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SOME RESULTS ON STRONGLY NONLINEAR
ANISOTROPIC DIFFERENTIAL EQUATIONS

Abstract. The paper concerns the existence of weak solutions to nonlin-
ear elliptic equations of the form A(u) + g(x, u,∇u) = f, where A is an
operator from an appropriate anisotropic function space to its dual and the
right hand side term is in L1+m with 0 < m < 1. We assume a sign condition
on the nonlinear term g, but no growth restrictions on u.

1. Introduction. Let Ω be an open bounded subset of RN , N ≥ 3.
Let p1, . . . , pN be N real numbers with pi > 2, i = 1, . . . , N. Let X be the
Banach space, called an anisotropic Sobolev space, obtained as the closure
of C1

0 (Ω) with respect to the norm

‖u‖ = ‖u‖1+1/m +
N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
pi

where m is a real number such that 1/(pi − 1) < m < 1.
Let A be the nonlinear operator from X into the dual X∗ defined as

Au = −div(a(x, u,∇u)),

where a(x, s, ξ) = {ai(x, s, ξ)} : Ω × R × RN → RN , i = 1, . . . , N , is a
Carathéodory vector-valued function, that is, measurable with respect to
x in Ω for every (s, ξ) in R × RN , and continuous with respect to (s, ξ)
in R × RN for almost every x in Ω. Suppose that A satisfies the follow-
ing conditions of strict monotonicity, coerciveness and growth: there exist
positive constants α and β and a nonnegative function k ∈ L1(Ω) such
that
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(A1) for a.e. x ∈ Ω, all (s, ξ) ∈ R× RN and all i = 1, . . . , N ,

|ai(x, s, ξ)| ≤ β
[
k(x) + |s|1+1/m +

N∑
j=1

|ξj |pj

]1−1/pi

(A2) for a.e. x ∈ Ω and every ξ, ξ∗ ∈ RN with ξ 6= ξ∗,

[a(x, s, ξ)− a(x, s, ξ∗)] · [ξ − ξ∗] > 0,

(A3) for a.e. x ∈ Ω and every (s, ξ) ∈ R× RN ,

a(x, s, ξ) · ξ ≥ α
N∑
i=1

|ξi|pi .

Consider the nonlinear elliptic equation

(1.1) Au+ g(x, u,∇u) = f in Ω,

where g is a nonlinear lower-order term having no growth conditions with
respect to |u| and satisfying the following assumption:

(G) g : Ω × R× RN → R is a Carathéodory function satisfying

|g(x, s, ξ)| ≤ h(|s|)
[
c(x) +

N∑
i=1

|ξi|pi

] 1−m
2(1+m)

for a.e. x ∈ Ω and all (s, ξ) ∈ R × RN , where h : R+ → R+ is a
continuous increasing function such that h(u) ∈ L2(Ω) for all u ∈ X,
c is a positive function in L1(Ω), and m satisfies 1/(pi − 1) < m < 1.
We also assume the “sign condition” g(x, s, ξ)s ≥ 0 for a.e. x ∈ Ω
and all s ∈ R.

Let us mention that in the isotropic case (pi = p, i = 1, . . . , N), the
problem (1.1) has been investigated by Bensoussan, Boccardo and Murat [4].
In particular, they proved the existence of solutions using different ideas
based essentially on the strong convergence of the positive and negative
parts of the approximate solution.

Note that some results have been proved for the problem (1.1) in the
isotropic case in the framework of weighted Sobolev spaces; for more details,
we refer the reader to [2].

The purpose of this paper is to study the above problem in the anisotropic
case. More precisely, under the hypotheses (A1)–(A3) and (G), we prove an
existence result for the anisotropic problem (1.1). Our study is motivated
by an anisotropic Sobolev inequality due to Troisi [18].

Let us point out that interesting work in the anisotropic case has been
done e.g. in [7], [10] and [14]. Finally, when g does not depend on ∇u, we
refer the reader to the recent works [3] and [8], dealing with elliptic equations
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for a general class of operators of finite and infinite order, and proving the
existence of solutions in anisotropic spaces.

As a prototype example, one can consider the problem

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

)
+ g(x, u,∇u) = f in Ω,

where

g(x, s, ξ) = sgn(s)(1 + |s|)
[ N∑
i=1

|ξi|pi

] 1−m
2(1+m)

with pi > 2 and 1/(pi − 1) < m < 1 for i = 1, . . . , N .

2. Preliminaries

Anisotropic Sobolev spaces. We start by recalling that anisotropic
Sobolev spaces were introduced and studied by Nikol’skĭı [12], Slobodeckĭı
[17], and Troisi [18], and later by Trudinger [19] in the framework of Orlicz
spaces.

Let Ω be a bounded open subset of RN (N ≥ 3) and let p0, p1, . . . , pN
be real numbers with 1 < pi <∞, i = 0, . . . , N. We denote by W 1,pi(Ω) the
anisotropic Sobolev space consisting of all real-valued functions u ∈ Lp0(Ω)
whose derivatives in the sense of distributions satisfy

∂u

∂xi
∈ Lpi(Ω) for all i = 1, . . . , N .

This set of functions forms a Banach space under the norm

‖u‖1,pi =
( �

Ω

|u(x)|p0 dx
)1/p0

+
N∑
i=1

( �

Ω

∣∣∣∣∂u(x)
∂xi

∣∣∣∣pi

dx

)1/pi

.

The space W 1,pi
0 (Ω) is the closure of C∞0 (Ω) with respect to the norm ‖·‖1,pi .

The theory of anisotropic Sobolev spaces was developed in [13], [15], [16] and
[18]. It was proved that (W 1,pi

0 (Ω), ‖ · ‖1,pi) is a reflexive Banach space for
any p0, ..., pN with 1 < pi <∞, i = 0, . . . , N. The dual space of W 1,pi

0 (Ω) is
equivalent toW−1,p′i(Ω), where p′i is the conjugate of pi, i.e., p′i = pi/(pi − 1),
i = 0, . . . , N.

In the following, we assume

pi > 2 for all i = 1, . . . , N and
N∑
i=1

1
pi
> 1.

Let m be a real number such that 1/(pi − 1) < m < 1 for all i = 1, . . . , N.
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We define X to be the closure of C1
0 (Ω) with respect to the norm

(2.1) ‖u‖ = ‖u‖1+1/m +
N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
pi

.

Remark 2.1. X endowed with the norm (2.1) is a reflexive Banach
space. This can be easily deduced by constructing an isometric isomorphism
from X to a closed subspace of L1+1/m(Ω)×

∏N
i=1 L

pi(Ω).

We prove the existence of distributional solutions for the nonlinear ellip-
tic equation

(P )
{
Au+ g(x, u,∇u) = f in Ω,
u = 0 in ∂Ω,

where f ∈ L1+m(Ω). Herein, the operator A and the function g satisfy
(A1)–(A3) and (G) respectively.

We use the following anisotropic Sobolev inequality given by Troisi [18].

Theorem 2.1. Let qi ≥ 1, i = 1, . . . , N , and u ∈ C∞0 (Ω). If
∑N

i=1 1/qi
> 1, then

‖u‖q̄∗ ≤ C
N∏
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥1/N

qi

where
1
q̄∗

=
1
N

(
−1 +

N∑
i=1

1
qi

)
and C depends only on qi and N.

Now we state the main result of the paper.

Theorem 2.2. Let m be a real number with 1/(pi − 1) < m < 1, i =
1, . . . , N. Assume that (A1)–(A3) and (G) hold and f ∈ L1+m(Ω). Then the
problem (P ) has at least one solution u ∈ X such that

g(x, u,∇u) ∈ L1(Ω) and g(x, u,∇u)u ∈ L1(Ω),
〈Au, v〉+

�

Ω

g(x, u,∇u)v dx = 〈f, v〉 ∀v ∈ X.

Remark 2.2. Note that v ∈ X, therefore v ∈ L1+1/m(Ω). Then the
condition (G) guarantees that

	
Ω g(x, u,∇u)v dx is well defined since h(u) ∈

L2(Ω) and m < 1.

Remark 2.3. To enlarge the class of operators A for which the conclu-
sion of Theorem 2.2 remains true, we can also assume instead of (A1) the
following condition:
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(A1)′ for a.e. x ∈ Ω, all (s, ξ) ∈ R × RN , all i = 1, . . . , N and some
function k ∈ Lp′i(Ω),

|ai(x, s, ξ)| ≤ β
[
k(x) + |s|(1+1/m)/p′i +

( N∑
j=1

|ξj |pj

)1/p′i
]
,

Proof of Theorem 2.2.

Step 1: Existence for the approximate problem. Let ϕ ∈ C∞c (RN ) be
such that 0 < ϕ < 1 and ϕ = 1 in some neighbourhood of 0. Set

gk(x, u,∇u) = ϕ(x/k)Tkg(x, u,∇u), bk(u, v) =
�

Ω

gk(x, u,∇u)v dx

for a.e. x ∈ Ω for all u, v ∈ X, where Tk is the usual truncation given by

Tkµ =
{
µ if |µ| ≤ k,
kµ/|µ| if |µ| > k.

Observe that bk(u, v) is well defined since gk(x, u,∇u) is bounded with com-
pact support. Define the following operator:

Gku : X → R, v 7→
�

Ω

gk(x, u,∇u)v dx.

Since v ∈ L1+1/m(Ω) it is easy to see that Gk : X → X∗ is well defined.

Proposition 2.1. Under the assumptions (A1)–(A3), the operatorA+Gk
is coercive, strictly monotone, hemicontinuous and bounded. Precisely:

(i) lim‖u‖→+∞ 〈(A+Gk)u, u〉/‖u‖ = +∞.
(ii) 〈(A+Gk)u− (A+Gk)v, u− v〉 > 0 if u 6= v, u, v ∈ X.
(iii) The map λ ∈ R 7→ 〈(A + Gk)(u + λv), w〉 is continuous for each

u, v, w ∈ X.
(iv) If Y ⊂ X is bounded, then (A+Gk)(Y ) is bounded.

Proof. (i) Let i0 be such that∥∥∥∥ ∂u∂xi0
∥∥∥∥
pi0

= max
{∥∥∥∥ ∂u∂xi

∥∥∥∥
pi

: i = 1, . . . , N
}
.

Since 1/(pi − 1) < m < 1, we have 1 + 1/m < pi for all i = 1, . . . , N. This
easily implies that

1 +
1
m
≤ p̄∗ where

1
p̄∗

=
1
N

(
−1 +

N∑
i=1

1
pi

)
.

Then by Theorem 2.1 we have

‖u‖1+1/m ≤ K̃‖u‖p̄∗ ≤ K
∥∥∥∥ ∂u∂xi0

∥∥∥∥
pi0

,
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where K̃,K are positive constants. Hence, thanks to (A3) and (G) we obtain

〈(A+Gk)u, u〉
‖u‖

≥

�

Ω

α
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣pi

dx

‖u‖

≥

�

Ω

(
α

2

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣pi

+
α

2

∣∣∣∣ ∂u∂xi0
∣∣∣∣pi0
)
dx

‖u‖1+1/m +
∥∥∥∥ ∂u∂xi0

∥∥∥∥
p0

≥ K ′
‖u‖pi0

1+1/m +
∥∥∥∥ ∂u∂xi0

∥∥∥∥pi0

pi0

‖u‖1+1/m +
∥∥∥∥ ∂u∂xi0

∥∥∥∥
pi0

,

where K ′ is a suitable positive constant. Then the coercivity follows im-
mediately since the powers in the numerator are greater than those of the
denominator in the above inequality.

(ii) The strict monotonicity of A+Gk follows easily from (A2) and (G).
(iii) To show that A+Gk is hemicontinuous, we will prove that

〈(A+Gk)(u+ λv), w〉 → 〈(A+Gk)(u+ λ0v), w〉

as λ→ λ0 for all u, v, w ∈ X. Since for a.e. x ∈ Ω,

ai(x, u+ λv,∇(u+ λv))→ ai(x, u+ λ0v,∇(u+ λ0v))

as λ→ λ0, thanks to the growth condition (A1) we have

ai(x, u+ λv,∇(u+ λv))→ ai(x, u+ λ0v,∇(u+ λ0v)) weakly in
N∏
i=1

Lpi(Ω)

as λ→ λ0. Therefore

〈A(u+ λv), w〉 → 〈A(u+ λ0v), w〉 as λ→ λ0.

On the other hand,

gk(x, u+ λv,∇(u+ λv))→ g(x, u+ λ0v,∇(u+ λ0v))

as λ→ λ0 for a.e. x ∈ Ω. Then

gk(x, u+ λv,∇(u+ λv))→ g(x, u+ λ0v,∇(u+ λ0v)) in L1(Ω)

as λ→ λ0 since (gk(x, u+ λv,∇(u+ λv)))λ is bounded in L1(Ω). Therefore

〈Gk(u+ λv), w〉 → 〈Gk(u+ λ0v), w〉 as λ→ λ0.
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(iv) For the boundedness we have

|〈(A+Gk)u, v〉| = 〈Au, v〉+
�

Ω

gk(x, u,∇u)v dx

≤ β
N∑
i=1

[( �

Ω

(
k(x) + |u|1+1/m +

N∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣pj
)
dx

)1/p′i
( �

Ω

∣∣∣∣ ∂v∂xi
∣∣∣∣pi

dx

)1/pi
]

+ c1‖v‖1+1/m

≤ c2‖v‖(c3 + ‖u‖)γ1

where c1 and c2 are positive constants and γ1 is a positive number. This
implies the boundedness of A+Gk.

Therefore, thanks to Theorem 2.1 of [11], there exists a solution uk ∈ X
of the problem

Auk + gk(x, uk,∇uk) = f,

or variationally

(2.2)
N∑
i=1

�

Ω

ai(x, uk,∇uk)
∂v

∂xi
dx+

�

Ω

gk(x, uk,∇uk)v dx = 〈f, v〉

for all v ∈ X.

Step 2: A priori estimates. Substituting v = uk in (2.2) and using (A3)
and (G) results in

α

N∑
i=1

�

Ω

∣∣∣∣∂uk∂xi

∣∣∣∣pi

dx ≤ c‖f‖L1+m(Ω)‖uk‖,

where c is a positive constant. Then similarly to the proof of (i) in Propo-
sition 2.1, we get

‖uk‖
pi0

1+1/m +
∥∥∥∥ ∂uk∂xi0

∥∥∥∥pi0

pi0

‖uk‖1+1/m +
∥∥∥∥ ∂uk∂xi0

∥∥∥∥
pi0

≤ c‖f‖L1+m(Ω).

If we suppose towards a contradiction that ‖uk‖ is not bounded, the left
hand side of the above inequality becomes unbounded since

lim
x+y→+∞

xt + yt

x+ y
= +∞ for x, y ∈ R+ and t > 1.

Thus,
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‖uk‖ ≤ C,(2.3)
�

Ω

gk(x, uk,∇uk)uk dx ≤ C(2.4)

for some constant C > 0 independent of k. By a similar argument, we can
prove that A is a bounded operator, and we get

(2.5) ‖Auk‖X∗ ≤ C ′

for some constant C ′ > 0 independent of k.

Step 3: Convergence of uk. In view of Remark 2.1, X is reflexive, and
we deduce from (2.3) and (2.5) that

uk → u weakly in X,

∂uk
∂xi
→ ∂u

∂xi
weakly in Lp

′
i(Ω),

Auk → χ weakly in X∗.

This implies that we can take a subsequence still denoted by uk such that

(2.6) uk → u a.e. in Ω.

This is not sufficient to pass to the limit in gk. We need for instance

(2.7) ∇uk → ∇u a.e. in Ω.

We will not give the proof of this since it is identical to one in [4]. In fact,
we can prove as in [4] that

u+
k → u+, u−k → u− and ∇uk → ∇u a.e.

Therefore, since g is continuous, we get the conclusions

gk(x, uk,∇uk)→ g(x, u,∇u) a.e. in Ω,

gk(x, uk,∇uk)uk → g(x, u,∇u)u a.e. in Ω.

From (2.4) and in view of Fatou’s lemma, we obtain
�

Ω

g(x, u,∇u)u dx ≤ lim
k→+∞

�

Ω

gk(x, uk,∇uk)uk dx ≤ C,

which implies that g(x, u,∇u)u ∈ L1(Ω).
Now let δ > 0. Since |gk(x, s, ξ)|δ ≤ |gk(x, s, ξ)s| for |s| ≥ δ, we obtain

|gk(x, s, ξ)| ≤ δ−1|gk(x, s, ξ)s| for |s| ≥ δ. In view of Hölder’s inequality, for
any measurable subset E of Ω,
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(2.8)
�

E

|gk(x, uk,∇uk)| dx

≤
�

|u|≤δ

|gk(x, uk,∇uk)| dx+ δ−1
�

|u|>δ

|gk(x, uk,∇uk)uk| dx

≤ h(δ)
�

E

[
c(x) +

N∑
j=1

∣∣∣∣∂uk∂xi

∣∣∣∣pi
] 1−m

2(1+m)

dx+ δ−1C

≤ h(δ)c3(c4 + c5‖uk‖γ2)|E|+ δ−1C

where c3, c4 and c5 are positive constants, γ2 is a positive number and C
is the constant of (2.4). Thanks to (2.3), the above inequality implies the
equiintegrability of gk(x, uk,∇uk).

For |E| sufficiently small and δ = 2C/ε with ε > 0 we obtain
�

E

|gk(x, uk,∇uk)| dx ≤ ε.

Thanks to (2.6), (2.7), (2.8) and Vitali’s theorem we get

gk(x, uk,∇uk)→ g(x, u,∇u) strongly in L1(Ω).

Hence g(x, u,∇u) ∈ L1(Ω). Passing to the limit, we obtain

〈χ, v〉+
�

Ω

g(x, u,∇u)v dx = 〈f, v〉 for all v ∈ X.

It remains to show that Au = χ. For this purpose, note that since A is
bounded, hemicontinuous and monotone, it is pseudomonotone (see Propo-
sition 2.5 of [11]). Now, substituting v = uk in (2.2), in view of Fatou’s
lemma we get

lim sup
k→+∞

〈Auk, uk〉 ≤ 〈f, u〉 −
�

Ω

g(x, u,∇u)u dx.

This implies

lim sup
k→+∞

〈Auk, uk〉 ≤ 〈χ, v〉.

Since A is pseudomonotone, we obtain χ = Au.
Finally, we conclude that

g(x, u,∇u) ∈ L1(Ω), g(x, u,∇u)u ∈ L1(Ω),
〈Au, v〉+

�

Ω

g(x, u,∇u)v dx = 〈f, v〉 for all v ∈ X.

This completes the proof.
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3. Data in the dual case. Let pi, i = 1, . . . , N , be N real numbers
such that

pi > 1 for all i = 1, . . . , N and
N∑
i=1

1
pi
> 1.

Set p = min{pi : i = 1, . . . , N} and suppose further that the nonlinear
lower-order term g satisfies the following condition instead of (G):

(G′) g : Ω × R× RN → R is a Carathéodory function satisfying

|g(x, s, ξ)| ≤ h(|s|)
[
c(x) +

N∑
i=1

|ξi|pi

] 1
1−1/p−1/q

for a.e. x ∈ Ω and all (s, ξ) ∈ R × RN , where h : R+ → R+ is
a continuous increasing function such that h(u) ∈ Lq(Ω) for all
u ∈ X, c is a positive function in L1(Ω), and q satisfies 1 < q < p
with 1/p + 1/q < 1. We also assume that g(x, s, ξ)s ≥ 0 for a.e.
x ∈ Ω and all s ∈ R.

Define the anisotropic space E to be the closure of C1
0 (Ω) with respect to

the norm

‖u‖ = ‖u‖p +
N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
pi

.

It has been shown in [14] that E is a reflexive Banach space. Consider the
following nonlinear elliptic equation with Dirichlet boundary condition:

(P ′)
{
Au+ g(x, u,∇u) = f in Ω,

u = 0 in ∂Ω,

where f ∈ E∗, with E∗ denoting the dual of E.
The existence result is the following.

Theorem 3.1. Assume (A1)–(A3) and (G′) hold and f ∈ E∗. Then the
problem (P ′) has at least one solution, i.e., there exists u ∈ E such that

g(x, u,∇u) ∈ L1(Ω) and g(x, u,∇u)u ∈ L1(Ω),
〈Au, v〉+

�

Ω

g(x, u,∇u)v dx = 〈f, v〉 ∀v ∈ E.

The conclusion of Theorem 3.1 follows by adapting the techniques used
in the proof of Theorem 2.2.

Remark 3.1. As in [14], consider the operator A of the form

Au = −div(b(∇u) + a(x, u,∇u)),

where a(x, s, ξ) = {ai(x, s, ξ)}, i = 1, . . . , N, are as in the introduction and
b(ξ) = (b1ξ1, . . . , bNξN ) for ξ = (ξ1, . . . , ξN ) ∈ RN with

bi ∈ L∞(Ω), bi(x) > 0,



Strongly nonlinear anisotropic differential equations 385

for a.e. x ∈ Ω and all i = 1, . . . , N. Further, consider the weighted space
associated to bi on Ω which is given by

L2(Ω, bi) = {u = u(x) : b1/2i u ∈ L2(Ω)}
In this space we define the norm

‖u‖bi =
( �

Ω

bi|u|2 dx
)1/2

.

We define X to be the anisotropic Banach space obtained as the closure of
C1

0 (Ω) with respect to the norm

(3.1) ‖u‖ = ‖u‖1+1/m +
N

max
i=1

[∥∥∥∥ ∂u∂xi
∥∥∥∥
pi

∨
( �

Ω

bi|u|2 dx
)1/2

]
.

The space X endowed with the norm (3.1) is a reflexive Banach space. This
can be deduced as in [14] by constructing an isometric isomorphism from X
to a closed subspace of

L1+1/m(Ω)×
N∏
i=1

(Lpi(Ω) ∩ L2(Ω, bi)).

The authors of [14] have shown the reflexivity of the space Lpi(Ω)∩L2(Ω, bi)
endowed with the norm ‖ · ‖pi ∨ ‖ · ‖bi for i = 1, . . . , N.

Note that as in the previous section, Theorems 2.2 and 3.1 remain true
for such operators.
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[9] T. Gallouët and J.-M. Morel, Resolution of a semilinear equation in L1, Proc. Roy.
Soc. Edinburgh 96 (1984), 275–288.

[10] F. Q. Li, Anisotropic elliptic equations in Lm, J. Convex Anal. 8 (2001), 417–422.
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[15] J. Rákosńık, Some remarks to anisotropic Sobolev spaces I, Beiträge Anal. 13 (1979),
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