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GLOBAL WELL-POSEDNESS AND BLOW UP FOR
THE NONLINEAR FRACTIONAL BEAM EQUATIONS

Abstract. We establish the Strichartz estimates for the linear fractional
beam equations in Besov spaces. Using these estimates, we obtain global
well-posedness for the subcritical and critical defocusing fractional beam
equations. Of course, we need to assume small initial data for the critical
case. In addition, by the convexity method, we show that blow up occurs
for the focusing fractional beam equations with negative energy.

1. Introduction. The present paper is concerned with the Cauchy
problem for the nolinear fractional beam equations
{utt + (=A)u+u= ANulPlu, teR,zeR"
u(0) = ¢(x) € H*, u(0) = ¥(x) € L?
where 1 < s < 2, A € R\{0}, (=A)%u = FL(|¢|**Fu), u is a real-valued
function with respect to ¢ and z, and F denotes the Fourier transform. The

equation ([1.1)) is said to be defocusing when A < 0, and focusing when A > 0.
Let (¢,%) € H* x L? and E be the energy associated with the nonlinear

equation (|1.1)), i.e.

1 1
1.2 E =\ (v + 2 |D%u® + zuf —
(1) Blou) = § (G + 5100+ gud - 2

(1.1)

2 2

\u|p+1) dr,
R'n

where D® = (—=A)*/2. When s = 2, (L.1)) is the classical beam equation,
when s = 1, (1.1 is the Klein—Gordon equation. The global well-posedness
and scattering for the Klein—-Gordon equation and the beam equation have

been extensively studied in [3 4] [7, O, [12] 13, 15H19]. These two kinds of
equations are different from each other on some facets, for instance, the
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Klein—Gordon equation enjoys finite speed propagation while beam equation
only enjoys almost finite speed propagation ([I8]). In this paper, we prove
global well-posedness for the subcritical and critical defocusing fractional
beam equations, and blow up for the focusing fractional beam equations
with negative energy.

The paper is organized as follows. In Section 2, we give notation and
state the main results. In Section 3, we establish the Strichartz estimates
for the linear fractional beam equations. In Section 4, we prove the main
results.

2. Notation and statement of the main results. Throughout this
paper, C' and ¢ denote positive universal constants, which can vary according
to the context. A < B means that A < CB, and A ~ B stands for A < B
and B < A. We denote by p’ the Holder dual exponent of p € [1,00], i.e.
1/p+1/p’ = 1. For convenience, we write for Lebesgue spaces LP := LP(R"),
Bessel potential spaces HP = H5P(R™) = (I — A)~%/2LP(R™), H® = H*?.
Let S(R™) be the Schwartz class of rapidly decreasing functions, and S’(R™)
be the dual space of S(R"). Given f € S(R"), its Fourier transform F f = f
is defined by

f(§) = @m)™? | e f() da.
R
Let us choose a nonnegative radially symmetric function xy € C°(R")
supported in the ball {{ € R"; €] < 4/3} which equals 1 on the ball
{£& € R™; |£] < 3/4}. Then the function n(§) = x(£/2) — x(§) is supported
in C={¢eR" 3/4<|{| <8/3} and satisfies

X+ n@I) =1, ¢(eR",
j=0

o027 =1, &eR"\{0}.

JEZ
We define the frequency localization operators A; and S; as follows:
Ajf =F QR 7OFS), Sif= > Aif.
k<j—1

Informally, A; = S;11—.5; is a frequency projection to the annulus {€ e R™;
€] =~ 27}, while S is a frequency projection to the ball {£ € R™; || < 27}.
One can check that

(2.1) AjAf =0 if |j—k[>2.

Now we can give the definition of Besov spaces.
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DEFINITION 2.1. Let ¢ € R and 1 < p,q < oo. The inhomogeneous
Besov space By , is defined by

(2:2) By, =1{f € S®; |5, < o).
Here
, 1/q
(X 2791 4;£18) " + ISo(f)llp  for g < oo,
1£llsg, = { =

Sup 2745 fllp + 1So()ly for g = oo
J=Z

We refer to [1I, [14] 22] for more details.

DEFINITION 2.2. A pair (gq,7) is said to be F-admissible, written (q,7)
€A if2<q,r <oo,(q,r,n) # (2,00,2), and

2 1 1
2.3 - <(r):=nl=-—-).
(2.3 2 <o) =n(3- 1)
In particular, if equality holds in (2.3]), we say that (g, ) is sharp F-admissi-
ble and we write (¢,7) € A.

Our main results are the following theorems.

THEOREM 2.1. Let A < 0,1 < s < 2,1 < p < 22 qnd (¢,9) €
H?® x L?. Then we have:

(1) When 1 < p < T5; and n > 2s, there exists a unique global solu-
tion u to ) such that u € C(R, H®) N CY(R, L?) and u depends
continuously on the initial data.

(2) When t5- <p< Z+§§ and n > 2s, there exists a unique global solu-
tion u to such that u € C(R, H*)NCY(R, L*) N L (R, B blr )),
where

B 2(ps + 2) 2(ps + 2)n 2—3s
. (‘h’“ﬁ(’”))‘((n—zs>p—n’4n+<4s+<s—2>n>p’ 710)

Moreover, u depends continuously on the initial data.

(3) When n < 2s and p > 1, there exists a unique global solution u to
such that u € C(R, H*) NCY(R, L?) and u depends continuously
on the initial data.

(4) When p = 225 and n > 2s, if ||[(¢,9)||gsxr2 is sufficiently small,
then there emsts a unique global solution u to . such that u €
C(R,H®) N C'(R, L*) N LY(R, B;, flr )), where (qi,r,B(r)) is as in
. Moreover, u depends contmuously on the initial data.
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THEOREM 2.2. Let A > 0 and 1 < p < 225 Assume that (¢,) €
H* x L? and satisfies

1 1 1 A
E — =42 =52 Z|1Ds 2 7 g p+l d .
(6,9) R§n<2¢ 3V gD = S lePT ) de <0
Then the solution to (1.1} blows up in finite time.

3. The Strichartz estimates. In this section, we will give the Stri-
chartz estimates for the linear fractional beam equation

{Utt+(—A)su+u:f(t,:1:), (t,z) € R x R™,
u(z,0) = ¢(x), ut(x,0) = P(z).
The solution u(x,t) of (3.1) is given by

(3.1)

u(z,t) = K(t)g(z) + K () () + | K(t — ) f(a,7) dr,

0
where K(t) = wtsin(wt), w = /1 + (—=A)5. Let us define
W (z,t) = K()g(x) + K(t)y(x),
t
(GF) (@, t) ==\ K(t — ) f(z,7)dr.
0
We denote by J,,(r) the Bessel function

1

r/2)™ - -
Jm(r) = F(m(+/1;2)7r1/2 Sl L — )t m > —1/2.

Some properties of J,,(r) are listed in the following lemma.
LeEmMA 3.1 ([10, 20, 21]). Let 0 < r < oo and m > —1/2. Then:
(1) Jp(r) < Crm;
(2) G () = =1 g (1)
(3) Jm(r) < Cr—1/2,

Let I = Ror I C R be an interval with 0 € I. Then we have the following
Strichartz estimates.

PROPOSITION 3.1. Assume that 01,09, 0 € R, 2 < q1,qo,71,70 < 00 and
the following conditions are satisfied:

2
0< - < Il’lin((;(?"i), 1)7 (inr’ian) 7é (2a 0032)’ 1= 1727
(3.2) i

s s
o1+d(m)——=up, o2+06(ra)——=5s—p.
a1 q2

Let Y# = H* x H*™5. Then
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(1) (W, W3) € (C(L,Y") 1 LI, BY ) x Lo (1, BO'5") and
33 Wl + IWill gy < ClG )y
1 Pry,2

for (¢,v) € Y*,
(2) Gf € C(I, H*)N LU (I, BY',) and

(3.4) ||ngLq1 (I,Bfll’z) < C”fHLQQ(J,B‘,"g)
T

for f e L%(I, B;Z‘j;),
(3) we have

35) Nl 1,553+ 198l 1952 < CNG. )+ 11y e
7"2,
Jor (¢,0) € H", f € L%(I,B%).
Proof. The argument follows from [I4, Chapter 5]. Since (I —A)*/? is an

isomorphism from By, into By ;" it suffices to prove (3.3)-(3.5) for u = 0.
Note that

— eitw(g) — e_itw('s) ~
K050,6) = 55— 11:9)
— itw(§) 4 e—itw(§) o
R@f(t,6) = ———J(t.6),

where w(€) = (1 + [£]%*)'/2. Now we decompose the solution to (3.1)) into

U= vy +ou_ + %’
where
[ it ITE P aE) 2 2 1. e
vilt,z) = | e (O dE, 9x(8) = 50O * 57
R'l’l
t A
_ ive ti(t—ryw(e) (& T)
wi(t,x)—(S)RSne e (@) dé dr.

Since the Fourier restriction estimates on the hypersurfaces {(7,¢) € R*™;
7 =w(é)} and {(7,€&) € R*"; 7 = —w(&)} are the same, it suffices to show
that under the conditions

2
0< - < min(é(ri), 1)a (Qiari)n) 7& (270072)7 = 1727
(3.6) i .
Ui+6(ri)_7:07 i:1a2a
di
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we have
(3.7) IT®8] a1 1,571,y < Cligla,
(3.8) HéU(t - D)f (e r)dr|| dery = iy
t
(39) H(SJU(t — T)f(.%' ’7' d H IBUI ) C”fHqug(LBT—lag)v
.

where U (t)¢p = F~1e™VIHE™ 4 ¢ Our proof consists of five steps:

(1)

(2)

()

By Littlewood—Paley decomposition and scaling analysis, we reduce
the homogeneous estimate to the estimate of the local-
ized operators T},.

By Littlewood—Paley decomposition and scaling analysis, we reduce
the inhomogeneous estimates and to the estimates ([3.13])—
of the corresponding localized operators.

By using the TT* method and the Christ—Kiselev lemma, the esti-
mates (3.10), (3.15)) and (3.16)) can be deduced from (3.17)), which is
equivalent to (3.13]) and (|3.14]).
We obtain @ for the diagonal case ¢ = g2, r1 = 12 from the
Bessel function expression of the Fourier transform of a radial func-
tion, the method of stationary phase, Young’s inequality and Hardy—
Littlewood—Sobolev’s inequality.

By bilinear interpolation and some special estimates, we obtain the
non-diagonal estimate and the endpoint case.

STEP 1. Let € C2° equal 1 on a neighborhood of suppn, and x € C°
equal 1 on a neighborhood of supp xy. We denote by 17,75 the truncated
operators

Tig(t,x) = | ! OVETHIREOR(€)6(6) de,

Rn
Tad(t,z) = | OVIFEFHTOT(E)g(6) de.
Rn

Therefore, in order to prove (3.7)), it suffices to show

(3.10)

HTk¢HL‘11(I,LT1) <Clgllz (k=1,2).

In fact, by Littlewood—Paley decomposition, we have

$(x) = SoSod +»_ AjAj6,  Aj=Aj 1+ A7+ Aj,
>0
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—

where So/(€) = X(€)£(€), X(€) = x(£/2) and Ao f(€) = 7(€) f(€). We denote
Ui(t)g = | V2 HER 20 6(¢) de.

]Rn

By scaling, we have

U(t)Aj¢ = S ei(x~£+t\/1+\§I23)ﬁ(2—j£)Zj\¢(§) d¢
Rn
_ ojn S ei2jx~fez‘2ﬂ'5m/2*2j5+|§\255(§)2j\¢(2j5) d¢
Rn
= [U1(27°) Ao(450) (277 )| (2 )

for j > 0. This together with (3.6)) and (3.10) implies that

(3.11) T (#)Aj¢llor (1,0r1) S 27 /BT Az (277 ) | 2
S 277459l -

In addition, by (3.10]), we have

(312) HU(t)SO(bHqu(I,L’”l) = “U(t)SOSO¢“LQ1(]’LT1) S HSO¢HL2

Therefore, by Minkowski’s inequality, (3.6) and (3.11]), we get
||U(t)¢”Lq1([,B:11’2)

4 1/2
< U#)Sodl|Lar (1,Lr1) + (Z 22]01“U<t)Aj¢||%q1(I,LT1))

>0

1/2
S ISo0lzz + (32 145612:) = 16l 2

Jj=0
STEP 2. In order to prove (3.8]), it suffices to show

(3.13) HéUﬂt — D)o f dTHqu domy < Ol 1)

and

< CHfHLQIZ(LLT/Q)'

(3.14) HHS{U(t — D) FYRP) * de’ Loy =
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In fact, for 5 > 0, by scaling, we have

S Ult—1)Ajf(z,7)dr

R

_ S i@ EH(E=T)w(O))| 352 ¢) |23j\f(7', ¢)de dr

Rn+1

= oin | PGPS () P A f (7, 20€) dE dr

Rn+1

— gin=is | eI n) AR ) 2 A F (27007, 20 €) de dr

Rn+1

=9I | PRV () 2 F (A (-, 2

Rn+1

I (27757, €) dE dr.

This together with (3.6 and (3.13)) yields
|fut =41 7]
R

Lai(I,Lm1)
27(s/q1+n/7"1)j*j5 SU (t — T)‘AO‘ A; f( Ts) dr
) X L91(2951,L71)

< 9—(s/q1+n/r1)j—js

24(557)

~ 92 o1j— U2]HA f T 7—)”

L% (2951,172)
L9(I,L"2)

which together with Minkowski’s inequality and (3.14)) implies that

H Ut—1)f $7')d7"

qu(lvall,Q)

. _ 2j0
lgee-sred,, + (S
R Jj=0
< t— d ’ 22171

~ Hém T)Sof dr qu(l,L'“l)ﬁL (Z:o
J]=Z
1/2
2jo
SNS0f 1l a7 1oty + (22 17214 fIILqQ L )
]>0

1/2
2j0
(HSOf”m(zm) +Zz 77214 fHLqQ(ILr2 )

<
~ ||f”L11/2(I7B’:I;'22)

Ié{U(t —71)A;f dT‘ zm)l/z) Lo (1)

1/2
La(I, L'“1)>

SU(t—T)Af T‘
R
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By the same argument, to prove (3.9), it suffices to show that
t

(3.15) HUl(t—T)]A(ﬂ fdr \qu ey S Wy
and
t
_ —1/112 < / /
(3.16) umtﬂf<m>wmhmumwwmwﬁq

STEP 3. Now we show that (3.10) is equivalent to (3.13|) and (3.14) by
the T'T* method. We write Ty¢ as

Tip(t,z) = | "0y (©)d(©)drds, k=12,

Rn+1

01(8) = /272 +[€7*, (&) =n(8), 5 =20,
02(¢) = \/1+|§|25, 72(8) = X(£)-

By the TT* method, to prove (3.10), it suffices to show
(3.17) T3y fHqu r.ory < Clf]l
where (q1,71), (q2,72) € A. Note that for any f € S(R"!),
(Tetp, f)yp = (€ (D), F(£.E))re
= Jo@)( §§ e ) deat) do

Rn Rn+l

where

L% IL’“2)’

Consequently, we get

~

Tif(x) = || ™05, (€) f(5,€) ds dé

Rn+1

and

~

ToTEF(€) = [ % i 2 (€) f (s, €) ds
R
From the above, we have
(3.18) T Ty f(t,x) = S Wi(t —s)f(s,z)ds,
R
where ‘ X
Wi()f (@) = | Oy 21(€) dE =2 K f ().
R

From (3.18)), we can see that (3.17)) is the same as (3.13) and (3.14). In
addition, by the Christ—Kiselev Lemma [6], (3.15) and (3.16)) can also be
obtained from (3.13)) and (3.14)).




362 S. Q. Ma and G. X. Xu

STEP 4. Now we prove (3.17) for ¢ = g2 and r; = ro. It suffices to
establish the estimates

(3.19) IKE * flle < 1 f]lee

and

(3.20) IKE * flle < CA+HT2[ £l

In fact, by interpolation between and , we have
(3.21)  [KFs flo < CA+ OO, 2<7 < o

Hence by Young’s inequality and Hardy-Littlewood—Sobolev’s inequality,

we obtain (3.17)) for ¢; = g2 and r; = 7.
Noting that KF(&) = €|y /|?, it is easy to see that (3.19) holds. By
Young’s inequality, we have

IKF % fllpee < CIKF| Lol fll 1,
and it suffices to show
(3.22) |KF(2)||pe <CA+t)™2, k=1,2.

To prove the above decay estimate, we follow the methods of [2, [8, [12].
We first consider K?(x). Let

() =IX(©)F, 0 =027'¢) = 0(5), 9;(&) :=9(277¢),
Ii(x,t) = | €017y, (¢) de.

R’ﬂ
Then
(3.23) 1K Iz < > I8l zoe
j<—1
Note that

Ii(z,t) = 2jnSeinx~E+it02(2j§)19(§) d¢ =: M;(27,1).

Hence we have

(3.24) 115( )| zoe = 105 )| oo -
In the case n = 1, we immediately get
(3.25) 1M (8l S 27,

A simple calculation shows that

2 Y < 9is-1) g > 0.
d§m<9’2(235)>‘N2 or £ € suppd, m >0

Therefore, if |z| < 1, then |8§”(e”519(£))| < 1. Using integration by parts,
we see that for any ¢ > 0,
(3.26) 1M, ) e S [t 7727072590,
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If |z| > 1, let jo be the smallest integer such that |z| < [¢[2%0%. Then
|z| & |t]2270%,
For [j — jo| > C > 1, let wi(§) = € + t02(2%€). Then |w)(€)| > c|t|2%5,
Using integration by parts, we also find that for any ¢ > 0,
(3.27) 1M () L S [t 7925072590,

For [j — jo| < C, noting that [z| > 1 and s > 1, by the van der Corput
Lemma and |w/ (£)| 2 [t|2%7%, we have

) (1-s)/2s
(3:28) M)l < [ 7/220) < Je Y ('yfay‘) <1,
Hence, by taking ¢ sufficiently large, from (3.25)—(3.28]), we get

DM S D MGG Ol + Y M0 e

=1 lj—dol<C li—dol>C
< Z ’t’71/2s_|_ Z min(zj”t’*qzj(leSq))
lj—jol<C li—jo|>C
< N HYEE Y 2 YT it
l7=dol<C 2i<|t|=1/2s  2i>[-1/2s
g,t’—l/%_

Therefore, we have
1K ()l S (L4 )72 < (1 J2) 72

Next we consider the case n > 2. Similar to the case n = 1, it suffices to
estimate [|[M;(+,t)|/ . By the radial symmetry of the phase function and
polar coordinates transformation, we will reduce the estimate of (3.22) to
an oscillatory integral relating to the Bessel function in one dimension. It is
well-known that the Fourier transform of a radial function f is still radial
[20] and

[e.9]

F&) =2m \ flr)yrm(rle)) =D/ o) po(rl]) dr

0
hence we have
Mj({E,t) _ 2jn S eix~§+z’t02(2j§)l9(£) d£

R
oo

= 22" S eit62(2jr)19(7“)r Yr|z|)~(n=2)/2 Jn—2)2(r|x|) dr
0
from which we obtain the trivial estimate

(3.29) 1M (- 1)l S 2™
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From Lemma we easily deduce that for 0 < |z| < 2 and for any
k>0,
d* 1 2)/2
) ral) Sy a(ra]) < e
It is known (see [10, Ch. 1, equation (1.5)]) that
(3.31) rm (D2 g o (r) = enR(eMh(r)),

where h satisfies

(3.30)

dk
)

which implies that for |z| > 2 and any k > 0,
i

< eg(1 4 )" 0RE

(3.32) @) h(r|a])| < exla| 7D,

Now we divide the argument into the following two cases.

CASE 1: |z| < 2. We denote

L bt d
" it2105(29r) dr
We see that
, j - j 1 d 1
L, ith2(27r)y _ ith2(277r) L, ke 2 ‘ )
(e )=e o L)'f it27 dr 0’2(23r)f
We find that for any m > 0, and r ~ 1,
dm 1 .

3.33 — —_ ) < ¢, 277D,
(3:33) drm <9’2(2J7“)> =

Let 5(7“) = J(r)r"~ 1. By integration by parts, we have, for any q € N,

My(a,t) = 2" | 209 () (rla]) =22, g () dr
0

= 27" [ (L) (" )d () (rf]) "2 T g o)) dr
0
2*]” g T Ztez 2J’I“ !
T (—it2d) o e H (9/ 2 )

(al,...,aq)ean 0 =1

|
where X/, = {(a1,...,a0)€(ZT)1:0< a1 < -+ < aqg < q, a1+ +a, = m}.
It follows from (3.30)) and (3.33) that

(3.34) 1M ) e S [t 7927259,
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CASE 2: |z| > 2. It follows from (3.31)) that

M;(z) = cp2™ | 2 (17 b (r||) + e~ R (r|x])) dr
0
= ¢, 20" S eite?(yr)ﬁ(r)e”'x‘h(r\x|) dr
0
+ 20" S eite?(%)g(r)e_"mB(r|1‘|)) dr
0
=: B; + Bs.

Without loss of generality, we can assume that ¢ > 0. For By, let
wi(r) = th(277) + r|z|.

Since 6(r) > 0, we have W/ (r) > ct2%%, and

dm 1 .
. ~ [ —— )< —j(2s—1)
(3:39) dr (wawm) = o

By integration by parts, we also get
| By g < []7927=259)  for any ¢ > 0.
For By, let
(.UQ(T‘) = t92(2j7‘) — T|x|

Note that if |x| = t2765(27r), then w)(r) = 0, that is, the phase function we
has a stationary point. Now we divide the integration region into two parts.
One is far from the stationary point, for which we can utilize integration by
parts. The other is near the stationary point, where we can utilize the van
der Corput Lemma.

CASE 2a:

, . 1 , .
x| >2 sup t22605(2'r) or |x|< = inf  t2705,(277).
o r€[3/2,16/3] 2(2'7) 2 2 re[3/2,16/3) 2(2'7)

In this case, we see that
Wh()] > 125, p et

We have

am 1 .
| KL
550 i () =

This together with (3.32) implies that

| Ba|pee < t]7927"=250)  for any ¢ > 0.
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CASE 2b: §inf,c(3/2,16/3 t2765(27r) < |z] < 28UP,¢[3/2,16/3] t2704,(277).
Note that
jwy (r)] > cft|2*°.
By the van der Corput Lemma and (3.32)), we have
o
|1Ball e S 27" (12%75)71/2 |
0
< 2jn(t22j5)71/2’w‘f(nfl)/Q < tfn/22j(nfsn).

This together with (3.29)) implies that
|Ba|ree S 1t]7927"=259) for 0 < ¢ < n/2.

d ~ irlz
(@) n(r|]) | dr

Now we turn to estimating || K?(z)|| . Similar to the case n = 1, if jo < —1
and |z| ~ 122705 > 2 then

[ Mo (s t) |l S |t~/ 29d0(n=sn) < =n/2 (!x) 2 < i,

t
If |7 — jo| > C > 1, then
|M; (-, )] < [t]7727"=259  for any ¢ > 0.

Hence, choosing ¢ > n/2s, we have

(3.37)
IEE (Wzee < D 1M, )| 2
j<—1
SO IMGHle + Y M)
li—jo|<C l7—jo|>C
SO T4+ )T min(2n, [ e2d ()
l7—jol<C lj—jo|>C
< Z |t]7/25 4 Z oin 4 Z |t| 927 (n—259)
li—jol<C 21 <|t|~1/2s 20> || =1/2s
<l

Therefore, we obtain
HEE (o S (L4 [8) 772 < (L [¢]) /2
Now we consider K} (z). Note that
01(&) = 277°62(2’[€)).
If r~1, meNand r = ||, then

2
GO0~ 1 |00

d
~ 1, and ‘W(el('l"))’ SJ 1.
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Similar to the proof of the decay estimate of K?(z), we get the desired decay

estimate (3.22]).

STEP 5. Now we show that holds for any (qi,71), (g2,7r2) € A.
By the Sobolev embedding, it suffices to show that holds for (¢1,71),
(q2,72) € A. In fact, we suppose p € C° and equals 1 on a neighborhood of
supp 7. Hence, for any pairs (q1,71), (g2, 72) € A, there exist (q1,71), (g2, 72) €
A such that 71 < ry and 79 < r9. By Bernstein’s inequality, Young’s inequal-
ity and for (q1,71), (g2,72) € A, we get

TR T3 fll o 1,y S NTRTR fll por (r.piy S IF (o) * f”LQé(I,L"’é
SIFHP) = Fll o g oty S Wt g5

Now we prove (3.17)) for (q1,71), (q2,72) € A, (2/¢:;,0(r4)) # (1,1), i =
1,2. We define the bilinear operator as

)

(3.38) B(f,9) = (TWT; f(t.2),9(t,2)),,
S < S Wi(t —7)f(r,x)dr, g(t, x)>z dt.
R R

So it is enough to show

(339 1BU O < Uy iy 90y gty (@071)s (02.72) € A,

CASE 1: (q1,m1) € A, (q2,72) = (00,2). Let S(t)f := F~1(e"5(£) f(€)).
From Hoélder’s inequality and Hardy-Littlewood—Sobolev’s inequality, we
have

340) | §S(-0)f(t.2) dtH; = [ (S(=r)f(r, ), S(=t) f(t,2)) dr
R R2

= [ (W(t =) f(ra), f(t,2))e drdt

R2
= S < S Wi(t —7)f(7,x) dT,f(t,a:)> dt

R R z
S H S |t N T’_é(m)nf(ﬂx)”yll dT‘ LQ1(I)||f”Lq/1 (I,LTll)
<whhur.

Hence, we have

(3.41) Hé{ﬂ 1) f(t, ) dtH St g ot
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It follows that

(3.42) B(9) = | (S Wit =) (7. drg(t,2)) i
R

(Wit — 7)f(r,2), glt, 2))e dr dt’

»

Hee— He—

(S(=)f(r,2), S(~O)g(t, )z dr dt|

»

Il
BAe— B =

< | S(—7)f(r,2)dr, S(~t)g(, x)>z dt‘
R

S HfHLq’l(LLT’I)||g||L1(I,L2)-

CASE 2: (q1,71) = (q2,72) = (¢, 1) € A. By (3.21)) and Hardy-Littlewood—
Sobolev’s inequality, we have

(3.43) B(f.g) = | (§W(t =) f(r.)dr.g(t.2)) di
R R

= L e F{CEOU ey (N 1 o
R
S ||f||Lq’(1,Lr’)||9||Lq/(1,Lr/)-

CASE 3: (q1,71) = (00,2), (g2,72) € A. Similar to Case 1, by (3.38) and
(3-41), we get

B(f.9) = | [ {(S(=n)f(r.2). | S(-t)g(t,2)dt) dr
R R

Sl lgl ey g sy

The estimate (3.39)) for the general case follows from the above special cases
and the interpolation theorem [5]. For the endpoint case, we refer to [11].
This completes the proof of the proposition. =

4. The proof of the main results

Proof of Theorem [2.1] Let the operator 7 be defined by
t
(4.1) T (u)(t) = K(t)p(x) + K(t)(x) + )\SK(t — ) (|Ju|P u) (1) dr.
0
Now we divide the proof into several parts.
Case 1: 1 < p <n/(n—2s)and n > 2s. Fix T, M > 0 to be chosen
later. We consider the metric space

(4.2) X ={ue L>*((-T.T),H"); |lul|poe((~7.1),15) < M}
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equipped with the distance
d(u,v) = |lu — U||L°°((7T,T),Hs)~

It follows from Plancherel’s theorem and Sobolev’s embedding that

(4.3) 1 Tullrs < lgllzzs + 9122 + M [[lulP~ ] . dr

< l¢llas + [¢llrz + A [lullfp d7

O e o+ O e

< l¢llas + [1¥llez + CINT |l oo (1 sy

Here we choose M = 2(||¢|| = + |¢||12), T = T1 = 2(C|A|) "' M'~P. Then T
maps X to X. On the other hand, we have

(4.4) d(Tu,Tv) < Cy|A|\ ||lu = o|(julP~" + [oP~Y)|| . d7

< LA llu = vl g (Ll + 1l ) dr

O e o O e

< 2C1 (N TMP~Yd(u,v).

Here we choose M = 2(||¢| m=+ ¢ 12), T = Ty = X(|]A|[C1) ' M1=P. Then T
is contractive. By Banach’s fixed point theorem, 7 has a unique fixed point
u € X, i.e. u satisfies (4.1). By the standard argument, 7u € C([-T, T}, H®),
and so u € C([-T,T], H®).

2 <p< n42s and n > 2s. Fix T, M > 0 to be chosen later.

n—2s
We consider the metric space

(4.5) & = {ue L%, H*) N LY (L, By ) lull oo (g0 +lJull x () < M}
equipped with the distance
d(u,v) = [Ju = v peo(r,ms) + lu — vl x(1)-

Here

X(I) =L, B, I=(-T.7),

B 2(ps + 2) 2(ps +2)n 2—s
(a1, 3(r)) = ((n —28)p—n'4dn+ (4s+ (s —2)n)p’ 2 5(T)>'
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It follows from Strichartz’s estimate ({3.5)), Holder’s inequality, Sobolev em-
bedding L? — B;)’Q for 1 < ¢ <2 and the embedding Bf;ﬂ(r) — LY that

(4.6) [ Tullxry + 1 Tull oo (1,19

< Ol + Wlze) + Cll ™l s,

Cllgllar + 18]z2) + ]y
OBl + 46l2) + Cllullay Lu)T“
CUllgla + 10l 2) + Cllul T

where o = S22 s — 3(r) —n/r = —n/v, 1/’ = p/v, 1/dy = p/ay +
a=1- %, and C' does not depend on u, ¢, or t. Choosing M =
2C(| ¢l s + |¥ )| z2), T = T1 = (M*=P/2C)"/*, we find that T maps X to X.

On the other hand,

(4.7) d(Tu,Tv) < C()H|u’p*1 — |vP~ 1UHLq2 1,BY, )

< Col|lu — vl (ful"~" + o[~ Hmé(z,y’)

< Collullar s vy + W0l (1,1 Tl = 0l Lo (1,10

< Co(llull gy + 10l )T llw = vllx (1)

< 2CoMP~ 1To‘al(u, v),
where we use Strichartz’s estimate , Holder’s inequality, the Sobolev
embedding L9 — Bg,z for 1 < ¢ <2 and the embedding Bf;ﬁ(r) — LY. Let

T = Ty be such that 2Co MP~'T§ = 1/2. Then 7T is a contraction mapping.
Following the standard argument, we deduce that v € C(R, H*)NC*(R, L?)N

qu

loc

(R, Bf};ﬁ (r)), and the continuous dependence.

CASE 3: n < 2s and p > 1. Noting that in this case H® — L*° we easily
obtain

1Tullzs < N@llms + [1¥lez + INCTull oo (1 1oy

and

7w — TU”LO@((—T,T),Hs)
< C|)"T(||u||L°°((—T,T),HS) + ||U||L°°((—T,T),Hs))p_1||U - U||L°O((—T,T),Hs)

as in CASE 1. By the same argument as in CASE 1, one can get the uniqueness
and existence of a solution to (I.1]) such that v € C(R, H*) N C'(R, L?) and
u depends continuously on the initial data.
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CASE 4:p = (n+2s)/(n — 2s) and n > 2s. We modify slightly the proof
of CASE 2. By replacing the interval I by R and utilizing the smallness of

|(d, V) || s xr2, we get global existence directly from (4.6)), (4.7) and the

contraction principle. u

Proof of Theorem[2.2. From the proof of Theorem 2.1 and the regularity
argument, we get local existence and conservation of energy of the solution

to (L),

B = Bu(t), w(t)) = g(l 2
o

1 S
5 Ut + §|D ul? + G(u)) dx

fort € [0,T). Here G(u) = %uQ—IﬁM”“ and [0, T) is the maximal lifespan
of the solution to (1.1). Multiplying (1.1) by u and integrating, we have

—— S u?dr = S (u? — |D*ul* — ug(u)) dz,
R7 R™

where g(u) = u — Au|P~1u. From this we subtract (24 4«) times the energy

E and choose o = (p — 1)/8, noting that ug(u) < (2 4+ 4a)G(u), we obtain

2
(4.8) %I(t) = | ((2+20)u? + 20| D% + (2 + 40)G(u) — ug(u)) dz
RTL
- (2+4a)E
> (24 20) | ufde — (24 40)E,

R7
where I(t) = 3 {5, u?dz. Multiplying by I and using Schwarz’s in-
equality, we get
(49 IUI"+(2+40)E) > (1+a) | uide | v’dz > 1+ a)(I')*.
R" R”

Let H(t) =1(t) — (t+ 7)*E. By (4.9), we have
HH" — (1+a)(H' ) =I1I"+ (2 +4a)) — (1 +a)(I")? —4(1 + a)EI

—(t+7)?E(I" + (24 4a)E) + 4(t + T)I'E(1 + a)

> — (L+a)E[(t+7)I' = 21)*/1 > 0.

If we choose 7 so large that H'(0) > 0, then J = H~“ satisfies J"(t) =
—a(HH" — (1 + a)(H')?)/H*"? < 0 and J(0) > 0, J'(0) < 0. It follows

that J(t) < J(0) +¢J'(0), so J(T) = 0 for some T" > 0. Thus if the solution
exists up to time T, we have

S wder — oo ast—T,
R
which implies that the solution blows up at time 7. =
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