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COMPARISON PRINCIPLE FOR A NONLINEAR
PARABOLIC PROBLEM OF A NONMONOTONE TYPE

Abstract. A nonlinear parabolic problem with the Newton boundary con-
ditions and its weak formulation are examined. The problem describes non-
stationary heat conduction in inhomogeneous and anisotropic media. We
prove a comparison principle which guarantees that for greater data we
obtain, in general, greater weak solutions. A new strategy of proving the
comparison principle is presented.

1. Introduction. Comparison principles are important features of sec-
ond order partial differential equations. They hold for linear and many non-
linear problems of elliptic and parabolic types. It seems that the ellipticity
of an appropriate operator is the main feature which assures the comparison
principle (compare [5, 10]).

In this paper we deal with the following quasilinear parabolic problem:
Find u(x, t) ∈ C1(Q) ∩ C2(Q) such that

(1.1)

c(x, t)%(x, t)∂tu− div(A(x, t, u)∇u) = f(x, t) in Q,

αu+ n>A(x, t, u)∇u = g(x, t) on Σ,

u(x, 0) = u0(x) in Ω, t = 0,

where Ω ⊂ Rd, d = 1, 2, . . . , is a bounded domain with Lipschitz continuous
boundary, I = [0, T ], T > 0, Q = Ω × I, Σ = ∂Ω × I, n = (n1, . . . , nd)>

is the outward unit normal to ∂Ω, the symbol > means transposition, A =
(aij)di,j=1 is a uniformly positive definite matrix with respect to all variables,
c > 0, % > 0 in Q and α ≥ 0 on Σ. The symbol ∂t denotes the time derivative
∂/∂t, Q stands for the closure of the set Q, C1(Q) is the space of functions
with first derivatives continuous in Q and similarly C2(Q) is the space of
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functions with all the second derivatives continuous in Q. For the time being
let the functions c, %,A, α, f, g and u0 be sufficiently smooth.

Problem (1.1) describes, e.g., time dependent heat conduction in nonlin-
ear inhomogeneous and anisotropic media. The unknown function u repre-
sents the distribution of temperature in the domain Ω, which is supposed to
be filled with some inhomogeneous and anisotropic material. The properties
of this material are described by the heat capacity c, mass density % and by
the matrix A of heat conductivities. The function f represents volume heat
sources. The symbols α and g denote the heat transfer coefficient and the
density of surface heat sources, respectively.

In Section 3 we prove a comparison principle for weak solutions of the
nonlinear parabolic problem (1.1), which is nonmonotone and in general non-
potential. We shall see that a direct consequence of the comparison principle
is the uniqueness of weak solutions. Our proof of the comparison principle
is a generalization of that in [8], where an elliptic boundary value problem
is studied. Similar results are obtained in another way in [1], where different
boundary conditions are examined.

Many heat conduction problems in technical practice involve a nonlinear
dependence of the heat conduction coefficient on the temperature itself. This
dependence always leads to a nonmonotone operator. We examine this fact
in [11].

2. Weak formulation. In what follows, all equalities and inequalities
for functions defined on Ω, Q, Σ, ∂Ω, . . . have to be considered up to a set
of zero measure. Note that C,C1, C2, . . . are the so called generic constants
and they can represent different values in different occurrences.

From now on we assume, without loss of generality, that c = 1 and
% = 1 in Q and that A = A(x, t, r) and α = α(x, t) are bounded measurable
functions, i.e., there exists a constant C such that

(2.1) ess sup
x,t,r,i,j

|aij(x, t, r)| ≤ C, ess sup
s,t

|α(s, t)| ≤ C,

where x ∈ Ω, t ∈ I, r ∈ R, i, j ∈ {1, . . . , d}, and s ∈ ∂Ω. Moreover, we
suppose that A(x, t, ·) is continuous for almost every (x, t) ∈ Q, i.e., A
satisfies the Carathéodory conditions. The components aij are considered
to be Lipschitz continuous with respect to the last variable, i.e., there exists
CL > 0 such that for all r1, r2 ∈ R and for almost all x ∈ Ω and t ∈ I we
have

(2.2) |aij(x, t, r1)− aij(x, t, r2)| ≤ CL|r1 − r2|, i, j = 1, . . . , d.

Further, let there exist C0 > 0 such that for almost all x ∈ Ω and t ∈ I,

(2.3) C0η
>η ≤ η>A(x, t, r)η ∀r ∈ R, ∀η ∈ Rd
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and let 0 ≤ α(s, t) for almost all (s, t) ∈ Σ. Moreover, we assume that there
exists a constant α0 > 0 and a nonempty relatively open subset Γ ⊂ ∂Ω
with measΓ > 0 such that

(2.4) α(s, t) ≥ α0 for almost all s ∈ Γ and almost all t ∈ I.

We will usually write only A(u), f, g, . . . instead of A(x, t, u), f(x, t),
g(x, t), . . . , i.e., the dependence on the space variable x and time variable t
will not be explicitly indicated, since no ambiguity can occur.

We assume that f ∈ L2(Q), g ∈ L2(Σ), and u0 ∈ L2(Ω). Let us set
V = H1(Ω), H = L2(Ω) and denote the dual space by a star, e.g., V ∗ =
(H1(Ω))∗. We see that V ⊂ H, and therefore H∗ ⊂ V ∗. Moreover, these
imbeddings are continuous. The symbol L2(I;V ) stands for the well-known
Bochner space of square integrable mappings from the interval I into V .
This space is equipped with the norm

‖v‖2L2(I;V ) =
T�

0

‖v(t)‖2V dt.

If v = v(x, t), then v(t) denotes the function defined onΩ such that v(t)(x) =
v(x, t) for x ∈ Ω and t ∈ I. Let V1 and V2 be two Banach spaces. Then we
put

W (I;V1, V2) = {v ∈ L2(I;V1) | ∂tv ∈ L2(I;V2)}.
We have the inclusion W (I;V, V ∗) ⊂ C(I;H) (see for instance [4, p. 161]),
where C(I;H) is the space of continuous mappings from I into H. Thus,
the values of any function v = v(x, t) from W (I;V, V ∗) are well defined at
all time levels t ∈ I, i.e., v(t) ∈ H has a meaning for all t ∈ I.

To shorten the weak formulation of problem (1.1) we introduce the fol-
lowing notation:

a(t, y;w, v) = (A(·, t, y)∇w,∇v)0,Ω + (α(·, t)w, v)0,∂Ω,(2.5)

F (t, v) = (f(·, t), v)0,Ω + (g(·, t), v)0,∂Ω,(2.6)

where y, w, v ∈ H1(Ω), t ∈ I and the symbols (·, ·)0,Ω and (·, ·)0,∂Ω stand for
the inner products in the Lebesgue spaces L2(Ω) and L2(∂Ω), respectively.
Similarly we denote by ‖ · ‖0,Ω and ‖ · ‖0,∂Ω the associated norms. Finally,
‖ · ‖1,Ω stands for the norm in the Sobolev space H1(Ω).

We can easily see from (2.5) that the form a(t, y;w, v) is nonlinear in t, y
and linear in w and v.

Definition 2.1. A function u ∈ W (I;V, V ∗) is said to be a weak solu-
tion of problem (1.1) if

(2.7) V ∗〈∂tu, v〉V + a(t, u;u, v) = F (t, v)
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for all v ∈ H1(Ω) and for almost every t ∈ I, and

u(x, 0) = u0(x) for almost every x ∈ Ω.
Here the time derivative ∂tu should be understood as an element of

L2(I;V ∗), i.e., ∂tu(·, t) ∈ (H1(Ω))∗ for almost every t ∈ I. The symbol
V ∗〈·, ·〉V in (2.7) means the duality pairing between V ∗ and V . Note that if
w∗ ∈ H∗ ⊂ V ∗ and v ∈ V ⊂ H, we have

V ∗〈w∗, v〉V = H∗〈w∗, v〉H.
If w ∈ H then we define w∗ ∈ H∗ by H∗〈w∗, y〉H = (w, y)H for all y ∈ H,

where (·, ·)H denotes the inner product in H. By the Riesz theorem every
continuous linear functional on H is of this form for a unique w ∈ H. Thus,
for any w ∈ H, appropriate w∗ ∈ H∗ and any v ∈ V , we have

(w, v)H = H∗〈w∗, v〉H = V ∗〈w∗, v〉V .
Therefore, if u ∈W (I;V,H), i.e., ∂tu ∈ L2(Q), then

(2.8) V ∗〈∂tu, v〉V = (∂tu, v)H =
�

Ω

∂tu(x, t)v(x) dx

for all v ∈ H1(Ω).
From the uniform positive definiteness of the matrix A (see (2.3)) and

from (2.4) we directly have an important property of the form a: There
exists a positive constant C0 such that

(2.9) C0‖v‖21,Ω ≤ a(t, y; v, v) ∀y, v ∈ H1(Ω), and for a.e. t ∈ I.
Later we will need the well known Friedrichs inequality in this form:

(2.10) ‖v‖21,Ω ≤ C(‖∇v‖20,Ω + ‖v‖20,Γ ) ∀v ∈ H1(Ω),

where Γ ⊂ ∂Ω is an arbitrary relatively open set with measΓ > 0.
Before we introduce the comparison principle in Theorem 3.1, we make a

few remarks about the existence of weak solutions of problem (2.7). There is
an extensive literature where the problem of the existence of weak solutions
of elliptic and parabolic problems is considered (for example [9, 4, 3]). With
the aid of several techniques from these monographs it is possible to establish
the existence of a weak solution of problem (2.7). We just note that the
proof is based on the so-called pseudomonotony, because neither the theory
of monotone operators nor the theory of potential operators can be applied
(see [6]).

3. Comparison principle. First of all we mention that we have to
assume weak solutions of (2.7) to be more regular. To be able to use (2.8) we
consider weak solutions in W (I;V,H), which is a subspace of W (I;V, V ∗).
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Theorem 3.1. Let u1, u2 ∈W (I;V,H) be two weak solutions of problem
(1.1) corresponding to f1, f2 ∈ L2(Q), g1, g2 ∈ L2(Σ), and to the initial
conditions u01, u02 ∈ L2(Ω), respectively. Assume that

f1 ≥ f2 a.e. in Q,(3.1)

g1 ≥ g2 a.e. in Σ,(3.2)

u01 ≥ u02 a.e. in Ω.(3.3)

Then u1 ≥ u2 a.e. in Q.

Proof. Put Q0 = {(x, t) ∈ Q | u1(x, t) < u2(x, t)} and assume, to the
contrary, that

(3.4) measQ0 > 0.

For fixed ε > 0 define

Qε = {(x, t) ∈ Q0 | u2(x, t)− u1(x, t) > ε}

(cf. Figure 1) and

(3.5) vε = vε(x, t) = min(ε, (u2 − u1)+),

where u+ denotes the positive part, i.e., u+ = u if u > 0 and u+ = 0
if u ≤ 0. Because v 7→ min(ε, v+) maps H1(Q) into itself (see [6]), we
have vε ∈ H1(Q). (Note that this mapping is continuous.) Consequently,
vε(·, t) ∈ H1(Ω) for almost every t ∈ I and therefore, it can be applied as
a test function in (2.7). For a better understanding how vε is defined we
rewrite (3.5) as

(3.6) vε(x, t) =





ε in Qε,
u2(x, t)− u1(x, t) in Q0 \Qε,
0 in Q \Q0.

Subtracting the weak formulations (2.7) for u1 and u2 with vε as a test
function and employing (2.8), we obtain

(3.7) (∂t(u1 − u2), vε)0,Ω+ (A(u1)∇u1 −A(u2)∇u2,∇vε)0,Ω

+ (αu1 − αu2, vε)0,∂Ω = (f1 − f2, vε)0,Ω + (g1 − g2, vε)0,∂Ω .

Since vε ≥ 0, α ≥ 0, u1 < u2 in Q0 and supp vε ⊂ Q0, we have

(3.8) (αu1 − αu2)vε ≤ 0 on Σ = ∂Ω × I.

Note that vε(·, 0) = 0 a.e. in Ω (see (3.3)). Hence, using the Fubini theorem,
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integration by parts, and (3.6), we have

(3.9)
�

Q

∂t(u1 − u2)vε dx dt =
�

Ω

T�

0

∂t(u1 − u2)vε dt dx

= −
�

Ω

T�

0

(u1 − u2)∂tvε dt dx+
�

Ω

(u1(T )− u2(T ))vε(T ) dx− 0

=
�

Q0\Qε
vε∂tvε dx dt+

�

Ω

(u1(T )− u2(T ))vε(T ) dx

=
�

Q0\Qε

1
2
∂tv

2
ε dx dt+

�

Ω

(u1(T )− u2(T ))vε(T ) dx

=
�

Ω

T�

0

1
2
∂tv

2
ε dt dx+

�

Ω

(u1(T )− u2(T ))vε(T ) dx

=
�

Ω

1
2
v2
ε(T ) dx− 0 +

�

Ω

(u1(T )− u2(T ))vε(T ) dx

=
�

Ω0(T )

[
1
2
vε(T )− (u2(T )− u1(T ))

]
vε(T ) dx ≤ 0,

where Ω0(T ) = {x ∈ Ω | u1(x, T ) < u2(x, T )} is indicated in Figure 1. The
last inequality of (3.9) holds, because vε(T ) ≤ u2(T )− u1(T ) in Ω0(T ).

Fig. 1
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Using now the fact that A is uniformly positive definite (see (2.3)), the
definition of vε (see (3.6)), (3.7) integrated over I, (3.9), (3.8), (3.1) and
(3.2), we obtain

C0‖∇vε‖20,Q ≤
T�

0

(A(u1)∇vε,∇vε)0,Ω dt(3.10)

= (A(u1)∇(u2 − u1),∇vε)0,Q0\Qε
= (A(u1)∇u2 −A(u1)∇u1,∇vε)0,Q

= (A(u1)∇u2 −A(u2)∇u2,∇vε)0,Q

+ (∂t(u1 − u2), vε)0,Q + (αu1 − αu2, vε)0,Σ

+ (f2 − f1, vε)0,Q + (g2 − g1, vε)0,Σ

≤ ((A(u1)−A(u2))∇u2,∇vε)0,Q.

We now apply the Cauchy–Schwarz inequality and the Lipschitz continuity
of the entries of the matrix A, which is assumed in (2.2), to obtain

(3.11) ((A(u1)−A(u2))∇u2,∇vε)0,Q0\Qε
≤ ‖(A(u1)−A(u2))∇u2‖0,Q0\Qε‖∇vε‖0,Q0\Qε

≤ εC‖∇u2‖0,Q0\Qε‖∇vε‖0,Q.
Combining (3.10) and (3.11), we have

(3.12) ‖∇vε‖0,Q ≤ εC‖∇u2‖0,Q0\Qε .

The fact that vε ≤ u2 − u1 on Q0 and inequality (2.4) yield

0 ≤ vε ≤ u2 − u1 ≤
α

α0
(u2 − u1) on Γ ∩Q0 for a.e. t ∈ I,

and thus

(3.13) v2
ε ≤

α

α0
(u2 − u1)vε on Γ, for a.e. t ∈ I.

Moreover, (3.10) implies

(3.14) −(αu1−αu2, vε)0,Σ+C0‖∇vε‖20,Q ≤ ((A(u1)−A(u2))∇u2,∇vε)0,Q.

Using Friedrichs’ inequality (2.10) and relations (3.13), (3.6), (3.14),
(3.11), and (3.12), we obtain

‖vε‖20,Q ≤ C1

T�

0

(‖vε‖20,Γ + ‖∇vε‖20,Ω) dt(3.15)

≤ C2

T�

0

(αu2 − αu1, vε)0,Γ dt+ ‖∇vε‖20,Q

≤ C3((αu2 − αu1, vε)0,Σ + C0‖∇vε‖20,Q)
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≤ C3((A(u1)−A(u2))∇u2,∇vε)0,Q

≤ εC4‖∇u2‖0,Q0\Qε‖∇vε‖0,Q ≤ ε2C5‖∇u2‖20,Q0\Qε .

We now show that

(3.16) meas(Q0 \Qε)→ 0 as ε→ 0.

Note that
lim
ε→0

meas(Q0 \Qε) = meas
⋂

ε>0

(Q0 \Qε),

because Q0\Qε1 ⊂ Q0\Qε2 whenever 0 < ε1 < ε2. Suppose, to the contrary,
that (3.16) is not valid. Then there exists a set Q̃ such that meas Q̃ > 0 and
Q̃ ⊂ Q0 \ Qε for all ε > 0. We can put, for example, Q̃ =

⋂
ε>0(Q0 \ Qε).

We have Q̃ 6⊂ Qε for all ε > 0, and therefore
�

Q̃

(u2(x, t)− u1(x, t)) dx dt ≤ εmeas Q̃

for all ε > 0. Thus, the only possibility is

(3.17)
�

Q̃

(u2(x, t)− u1(x, t)) dx dt ≤ 0.

On the other hand the inclusion Q̃ ⊂ Q0 implies, by the definition of Q0,
that �

Q̃

(u2(x, t)− u1(x, t)) dx dt > 0,

which contradicts (3.17), and thus proves (3.16).
Due to estimate (3.15), we arrive at

measQε = ε−2
�

Qε

ε2 dx dt = ε−2
�

Qε

v2
ε dx dt ≤ ε−2‖vε‖20,Q(3.18)

≤ C5‖∇u2‖20,Q0\Qε → 0 as ε→ 0,

by (3.16).
Since measQ0 = measQε + meas(Q0 \ Qε), from (3.16) and (3.18) we

obtain measQ0 = 0, which contradicts (3.4).

4. Conclusions

Corollary 4.1. There exists at most one weak solution of problem (2.7).

Proof. If u1 and u2 are two solutions of (2.7) then u1 ≤ u2 and u1 ≥ u2

due to Theorem 3.1. Therefore, u1 = u2 almost everywhere in Q.

We see that the comparison principle easily implies the uniqueness of the
solution of our problem. The comparison principle is much more general then
the uniqueness theorem itself. It has several applications. For instance, we
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can employ it for testing numerical methods. We know that zero data yield
the zero solution. Thus, nonnegative data have to give us a nonnegative solu-
tion. If we have in mind some numerical scheme it is natural to define the fol-
lowing property. We say that a numerical method conserves nonnegativity if
all nonnegative data give us a nonnegative numerical solution. We note that
not all numerical schemes have this property. For more details about posi-
tivity conservation see [2]. A similar idea is presented in [7], where a discrete
maximum principle is studied in the context of the finite element method.

Acknowledgements. This paper was supported by grant no. 201/01/
1200 of the Grant Agency of the Czech Republic. This support is gratefully
acknowledged.

References
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