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POSTERIOR REGRET Γ -MINIMAX ESTIMATION
IN A NORMAL MODEL

WITH ASYMMETRIC LOSS FUNCTION

Abstract. The problem of posterior regret Γ -minimax estimation under
LINEX loss function is considered. A general form of posterior regret Γ -
minimax estimators is presented and it is applied to a normal model with two
classes of priors. A situation when the posterior regret Γ -minimax estimator,
the most stable estimator and the conditional Γ -minimax estimator coincide
is presented.

1. Introduction. Robust Bayesian analysis is concerned with the ef-
fect of changing a prior within a class Γ on some quantity, for example:
the posterior risk, the Bayes risk, the posterior expected value. But it is
interesting not only in investigating the range but also in constructing op-
timal procedures. There are several concepts of optimal rules: Γ -minimax
rules (e.g. Berger [1]), conditional Γ -minimax rules (e.g. Betro and Ruggeri
[2], Męczarski [6]), the most stable rules (e.g. Męczarski and Zieliński [7],
Boratyńska [3]), and the posterior regret Γ -minimax rules (e.g. Rios Insua
and Ruggeri [8]). A brief overview of the Γ -minimax inference standpoint
as a way to select a robust rule is presented by Vidakovic [9].

This paper considers the problem of the posterior regret Γ -minimax esti-
mation of an unknown real parameter θ under the asymmetric loss function
(LINEX loss)

L(θ, a) = b[exp(c(θ − a))− c(θ − a)− 1],

where c and b are known parameters and c 6= 0 and b > 0 (without loss of
generality we will assume c > 0 and b = 1), when priors belong to a class Γ .
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For motivation to use LINEX loss see Wan, Zou and Lee [10] and references
therein. The posterior regret Γ -minimax estimation with square loss func-
tion is considered in Rios Insua and Ruggeri [8]. The LINEX loss function,
the conditional Γ -minimax estimation and the most stable estimation are
considered in Boratyńska [4] and Boratyńska and Drozdowicz [5].

We present a general form of the posterior regret Γ -minimax estimator
of a parameter θ and apply it to the estimation of the expected value in
a normal model with two classes of priors. We show when the estimator
obtained coincides with the conditional Γ -minimax estimator and the most
stable estimator presented in [5].

2. Posterior regret Γ -minimax estimation. Let X be an observed
random variable with a distribution Pθ indexed by a real parameter θ ∈ Θ,
with a density pθ(x) with respect to some σ-finite measure µ. Suppose that
θ has a prior distribution Π with a density with respect to some σ-finite
measure. If X = x then the posterior risk of an estimator θ̂ under LINEX
loss function is equal to

Rx(Π, θ̂(x)) = e−cθ̂(x)EΠ(ecθ |x)− cEΠ(θ |x) + cθ̂(x)− 1,

where EΠ(g(θ) |x) denotes the expected value of a function g(θ) when θ has
a posterior distribution. The Bayes estimator at a point x is

θ̂Π(x) =
1
c

lnEΠ(ecθ |x).

In the robust Bayesian spirit, assume that we are only able to elicit a class
Γ of priors. We are interested in calculating the posterior regret Γ -minimax
estimator θ̂PR, i.e. the estimator satisfying, for every value x of the random
variable X,

sup
Π∈Γ

rx(Π, θ̂PR(x)) = inf
a∈R

sup
Π∈Γ

rx(Π, a),

where rx(Π, a) is the posterior regret equal to

rx(Π, a) = Rx(Π, a)−Rx(Π, θ̂Π(x)).

Let us recall two other definitions of optimal estimators.
The estimator θ̂s of a parameter θ is called the most stable if

inf
a∈R

( sup
Π∈Γ

Rx(Π, a)− inf
Π∈Γ

Rx(Π, a)) = sup
Π∈Γ

Rx(Π, θ̂s(x))− inf
Π∈Γ

Rx(Π, θ̂s(x))

for every value x of the random variable X.
The estimator θ̃ is called conditional Γ -minimax if

inf
a∈R

sup
Π∈Γ

Rx(Π, a) = sup
Π∈Γ

Rx(Π, θ̃(x))

for every value x of X.
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From now on we will suppress x wherever possible in formulas for esti-
mators.

Theorem 1. Let X = x. Suppose a = a(x) = infΠ∈Γ θ̂Π(x) and a =
a(x) = supΠ∈Γ θ̂

Π(x) are finite and a < a. Then

θ̂PR =
1
c

ln
eca − eca
c(a− a)

= a+
1
c

ln
ec(a−a) − 1
c(a− a)

and

inf
a∈R

sup
Π∈Γ

rx(Π, a) =
c(a− a)

exp (c(a− a))− 1
− ln

c(a− a)
exp (c(a− a))− 1

− 1.

Proof. For given X = x let h = h(Π,x) = EΠ(ecθ |x). Then θ̂Π = 1
c lnh

and the posterior regret is

rx(Π, a) = %x(h, a) = he−ca − lnh+ ca− 1.

We have
∂%x(h, a)

∂h
= e−ca − 1

h
.

Thus

sup
Π∈Γ

rx(Π, a) =





max(%x(h, a), %x(h, a)) if a ≤ a ≤ a,
%x(h, a) if a ≤ a,
%x(h, a) if a ≥ a,

where h = eca and h = eca.
If a > a then the function

f1(a) = %x(h, a) = he−ca + ca− lnh− 1

is increasing (f ′1(a) = −hce−ca + c > 0 for a > a). Hence

inf
a≥a

f1(a) = f1(a) = e−c(a−a) + c(a− a)− 1

and f1(a) = 0.
Similarly the function

f2(a) = %x(h, a) = he−ca − lnh+ ca− 1

is decreasing for a < a, hence

inf
a≤a

f2(a) = f2(a) = ec(a−a) − c(a− a)− 1

and f2(a) = 0.
The function l(a) = f1(a) − f2(a) is a continuous function of a in the

interval [a, a] and l(a) < 0 and l(a) > 0. Thus the properties of f1 and
f2 show that θ̂PR belongs to the interval (a, a) and it is a solution of the
equation f1(a) = f2(a).
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Note that if the set {θ̂Π(x) : Π ∈ Γ} is connected for every value x of
X and the assumptions of Theorem 1 are satisfied, then for every x there
exists Π ∈ Γ such that θ̂PR(x) = θ̂Π(x).

3. Posterior regret Γ -minimax estimation in a normal model.
Let X1, . . . ,Xn be i.i.d. random variables with the normal N(θ, b2) distri-
bution, where θ is unknown and b2 is known. Write X = (X1, . . . ,Xn). Let
Πµ,σ = N(µ, σ2) be a prior distribution of θ.

Define

X =
1
n

n∑

i=1

Xi, Vn = Vn(µ) =
n(X − µ)

b2
, λ = λ(σ) =

(
1
σ2 +

n

b2

)−1

,

m = m(µ, σ) = µ

(
1− n

b2

(
1
σ2 +

n

b2

)−1)
,

Wn = Wn(σ) =
(
c

2
+
nX

b2

)(
1
σ2 +

n

b2

)−1

.

If X = x then the posterior distribution is the normal distribution

N(µ+ vnλ, λ) = N

(
m+ wn −

c

2
λ, λ

)

and

EΠµ,σ (ecθ |x) = exp
(
cµ+

(
c2

2
+ cvn

)
λ

)
= exp(cm+ cwn),

and the Bayes estimator is as follows:

θ̂µ,σ = µ+
(
c

2
+ vn

)
λ = m+ wn,

where vn, wn are the values of the statistics Vn and Wn for x.
Consider two classes of prior distributions of θ, which express two types

of uncertainty about the elicited fixed prior Πµ0,σ0 :

Γµ0 = {Πµ0,σ : Πµ0,σ = N(µ0, σ
2), σ ∈ [σ1, σ2]},

where σ1 < σ2 are fixed and σ0 ∈ (σ1, σ2),

Γ ∗σ0
= {Πµ,σ0 : Πµ,σ0 = N(µ, σ2

0), µ ∈ [µ1, µ2]},
where µ1 < µ2 are fixed and µ0 ∈ (µ1, µ2).

Observe that λ is an increasing function of σ and therefore if σ ∈ [σ1, σ2]
then λ ∈ [λ1, λ2], where λi = λ(σi), i = 1, 2. Similarly, m is an increasing
function of µ and therefore if µ ∈ [µ1, µ2] then m̃ = m(µ, σ0) ∈ [m1,m2],
where mi = m(µi, σ0), i = 1, 2. Set V 0

n = Vn(µ0) and W 0
n = Wn(σ0). The
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posterior regret can be expressed by two formulas as a function of λ and m̃:

rx(Πµ0,σ, a) = %x(µ0, λ, a)

= exp
(
−ca+ cµ0

(
c2

2
+ cv0

n

)
λ

)
−
(
cµ0 +

(
c2

2
+ cv0

n

)
λ

)
+ ca− 1,

rx(Πµ,σ0 , a) = %∗x(σ0, m̃, a) = exp(−ca+ c(m̃+ w0
n))− c(m̃+ w0

n) + ca− 1.

Theorem 2. If the class of priors is equal to Γ ∗σ0
then

(1) the posterior regret Γ -minimax estimator is

θ̂PR = m1 + w0
n +

1
c

ln
ec(m2−m1) − 1
c(m2 −m1)

;

(2) the estimator θ̂PR is the Bayes estimator with respect to the prior
Πµ∗,σ0 ∈ Γ ∗σ0

, where µ∗ satisfies

µ∗ = µ1 +
1
cz

ln
ecz(µ2−µ1) − 1
cz(µ2 − µ1)

and

z = 1− n

b2

(
1
σ2

0
+
n

b2

)−1

;

(3) the estimator θ̂PR is the most stable and conditional Γ -minimax.

Proof. The function EΠµ,σ0
(ecθ |x) = exp(c(m̃ + w0

n)) is an increasing
function of m̃, hence

inf
Π∈Γ ∗σ0

θ̂µ,σ0 = m1 + w0
n, sup

Π∈Γ ∗σ0

θ̂µ,σ0 = m2 + w0
n.

Now applying Theorem 1 we obtain θ̂PR.
To prove (2) find µ∗ ∈ [µ1, µ2] such that for almost all values x,

m1 + w0
n +

1
c

ln
ec(m2−m1) − 1
c(m2 −m1)

= m(µ∗, σ0) + w0
n.

Substituting the definition of m we obtain µ∗.
For (3) see Boratyńska and Drozdowicz [5].

Note that µ∗ does not depend on the value of the random variable X.
Thus if the uncertainty of prior elicitation is expressed by the class Γ ∗σ0

then
using the Bayes estimator with respect to the normal N(µ∗, σ2

0) distribution
we obtain the best estimator with respect to three criteria of robustness.

Theorem 3. If the class of priors is equal to Γµ0 then the posterior
regret Γ -minimax estimator is

θ̂PR = µ0 +
(
c

2
+ v0

n

)
λ1 +

1
c

ln
exp((c2/2 + cv0

n)(λ2 − λ1))− 1
(c2/2 + cv0

n)(λ2 − λ1)
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for v0
n 6= −c/2. For v0

n = −c/2 the posterior regret does not depend on λ

and θ̂PR = µ0.

Proof. Consider the Bayes estimator

θ̂µ0,σ = t(λ, x) = µ0 + (c/2 + v0
n)λ.

If v0
n > −c/2 (resp. v0

n < −c/2) then t is an increasing (resp. a decreasing)
function of λ and applying Theorem 1 we obtain θ̂PR. If v0

n = −c/2 then
t(λ, x) = µ0 and the posterior regret is

rx(Πµ0,σ, a) = exp(c(µ0 − a))− c(µ0 − a)− 1.

The minimum of the function rx is attained for a = µ0.

Note that if the class of priors is Γµ0 then

(i) θ̂PR is neither the most stable nor the conditional Γ -minimax esti-
mator (see Boratyńska and Drozdowicz [5]).

(ii) For every value x of the random variable X there exists a prior
Πµ0,σ∗ ∈ Γµ0 such that θ̂PR(x) = θ̂µ0,σ

∗
(x). For v0

n 6= −c/2 the parameter
σ∗ satisfies the condition

λ(σ∗) = λ1 +
1
cz

ln
ecz(λ2−λ1) − 1
cz(λ2 − λ1)

,

where z = c/2 + v0
n, and σ∗ depends on the value of the random variable X.

Note that the condition v0
n = −c/2 is equivalent to the condition that a

sample mean is equal to −b2c/(2n) + µ0 and the probability of this event
is 0.

References

[1] J. Berger, The robust Bayesian viewpoint , in: Robustness of Bayesian Analyses,
J. Kadane (ed.), Elsevier, Amsterdam, 1984, 63–124.

[2] B. Betro and F. Ruggeri, Conditional Γ -minimax actions under convex losses,
Comm. Statist. Theory Methods 21 (1992), 1051–1066.

[3] A. Boratyńska, Stability of Bayesian inference in exponential families, Statist.
Probab. Lett. 36 (1997), 173–178.

[4] —, Robust Bayesian estimation with asymmetric loss function, Appl. Math. (War-
saw), to appear.

[5] A. Boratyńska and M. Drozdowicz, Robust Bayesian estimation in a normal model
with asymmetric loss function, ibid. 26 (1999), 85–92.

[6] M. Męczarski, Stability and conditional Γ -minimaxity in Bayesian inference, ibid.
22 (1993), 117–122.

[7] M. Męczarski and R. Zieliński, Stability of the Bayesian estimator of the Poisson
mean under the inexactly specified gamma prior , Statist. Probab. Lett. 12 (1991),
329–333.



Posterior regret Γ -minimax estimation 13

[8] D. Rios Insua, F. Ruggeri and B. Vidakovic, Some results on posterior regret Γ -
minimax estimation, Statist. Decisions 13 (1995), 315–331.

[9] B. Vidakovic, Γ -minimax: a paradigm for conservative robust Bayesians, in: Lecture
Notes in Statist. 152, Springer, New York, 2000, 241–259.

[10] A. Wan, G. Zou and A. Lee, Minimax and Γ -minimax estimation for the Pois-
son distribution under LINEX loss when the parameter space is restricted, Statist.
Probab. Lett. 50 (2000), 23–32.

Institute of Econometrics
Warsaw School of Economics
Al. Niepodległości 162
02-554 Warszawa, Poland
E-mail: aborata@sgh.waw.pl

Received on 7.11.2001;
revised version on 6.2.2002 (1601)


