < T ∗ a.s.,
which gives I1(θ) = 0 for θ < T ∗ a.s., i.e. (2.3).

An example that shows that this implication does not hold is obtained
by taking as λi,K , i = 1, . . . ,K − 1, some càdlàg processes such that

P(∃θ ∈ [0, T ∗] : |λC1(θ),K(θ)− λC1(θ),K(θ−)| > 0) > 0

and then defining

gC1(t)(t, t) := f(t, t) + (1− δC1(t))λC1(t),K(t−).

We note that this choice of gi gives

I1(θ) = (1− δC1(θ))(λC1(θ),K(θ−)− λC1(θ),K(θ)),

so

P(∃θ ∈ [0, T ∗] : |I1(θ)| > 0)
= P(∃θ ∈ [0, T ∗] : |λC1(θ),K(θ)− λC1(θ),K(θ−)| > 0) > 0

even though we have I1(s) = 0 ds× dP almost surely.

Proof of Theorem 3.4. By (3.3), the discounted value of a defaultable
bond with fractional recovery of treasury value equals

(6.6) d

(
D(t, θ)
Bt

)
=

K−1∑
i=1

(
d

(
Hi(t)

Di(t, θ)
Bt

)
+ d

(
Hi,K(t)δi

B(t, θ)
Bt

))
.
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By integration by parts we have

d

(
Hi,K(t)δi

B(t, θ)
Bt

)
= δi

B(t−, θ)
Bt

(
dMi,K(t)

+ (λi,K(t)Hi(t) + ā(t, θ)Hi,K(t−)) dt

+Hi,K(t−)
�

U

[e−〈Σ(t,θ),y〉U − 1](µ(dt, dy)− dt ν(dy))

−Hi,K(t−)〈Σ(t, θ), dW (t)〉U
)
.

Together with (6.2) this implies that the drift term I in (6.6) is given by
I = I1 + I2 + I3,

where

I1 =
K−1∑
i=1

Hi(t−)
Di(t−, θ)

Bt

(
(gi(t, t)−f(t, t)+āi(t, θ))+δi

B(t−, θ)
Di(t−, θ)

λi,K(t)
)
dt,

I2 =
K−1∑
j=1

Dj(t−, θ)
Bt

λC1(t),j(t)dt,

I3 =
B(t−, θ)
Bt

ā(t, θ)
K−1∑
i=1

δiHi,K(t−)dt

= HK(t)
(
B(t−, θ)
Bt

ā(t, θ)
K−1∑
i=1

δi1{C2(t)=i}dt

)
.

Now I3 = 0, because the HJM-type condition for default-free bonds holds
(condition (1.8)). Moreover

(6.7) I2 =
K−1∑
j=1

Dj(t−, θ)
Bt

λC1(t),j(t)dt

=
K−1∑
j=1

Dj(t−, θ)
Bt

K−1∑
i=1

Hi(t)λi,j(t)dt

=
K−1∑
i=1

Hi(t)
Di(t−, θ)

Bt

(K−1∑
j=1
j 6=i

Dj(t−, θ)
Di(t−, θ)

λi,j(t) + λi,i(t)
)
dt

=
K−1∑
i=1

Hi(t)
Di(t−, θ)

Bt

(K−1∑
j=1
j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)− λi,K(t)

)
dt.

Since Hi(t) = 1 on the set {C1(t) = i} and zero on its complement we can
write
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I1 + I2 = (1−HK(t))
DC1(t)(t−, θ)

Bt

(
gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ)

− (1− δC1(t))λC1(t),K(t) + δC1(t)

[
B(t−, θ)

DC1(t)(t−, θ)
− 1
]
λC1(t),K(t)

+
K−1∑
j=1

j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1
]
λC1(t),j(t)

)
dt,

where we have also used the fact that we sum only up to K−1. We conclude
the argument as in Theorem 3.1.

Proof of Theorem 3.5. We have

d

(
D(t, θ)
Bt

)
=

K−1∑
i=1

(
d

(
Hi(t)

Di(t, θ)
Bt

)
+ d

(
Hi,K(t)

δi
Bτ

))
.(6.8)

The first part was calculated before (see (6.2)). The second part can be
written using the martingale Mi,K as

δi
Bt
dHi,K(t) =

δi
Bt
dMi,K(t) +

δi
Bt
Hi(t)λi,K(t)dt.

Hence by (6.7) the drift term I of (6.8) is given by

I =
K−1∑
i=1

(
Di(t−, θ)

Bt
(λC1(t),i(t) +Hi(t−)(gi(t, t)− f(t, t) + āi(t, θ)))dt

+
δi
Bt
Hi(t)λi,K(t)dt

)
=

K−1∑
i=1

Hi(t−)
Di(t−, θ)

Bt

(
gi(t, t)− f(t, t) + δi

[
1

Di(t−, θ)
− 1
]
λi,K(t)

+
K−1∑

j=1, j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)− (1− δi)λi,K(t) + āi(t, θ)

)
dt

= (1−HK(t))
DC1(t)(t−, θ)

Bt

(
gC1(t)(t, t)− f(t, t) + āC1(t)(t, θ)

− (1− δC1(t))λC1(t),K(t) + δC1(t)

[
1

DC1(t)(t−, θ)
− 1
]
λC1(t),K(t)

+
K−1∑
j=1

j 6=C1(t)

[
Dj(t−, θ)

DC1(t)(t−, θ)
− 1
]
λC1(t),j(t)

)
dt.

Arguing as before we complete the proof.
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Proof of Theorem 3.8. By the Itô lemma,

d

(
D(t, θ)
Bt

)
= Vt−

K−1∑
i=1

d

(
Hi(t)

Di(t, θ)
Bt

)
+
(K−1∑

i=1

Hi(t)
Di(t, θ)
Bt

)
dVt(6.9)

+ ∆
(K−1∑

i=1

Hi(t)
Di(t, θ)
Bt

)
∆Vt = I1 + I2 + I3.

By (H2) we have I3 = 0.
By (3.7), (3.8) and the fact that Di(·, θ) is a càdlàg process, we obtain

−I2 =
(K−1∑

i=1

Hi(t)
Di(t, θ)
Bt

)
Vt−LtdMt +

(K−1∑
i=1

Hi(t)
Di(t, θ)
Bt

)
Vt−Ltγtdt

=
(K−1∑

i=1

Hi(t)
Di(t, θ)
Bt

)
Vt−LtdMt +

(K−1∑
i=1

Hi(t)
Di(t−, θ)

Bt

)
Vt−Ltγtdt.

Hence, taking into account (6.9), (6.2), we see that the drift term of d(D(t,θ)
Bt

)
is given by

K−1∑
j=1

Vt−
Dj(t−, θ)

Bt
λC1(t),j(t)dt

+
K−1∑
i=1

Hi(t)Vt−
Di(t−, θ)

Bt

(
gi(t, t)− f(t, t) + āi(t, θ)− Ltγt

)
dt.

Since
K−1∑
j=1

Vt−
Dj(t−, θ)

Bt
λC1(t),j(t) =

K−1∑
i=1

Hi(t)Vt−
Di(t−, θ)

Bt

K−1∑
j=1

Dj(t−, θ)
Di(t−, θ)

λi,j(t)

=
K−1∑
i=1

Hi(t)Vt−
Di(t−, θ)

Bt

( K−1∑
j=1, j 6=i

Dj(t−, θ)
Di(t−, θ)

λi,j(t) + λi,i(t)
)

=
K−1∑
i=1

Hi(t)Vt−
Di(t−, θ)

Bt

K−1∑
j=1, j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t),

the drift term is given by
K−1∑
i=1

Hi(t)Vt−
Di(t−, θ)

Bt

(
gi(t, t)− f(t, t) + āi(t, θ)− Ltγt

+
K−1∑

j=1, j 6=i

[
Dj(t−, θ)
Di(t−, θ)

− 1
]
λi,j(t)

)
dt.

Arguing as in the previous sections, we obtain the theorem.
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Proof of Theorem 4.2. Theorem 4.2 follows from Lemma 4.1 by using the
following facts on derivatives (the details are left to the reader):

(i) for fractional recovery of treasury value,

∂

∂θ

(
B(t−, θ)
D1(t−, θ)

− 1
)

= (g1(t−, θ)− f(t−, θ))e
	θ
t (g1(t−,u)−f(t−,u)) du,

(ii) for fractional recovery of par value,

∂

∂θ

(
1

D1(t−, θ)
− 1
)

= g1(t−, θ)e
	θ
t g1(t−,u) du,

(iii) for fractional recovery of market value with rating migration,

∂

∂θ

(
Di(t−, θ)

DC1(t)(t−, θ)
−1
)

= (gC1(t)(t−, θ)−gi(t−, θ))e
	θ
t (gC1(t)(t−,u)−gi(t−,u)) du

,

(iv) for fractional recovery of treasury value with rating migration,

∂

∂θ

(
B(t−, θ)

DC1(t)(t−, θ)
− 1
)

= (gC1(t)(t−, θ)− f(t−, θ))e
	θ
t (gC1(t)(t−,u)−f(t−,u)) du

,

(v) for fractional recovery of par value with rating migration,

∂

∂θ

(
1

DC1(t)(t−, θ)
− 1
)

= gC1(t)(t−, θ)e
	θ
t gC1(t)(t−,u) du

.

Proof of Theorem 5.1. Under Hypothesis (H1) we can write (5.1) in the
form

K−1∑
i=1, i 6=C1(t)

[(Di(t−, θ)−DC1(t)(t−, θ))λC1(t),i(t)]

− (1− δC1(t)(t))DC1(t)(t−, θ)λC1(t),K(t)

+
(
(1− δC1(t)(t))λC1(t),K(t) + āC1(t)(t, θ)

)
DC1(t)(t−, θ) = 0.

By definition of āi(t, θ) we see that this condition is equivalent to

(6.10)
K−1∑

i=1, i 6=C1(t)

(
Di(t−, θ)

DC1(t)(t−, θ)
− 1
)
λC1(t),i(t)

−AC1(t)(t, θ) + JC1(t)(Σi(t, θ)) = 0,

which is exactly (3.2).
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