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SOLVABILITY OF THE POISSON EQUATION IN
WEIGHTED SOBOLEV SPACES

Abstract. The aim of this paper is to prove the existence of solutions to
the Poisson equation in weighted Sobolev spaces, where the weight is the
distance to some distinguished axis, raised to a negative power. Therefore
we are looking for solutions which vanish sufficiently fast near the axis. Such
a result is useful in the proof of the existence of global regular solutions to
the Navier—Stokes equations which are close to axially symmetric solutions.

1. Introduction. The aim of this paper is to prove the existence of
solutions to the Poisson equation in weighted Sobolev spaces H. u(9)7 l e
No = NU{0}, € R, where £2 C R? is a bounded domain which contains a
(segment of a) distinguished axis L. We assume that the weight is a negative
power of the distance to L.

We consider the Dirichlet problem

—Au = in {2
(1.1) / '
u=20 on S = 0f2.
We assume that L meets S at two points: s; and ss.

DEFINITION 1.1. By Hl_#(Q), l € Ng, u € Ry, we denote the closure of
the set of C°°(§2)-functions vanishing in a neighbourhood of L in the norm

1/2
lullze gy = (32 §ID5u(@) o) #1010 da )
la|<1 £2

where |a = a1 + a2 + a3, DY = 051052032, a; € No, i = 1,2,3, o(z) =
dist(z, L).

The main result of this paper is the following
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THEOREM 1.2. Assume that f € Hl_#(Q), l € No, p € Rp \ Z. Assume

that S € C'™*2. Then there exists a solution to problem (1.1) such that u €
Hlff((?) and the estimate

(1.2) ol oy < el il oy
holds, where ¢ does not depend on u and f.

In this paper we prove the existence only because estimate (1.2) is already
known (see [2], [7]). The well known method to solve problem (1.1) is to
show the existence of weak solutions to problem (1.1) defined by the integral
identity

(1.3) SVu'Vgodm: ngodm,
0 Q
which holds for any smooth function vanishing on S.
Assuming that f € La(f2) and applying the Galerkin method it is well
known that we have the existence of weak solutions to (1.1) belonging to
H'(£2) and satisfying the estimate

(1.4) lull g2y < el fllLy2)

where ¢ does not depend on u and f.

Similarly, assuming f € HY(f2), S € C"*?, | € Ny and applying the
regularization technique (see [3, 4]) we can prove the existence of solutions
to (1.1) in H*2(£2) and the estimate

(1.5) ull 20y < el fll o)
where ¢ does not depend on u and f.

The above procedure is possible because H'T2(£2) ¢ H'(f2), and the
technique of increasing regularity is well developed. In our case we also have
H ljf(!?) C HY(£2) but elements of Hlff(ﬂ) must satisfy some structural
restrictions which are expressed by an appropriate vanishing of solutions to
(1.1) near the axis L. Hence to prove the existence of solutions to (1.1) in
H l_tf(!?) we have to find a way of selecting elements from H'({2) satisfying
the structural conditions.

We may use two approaches to prove Theorem 1.2. The first is direct by
employing the methods and ideas from [I} [5 12]. The second, which is used
in this paper, can be split into a few steps. First we show the existence of
solutions to (1.1) in H*? in a subdomain of {2 located at a positive distance
from L. Next we appropriately extend the solution to a neighbourhood of L
in such a way that the extended solution belongs to H Z_JLQ(Q)

Then using estimate (1.2) and applying an appropriate density argument
we prove Theorem 1.2. This idea will be described more precisely in Section 2.
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We should also mention that the main tool in the proof of Theorem 1.2
is the technique of regularizers (see [4]). This is connected with the fact that
the crucial estimate (1.2) in weighted spaces is only obtained locally.

To prove Theorem 1.2 we need

LEMMA 1.3. Assume that f € HY(£2), S € C'*2, 1 € No. Then there
exists a solution to problem (1.1) such that v € H2(2) and

(1.6) ull gr+2(0) < cll fllm (),
where ¢ does not depend on u and f.

The techniques and methods used in this paper are important for exam-
ining nonstationary equations in similar weighted Sobolev spaces (see [§]).

In a series of papers (see [0, [, 10 [1T]) we proved the existence of global
regular solutions to the Navier—Stokes equations which are close to axially
symmetric solutions. To show those results we need the weighted Sobolev
spaces introduced in this paper, because weights with negative powers appear
naturally in estimates necessary for the existence of solutions.

2. Existence in R3. First we shall restrict our considerations to the
case [ = 0. Let A > 0 be given. Consider the cylinder
Cy={zecR:|2/| < A, x3 € R},
where 2/ = (z1,22), |2/| = /2} + 23, and © = (21,22, 73) is the Cartesian
system in R3.
Let R > 0 be given. Then we consider the problem

—Au=f in Cp,
(2.1) u=0 on OCR,
u—0 as |zr3| — oo,

where 0Cr = {z € R? : |2/| = R, 23 € R}.

To prove the existence of solutions to problem (2.1) in weighted Sobolev
spaces we define an approximate solution. Let 0 < § < R be given. Let
Crs =CRr\ Cj5, where Cj is the closure of Cs. Then we consider the problem

—Aus = f5 in Cgg,
(2.2) us =0 on dCR,
us — 0 as|zs| — oo.
We have
LEMMA 2.1. Assume that f5 € La(Crgs). Then there exists a unique
solution to (2.2) such that us € H*(Cgrs) and
(2.3) lusllz2(cr.5) < sl Laons)s
where ¢ does not depend on us and fs.
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Let us introduce the cylindrical coordinates (r, ¢, z) by the relations x; =
7 COS p, Ty = TSiny, r3 = 2.

Since we are looking for solutions to the Poisson equation in R? but we
are not interested in their behaviour as |z'| — oo we extend ug by zero for
r > R. For this purpose we introduce a smooth function (g(z') such that
Cr(z') = 1 for [2/| < 2R and (g(2/) = 0 for |2/| > R. Let ufj = usCg,
f5 = f5Cr- Then problem (2.2) takes the form

—Auj = ff — 2 patse — Crawus = fi i R\ G,

/
us =0 on 0Cs,
RN
us =0 for r > R,
uls — 0 as |x3| — oo.

In view of Lemma 2.1 we have ff € Lo(R?\ Cs) and there exists a solution
to problem (2.4) such that uj € 1'172(]1%3 \ Cs) and

(2.5) lusll przravey) < elfsll Lo maney)-
To prove the existence of solutions to problem (1.1) in the weighted spaces
HY ., introduced in Definition 1.1 we extend f§ and uj by zero for r < 4.

Let us denote the extended functions by fs and @;. Additionally we assume
that fj|,—s = 0. Then (2.4); implies that Auj|,—s = 0. To show that u} €
H? M(Rg’) we assume that § < 3R, and we define

Vs = Ug|x:$(r7¢,z), h5 = f |:v z(r,p,2)s

U5 = ﬂé‘:p:z(r,ap,z)v - f§|m:x(r,<p,z)‘
Then problem (2.4) takes the form
1 1 - )
_ <r (ros,)r + 2 Vs,pp + @57%) =hs in R3,
(2.6) Us|r<s = 0,
hslr<s =0,

5 — 0 as|z| — o0, r > R.

From (2.6)2 it follows that @5 ,, = 0 and ¥5,, = 0 for < §. Moreover, in
view of Lemma 2.1 we have (1/7)(rvs,),» € L2(R3), and (2.6); implies

1

— (rvsy)r =0 forr <4.

”
Let u € Ry. Then f5 € Ly _,(R?). To apply [7] we should know that o5 €
HEN(R:;). From the properties of vs we have 754, € LQ,,u(R?’), Vs, €
Lo, (R3) and (1/r)(rvs,), € Lo, (R3). Moreover,

T, _

(2.7) ‘7’ (r5,)

< el ol r3)-
L2,—u(R3)
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By the Hardy inequality (see [I]) we have

(2.8) S 5|22 4r drdzdp < ¢ S 0,022 2 dr dz dep

R3 R3
<c S |7“?75,r|27’_2“_3 drdzdp <c S \(Tﬁa,r),r|2r_2“_1 dr dz dy
R3 R3
1 z o )
=\ |2 00s,)p| rHrdrdzde <c | |fsP'r~rdrdzde = cl|fs|7, _, s)

R3 R3
To justify all inequalities in (2.8) we show the continuity of v5 at r = 0.
Integrating (2.6) with respect to r from r = /2 to r = g, o € (6,26), and

with respect to ¢ and z, we obtain

2w ] 27 4
(2.9) Sdz S dp S O (10s,) dr + S dz S dy S rdr <12 Vs, —1—175722)
R 0  6/2 R 0 §/2 "
2 o
= Sdz S dy S hsrdr.
R 0  §/2

Since v; is periodic with respect to ¢ and vanishes for |z| sufficiently large,
the second term on the Lh.s. of (2.9) vanishes. Hence (2.9) takes the form

27 27 2 0
_ ) -
(2.10) Sdz S dy oUsr(0) — Sdz S d<p2v5m<2> = Sdz S de S hsr dr.
R 0 R 0 R 0  §/2
But o5 vanishes for » < ¢ so the second integral on the lLh.s. of (2.10)
disappears.

Assuming that hs has a compact support with respect to z we obtain
from (2.10) the inequality

27 27 0 ~ 1/2
(2.11) ‘ Sdz S dy gz_}(gm(g)‘ <c(o— 5)1/2< S dz S dgos |h5|2rdr) .
R 0 R 0 é

Let us now assume that hs is smooth. Then solutions to problem (2.6) are
also smooth and estimate (2.3) holds. Let

By (00, 20) = {(¢, 2) € 0,27] x R: v/( — 90)? + (2 — 20)? < 0}

Take g, 20 and o such that 05, (r) > 0 for r € (9, o) and (¢, z) € Bs(®0, 20)-
Then (2.11) implies a contradiction.

Using that H? smooth functions are dense in H? we show that

lim o5, (1) = 0.
r—§
>4
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The last statement can also be proved in a different way. Assume that
fs € L2(R3) is a smooth function vanishing for » < §. Then hs € La(R3) is
also a smooth function. Hence by Lemma 2.1 there exists a smooth solution
to problem (2.6) such that 5 € H?(R3). Integrating (2.6); with respect to
r from r =0/2 to r = § we get

o o
~ 1 B _
T0sr(0) = — S (73 Vs,pp + U&zz) rdr+ S her dr
) d
SO

e /1 1/2
_ 1/2 —2 —2 2
o)< (0 =0 {2 )]

g 1/2
+(0—68)1/? “ hr? d’r}
0
Hence for smooth solutions in H?(R3) we have
(2.12) lim v5,(0) = 0.
o—d

By the density argument we infer that (2.12) holds for solutions in H?(R?).
Hence v5 € H? ,(R*). Applying [2, [7] we obtain the estimate

(2.13) 1951172 , ey < cll fslls . m3)s

where ¢ does not depend on 4.

Passing to the Cartesian coordinates and taking the limit § — 0 we
obtain

LEMMA 2.2. Assume that f € Lo _,(R®), u € Ry \ Z. Then there exists

a solution to the problem
—Au=f inR3
u—0 asr — 00, |z| — oo,

(2.14)

such that u € HEM(R3) and the estimate
(2.15) lullm2 ey < ellfllL,, -, 9
holds.

Let us consider the case [ > 0. We have

LEMMA 2.3. Assume that fs € H'(Cgrgs). Then there exists a unique
solution to problem (2.2) such that us € H*2*(Cgrys) and

(2.16) usll gi+2(cp 5) < Cllfsllm(cn.s)-
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Finally, we prove a lemma similar to Lemma 2.2 for f € Hl_#(]RS). Let

us consider problem (2.4). In view of Lemma 2.3, f{ € H! (R?\ Cs), so there
exists a solution to problem (2.4) such that uf € H2(R3\ Cs) and

(2.17) lusll gree@aney) < Cllfs | ravcy)-

Let us recall the extensions denoted by U5 and hs. Assuming that hs €
H! H(R?’) and applying a recurrence argument based on the proof of Lemma
2.2 we have

1

_ 1
; (TU(S,T‘),T

(2.18) =

+
H' (R3)

2_}6,9090 + Hﬁé,zz”Hiﬂ(R%

H' (R?) )
< cllfsllue,roy:

Hence by the Hardy inequality and considerations from the proof of Lemma
2.2 it follows that vs € H Z_JLQ(R?’). Then [7] yields the estimate

(2.19) 195l +2z) < sl oy
where ¢ does not depend on §. Passing to the limit § — 0 we obtain

LEMMA 2.4. Assume that f € HI_M(RS), p€RL\Z, 1 € Ny. Then there
exists a solution to problem (2.14) such that u € HZ,JLZ(R?’) and the estimate

(2.20) lell g2 sy < ell il (e
holds.

3. Existence in a bounded domain. The aim of this section is to
prove Theorem 1.2. For this purpose we use the regularizer technique so we
need a partition of unity. Let us define two collections of open subsets {w(k)}
and {2®} k € J}_, M;, such that o®) ¢ Q®) J, w® =, 2®) = 0,
2R NS =0 for k € M UMz and 2 NS £ § for k € My U My,
Here 20 k € My, is a neighbourhood of an interior point of L N 2; Q)
k € Moy, is a neighbourhood of a point where L meets S; 2®) ke Ms,
is a neighbourhood of an interior point of {2, located at a positive distance
from L; 2%), k € My, is a neighbourhood of a point of S, located at a pos-
itive distance from L. We assume that at most Ny of £2(%)’s have nonempty
intersection, and sup;, diam 2k < 2) for some A > 0.

Let ¢(®)(z) be a smooth function such that 0 < ¢®)(z) < 1, (W) ()
=1 for z € w®, supp¢® c W) and |DY¢®)(z)| < ¢/|\Y. Then 1 <
>, (¢ (2))? < Np. Introducing the function n®) (z) = (¥ (z)/ >7,(¢W(2))?
we have suppy(®) ¢ 209, 57, ) (@)¢®(2) = 1, [D2y®)] < /|, By €
we denote a fixed interior point of w®) and 2% for k € M; U M3, and a

point of w*) N S and 2F) N S for k € My U M.
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Since we consider a problem invariant with respect to translations and
rotations we can introduce a local coordinate system y = (y1, y2, y3) centred

at f(k) such that for k € My U My the part S*k) — 5 QK of the boundary
is described by y3 = F(y1,y2). We assume that a point with coordinates
(y1,92,93), y3 > F(y1,y2), belongs to 2. Then we introduce new coordinates

by
(3.1) zi=vy, =12, 2z3=y3— F(y1,y2).

We denote by ¥, the transformation 2*) 3 y - @ (y) = 2z € 2*) described
by (3.1), such that w®) 3 y — W (y) = z € &¥). We assume that the sets

&®) %) are described in local coordinates at ¢®) by the inequalities
(3.2) ly)l <A, i=1,2, 0<ys— F(y1,y2) <A,
. |yz| < 2), 1=1,2, 0<y3—F(y1,y2)<2)\,

respectively.

Let y = Yi(z) be a transformation from the = coordinates to local co-
ordinates with origin at £*) which is a composition of a translation and a
rotation.

We denote @, = ¥, o Y),. Then we set

(3.3) i (z) = (@' (2), @M (z) = a® ()P (2).
First, we prove

LEMMA 3.1. Assume that f € Ly _,(§2), p € (0,1). Then there exists a
solution to problem (1.1) such that u € H? () and

(3.4) lullz2 (@) < el fllLe—u@)-
Proof. Since f € Ly _,(£2), p > 0, we have f € Ly(£2) and
(3.5) [ flloc2) < ellfllis . (2)s

because {2 is bounded. Then we have the existence of solutions to problem
(1.1) such that u € H?(§2) and

(3.6) lull 20y < ell fllza):

To prove the lemma, first we have to consider the problem (1.1) locally.
Take €% € LN 2, k € M;. Let us introduce a local Cartesian system
y = (y1,y2,y3) with the origin at £*) such that L is the y3 axis.

Let R and a be given positive numbers. Let @ be a cylinder of the form

Q={yeR’:|y| <R, |ys| <al,

where y' = (y1,y2).
Assume that 2®) ¢ Q, k € My. Let ¢ = (¥ (y), k € My, be a smooth

function from the partition of unity such that supp( C Q. Let & = u(,
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f = f¢. Then problem (1.1) takes the form
~Al = f —2V(Vu — Au =
@lag =0,

where we consider the case QNS = 0.

To apply Lemma 2.2 we have to know that fy € Lo, (R3). Since p €
(0,1) and in view of (3.6) we know that & € H%(R3), the Hardy inequality
implies

Vu€ Lo ,(R*NQ), u€ Ly ,(R°NQ).
Then Lemma 2.2 implies the existence of solutions to problem (3.7) such
that @ € H? ,(R?) and

(3-8) @l g2, gs) < el fllLa, - )
because
IVullL, _,m3ng) + lullz, . ®3nq@) < cllfllL.a)-

Let € k € My, be a point where L meets S. Let us introduce a local
system of coordinates y = (y1,2,y3) with the origin at £*). Then in the

subdomain (), k € Ma, the part of the boundary S*) = § N K is
described by

yz = F(y1,92),

where F'(0,0) = 0. Let Vi = %6%7 where the summation convention over
the repeated indices is assumed, and z = Py(x), where & € My. Then
problem (1.1) in the local system of coordinates takes the form

—V2ak) = fB g >0,
ﬁ(k)‘Z:;:O = 07
for k € My. Let us extend problem (3.9) to z3 < 0 by reflection. We denote

the extended functions by ak ¢! Let ¢ = é(’f), k € My, be a function from
the partition of unity, ¢’ be the extension of ¢ and let supp (' C @', where

Q ={2eR: || <R, |z3] <a}
Set @ = a®’’, f = f®)'¢ Then (3.9) assumes the form
—Via=f-2Vid -V - Al = fh,
tlog =0,

where @/ = @*| A = V2. In view of (3.6) we have f} € Ly _,(Q'), p € (0,1).
Then Lemma 2.2 implies that 4 € H2 ,(R?).

Moreover, from (3.6) it follows that @ € H2,(R?) in neighbourhoods
located at a positive distance from L.

(3.9)

(3.10)
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To introduce the regularizer (see [4]) we define all local problems in a
uniform way. Let k¥ € M;. Then problem (3.7) is expressed as

(3.11) ~v2q®) = fF) gy 3,
For k € Ma, (3.10) takes the form

(3.12) —v2® = fF i RS,
For k € M3, we consider the problem

(3.13) —V2y® = f® iy R3,

Finally, for £ € My we have

k +(k .
—Vgu( ) = f£ ) in Ri,
u(k)|z3:o =0 on R?.

By Lemma 2.2 we have the existence of solutions to problems (3.11) and
(3.12). Since neighbourhoods W) ke MsU My, are located at a positive
distance from L we have the existence in H'*2 so also in Hl_tf of solutions
to problems (3.13) and (3.14).

Let R®) be the operator which solves the kth problem. Then we define

the operator
Rf =Y n™(@)u® (),

(3.14)

keM
where
RK) (k) ¢ for k € My U Msa,
u® (z) =
& RE) (@ ¢R) f)  for k € Mo U M.

Let us introduce the spaces H = H({2) = Ly _,, V = V(2) = HE#, JIRS
(0,1), endowed with the norms
1l =D 1PNy ey, Ml =D Hu(k)ngu(Rm,
keM keM

where
R(k)_{RB fOI'kGMl UMQUM3,

Ry for k € My.

Since solvability of problems (3.11)—(3.14) is known we deduce R : H —V
is a bounded operator. Let Z be the operator of problem (1.1). It will be

shown that for f € H we have
(3.15) ZRf = (I + 11 + Tg)f, T=1T+15,

where [ is the identity operator, T} : H — H with the norm ||7}] < 1, and
T5 is a completely continuous operator. Moreover, for v € V' we also have

(3.16) RZv = (I + Wi+ Ws)v, W =Wy + Wy,
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where Wy : V. — V with [|[W;] < 1 and W3 is a completely continuous
operator.

Since the operators (I + 71)~! and (I + Wj)~! are bounded, we can
express (3.15) and (3.16) in the form

(3.17) ZRf =T +Ty)f
and

(3.18) R'Zv = (I + W))v,
where

R=RI+T)", [f=0+T)f T=TI+T)"
R'=(I+W)"'R,  Wy=(I+W) "W,

Moreover, the operators T3 and W are also completely continuous.
From (3.16) we obtain

(3-19)  lvll2 (@) < clllBZ0][ g2 (o) + Wil (@) + [W2vlla2 (o)

From the properties of R and the fact that the norm of Wj is less than one
we obtain from (3.19) the inequality

ol o) < 20l + Warll 2 (a).
Since W5 is completely continuous with

IWavll2 (@) <ellvllmz (o) + e(1/e)[[v]l Ly,
where ¢ € (0,1) and ¢(1/¢) ~ 7%, a > 0, we have
(3.20) [l (@) < cUllZv] Lo 2) + [0l La(2)-

Having the existence of weak solutions to problem (1.1) in H'({2) we obtain
from (3.20) the estimate

(3.21) [l (o) < cllZ0] Ly, )-

Hence there exists an inverse operator Z~! for problem (1.1) so we have the
existence of solution to problem (1.1) in HEM(Q), p € (0,1). We can prove
the existence in a more explicit form. Let us express (3.16) in the form

(3.22) v—Wiv = RZv+ Whw.

Having the existence in H'(£2) the r.h.s. of (3.22) belongs to HEM(Q) Since
Wi has norm less than one we prove the existence of solutions to (3.22) in
HEM(Q) by a fixed point argument.

We have to mention that the argument of the operator W5 vanishes in a
neighbourhood of L. Thus Lemma 3.1 will be proved.
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Now we derive the forms of the operators 11,715, Wy, Ws and show the
above statements. Following [4] we have

ZRf = Z (Zn(k)u( ) — k) zy k) Z n ) Zuk
keM keM

For k € My U M3z we have
ZuF) = ZR(k)f(k) _ f(’f) _ C(k)f-
For k € Mo U My,
(3.23) 2(0,)ul® = 2(0,)0;, ' RP (0,¢ M f)
= 0, 2(0, — VF - 8.,)R® (9,¢ W f)
=&, '[2(0. — VF0.,) — 2(0:)|R® (&,,( W f)
+ 1 2(0:) R (8¢ f),

where for k € My we should write ((*) f,0) instead of ¢(*) f. In view of the
definition of R®*) the last expression in (3.23) equals ¢¥) . Therefore, the
operator T takes the form

Tf= 3 (Zn™u® — ) 2u®)
keM

+ > ez, — VFO.,) — 2(9.)|R® (2" f)
ke MalUMy

=Tf+T1f

Now we construct the operator W. We examine the expression RZu.
For k € MU Mg,

R®¢H) zy = RM) (¢ 2y — 2¢R)y) + RK) z¢ )

where

(k) Z¢ By = Ry,
For k € My U My we have
RP @ c®) zy = RF@ (¢ 2y — 2¢Wu) + RO G, z¢ Ry
where the last expression equals
RW[2(0, — VF8,,) — 2(3.)]#x¢™u + RM 2(9,) 0.V

and by the definition of R*) the last term equals ®,¢®w. Finally, the oper-
ator W assumes the form
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W — { S WRO (W 2By
keEMiUM3

LY yWa R Mz ZC(k))u]}
keMaUMy
+ Y e 'RM[2(0. — VFO.,) - 2(0.))8r¢ P u
keMaUMy
= Wou + Wiu.
From the form of T" we have
Tif = Y oW [-ViFVF0Z + V,F0,,0.,
keMaUMy
— V02,05, — VFidzy (VE) 02, RY (@,¢*) f)
and
Tof = Z (Zn(k)u(k) _ n(k)gu(k))
keM
= Y W0, VEO IR (B P f).
keEMaUMy
Since |0F/0z] < e we have ||T1f|[1,_, < cAllfllL,_,, so for A sufficiently
small we have ||T1||g—g < 1.

Since the operator Th involves at most the first derivatives of u(®), the
compact imbedding HEM c H! , implies that T5 is completely continuous.
Examining W we have

keMaUMy
— VF0.,(VE)02 )84 Pu
and

Wou = Z n® RE) (W) z — z¢ Ry,

keMiUM3
+ Z U(k)fp;:lR(k)[@k(C(k)Z—ZC(k))U]
keMaUMy
- Y e rRW(0,, VF0.,)8r¢Fu.
keMaUMy

By the same arguments as above we have ||Wiu|y_y < 1 and W is com-
pletely continuous.

Using estimates for solutions to problems (3.11)-(3.14) and the global
estimate (3.6) we show estimates (3.21) and (3.22).

Hence for f € H({2) and v € V({2) there exists a solution to problem
(1.1) in V(£2).
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We have to stress that all considerations leading to (3.15) and (3.16) are
done for f € H({2) and v € V(§2). Therefore, choosing the spaces H({2) and
V(£2) we were able to prove the existence in V' (§2). Hence, if either ||T7|| > 1
or [W1]| > 1 we could not have proved the existence in V'(§2). This concludes
the proof.

LEMMA 3.2. Assume that f € Ly _,(12), u € (1,2), S € C?. Then there
exists a solution to problem (1.1) such that u € H? ,(£2) and

(3.24) lullmz (o) < el fllLa o), we(1,2).

Proof. Since f € Ly _,,(£2), p € (1,2) and {2 is bounded we have f €
Lo, (82), 1 € (0,1). Hence the assumption of Lemma 3.1 holds. Then by the
Hardy inequality we get f,gk) € Lo, (R3) for p € (1,2), k € M;UMSs. Then
repeating the considerations from the proof of Lemma 3.1 and assuming that
H(2)=Ly_,, V() = Hz#, w € (1,2), we conclude the proof.

Continuing the considerations we obtain

LEMMA 3.3. Assume that f € Lo_,(22), p € (k,k+1), k € Ny, S € C%
Then there ezists a solution to problem (1.1) such that u € HEH(Q) and

(3.25) el @) < el fllie—pios 1€ Rk +1).
Finally, we prove

LEMMA 3.4. Assume that f € HI,M(Q), pERL\Z, 1 €Ny, SeCH2
Then there exists a solution to problem (1.1) such that u € Hl_'f(ﬂ) and

(3.26) lull g2y < el (2)-

Proof. We prove the lemma recurrently. Take [ = 1. From Lemma 3.3
we find that the r.h.s. of (3.11) and (3.12) belong to Hlﬂ. Then we apply
the regularizer technique for H = HEM and V = Héu. Thus we prove the
existence of u in H3 , and (3.26) for [ = 1. Having (3.26) for | = 1 we infer
that the r.h.s. of (3.11) and (3.12) belong to sz so applying the regularizer
technique for H = HE# and V = Hf# we prove the assertion and (3.26) for
=2

Continuing the considerations we conclude the proof.
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