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CONTROL IN OBSTACLE-PSEUDOPLATE PROBLEMS
WITH FRICTION ON THE BOUNDARY.
APPROXIMATE OPTIMAL DESIGN
AND WORST SCENARIO PROBLEMS

Abstract. In addition to the optimal design and worst scenario problems
formulated in a previous paper [3], approximate optimization problems are
introduced, making use of the finite element method. The solvability of the
approximate problems is proved on the basis of a general theorem of [3].
When the mesh size tends to zero, a subsequence of any sequence of approx-
imate solutions converges uniformly to a solution of the continuous problem.

Introduction. The optimal design problems and reliable solution
(worst scenario) problems, which have been introduced and studied in [3],
have to be solved approximately. To this end, we employ the simplest kind of
finite elements, namely piecewise linear functions over triangulations. In this
way the space of state functions and the sets of admissible design variables
are discretized in Section 1. To simplify the calculations we also use some
quadrature formulae. We define an approximate state problem (variational
inequality), optimal design and penalized weight minimization problems.
We prove that these problems have at least one solution on the basis of
the general Theorem 2.2 of [3]. In Section 2 we study the convergence of
approximate solutions when the mesh size tends to zero.

Section 3 is devoted to approximate reliable solutions, i.e., to approxi-
mations of the worst scenario method, which has been formulated in [3, Sec-
tion 4]. We prove the solvability of approximate problems. The convergence
of some subsequence of approximate solutions is justified in Section 4.
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1. Approximate optimal design. In the following we use the notation
of [3]. Assume that the domain {2 has a polygonal boundary 9f2. Consider
a regular family of triangulations {7}, h — 0+, of {2 which are consistent
with all subdomains §2; and G; and with 9f2c. We introduce the finite
element space of piecewise linear functions

X ={vn, € C(12) : v, |T € P(T) for all triangles T € 7'}
and the following sets:
Vi=XpNYV,
vl =vlnXx,, UZ=UZnX,, UL=ULnX;,
where
Xp = Xnlgng X5, = Xnloac,
Uh =UlM x UZM x UT],
Kn(Hp) ={vn € Vi :op(P) > Hp(P) — O;, i =1,..., N,
for all nodes P € X},

where X}, denotes the set of all vertices of triangles T € T;,, T C 2* and
Hy, € UER . Note that Kp,(Hy) C K(Hy) (cf. [3, (1.3)]).
Let [p,&]n be a suitable quadrature formula such that

(11) [ 7']h € (Vh)*v ’<p7£>0 - [ 7§}h’ < ChHé-Hl

for all £ € V},. We define

(1.2) bh(Zh;uh,wh) = Z SZh[uh]*(’y)wh dzx,
TCO\* T

where v is the centroid of the triangle T" and
(1.3) Bren)(vn) = > Fulon(y)lds + I, (a1, (vn),
ECOf2¢ E

where E denotes the edge of a triangle T' € 7}, adjacent to df2¢ and - is the
midpoint of F.
Now we may define the following

APPROXIMATE STATE PROBLEM. Given any ej, = {Hp, Zp, Frn} € U:d,
find up(ep) € Kn(Hp,) such that

(1.4)  a(Hp;up(en),vn —un(en)) + bn(Zn;un(en),vn — un(en))
+ Pn(en)(vn) — Prlen)(un(en))
> [p,vn — un(en)|n — 2w{Hp,vn — un(en))o
for all vy, € Kp(Hp,).
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Finally, let us define the functionals
Lhp =Lop,  Liss = Liss,
LEoni(ens vn) = [p, valn — 2w(Hp, vp)o,

L£hy (en,vn) = (Hy grad vy, grad 9)0 + 2w(Hp, 0)

+ Z (Zn[on(M]™, 00,0 — [P, O]
TCO\Q*

(1.5)

(Note that the auxiliary function  can be chosen in X (£2) N'V}.)
We introduce

APPROXIMATE OPTIMAL DESIGN PROBLEMS. Given a fixed triangula-
tion 7, find

(1.6) e = arg min L"(ep, un(en))
e}LEU

where J = DD, ISS, COM, TR and up/(ey,) is the solution of the Approximate
State Problem (1.4).

THEOREM 1.1. (i) The Approximate State Problem (1.4) has a unique
solution uy(en) for any e, € UM 2 and any h sufficiently small.

(ii) The Approzimate Optimal Design Problem (1.6) has at least one
solution for any J = DD, ISS, COM, TR and for any h sufficiently small.

Proof. Let us verify the assumptions of [3, Theorem 2.2|, where we
set Uyq = Ugd, e:=en, V :i= Vi, K(e) := Kn(Hyp,) and define A"(ep,) :
Vi, — (Vi)* by the relation

(1.7) (Ah(eh)vh,wh> = a(Hh;vh,wh) + bh(Zh; vh,wh),
and
&(e) :=Pplen), (f,v):=I[p,vln, (B(e),v):=—2w(Hp,v)o.

LEMMA 1.2. For any Hj, € UBM the set K(Hy) is a closed convex
subset of Vy. If Hp, € U;ﬁh and Hy, — Hj as n — oo, then

Kn(Hy) = Lim Kn(Hpn).
Proof. The argument is nearly the same as that for [3, Lemma 2.2].

Instead of the function ¥ we may take ¥, € V}, such that 0 <49, <1 in {2
and Jp, =11in 2*. =

LEMMA 1.3. For any Z, C UZ, d , Up, Wh € Vi,
(1.8) bh(Zh;uh,uh — wh) — bh(Zh;wh,uh — wh) Z —Cthuh - wh||%,

where Cy does not depend on h and Z,.
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Proof. The left-hand side of (1.8) is equal to
(1.9 >V Znlun —wn)([un]~ (7) = [wa] ™ (7)) da

T T
= { } Zn(un(y) = wn())([un] = (7) = wa(7)]7) dz
T T
o+ § 20 (Cun = wn) = (un = wn) () (]~ (7) = [wn] (7)) o}
Z Mt + ZRT
T
Since
(1.10) (@™ —=b)(a—b)>(a” —b)?
the terms My are non-negative. For brevity, set vy := up — wy. Using the
estimate |a~ — b7 | < |a — b|, which follows from (1.10), we may write
(1.11) (R | = [un]™ (v) = [wn] = (V] - [F(vn)| < |on(¥)] - [F(vn)],
where
F(on) = | Zn(on — va(y)) da,
T
(1.12) |F(vn)| < Zmax X lvp, — vn (V)| dz < Zpax X hr|grad vy, | dx

T T
S Zmaxh%”|vh|1,T-
Moreover, a standard affine transformation to the reference triangle T

yields

)| < Clally , 7 < ChZ P ol p,r

for any p > 2 and
lonllp < Chz' 7 fonls 2.z
Combining the previous estimates, we obtain
[Rr| < Cihrllon|f o r

so that
| > Ra| < Cuhlonll3 0.0 = Cabllun — will.
T

Substituting this estimate into (1.9), we arrive at (1.8). m
Using [3, (2.16)] and Lemma 1.3, we may write
(1.13)  a(Hp;up — wp, up — wp) + bp(Zp; up, up, — wp,)
— b (Zn; why up —wp) > (CpHuin — C1h)|lun — wal[3.
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As a consequence, the strong monotonicity of [3, (2.1)(iii)] is satisfied for
sufficiently small mesh size h.

Next, we have
(1.14) \bh(Zh;uh,w) — bh(Zh;vh,w)\
= 32§ 2u(lun)~ () = lon] - (1) o)

<3 Zw Y lun () =on ()] - |l dz < 37 Zunalun —vnlo.z oz
T T T

< Zmax”“h - Uh||0,9||w||079'

Here we employed the estimate

(1.15) lnlloo,r < Chz'llenllor

for all ¢y, € V, [1, Thm. 3.2.6].

Using [3, (2.18)] and (1.14), we deduce that the mapping A" (ej) from
(1.7) is Lipschitz-continuous in Vj, uniformly in U,q.

Next, let ey, — ey as n — 00, epy, € U(fd. We may write
(1.16)  [(A"(epn)vn — AM(en)vn, w)]
< | Hpn = Hlloollonll1llwlly + D 1Z0n = Zalloollvnlloo,rhrllwlo,2,r
< Cllenn — enllscllvnllrlfwllx,
arguing as in the derivation of (1.14). As a consequence,
AM(epp)vn, — AM(ep)vn  in (Vi) for all vy, € V3.

LEMMA 1.4. The system of functionals {®y(en)}, en € ULy, defined by
(1.3), satisfies the assumptions [3, (2.2), (2.3)].

Proof. We can proceed as in the proof of [3, Lemma 2.4]. Write

dnlen) = o (en) + o3 (en),

where

o enyo =3 (Fulonlds, 1 (en)v = I, ) ().
ECO2¢ E

We shall verify the condition [3, (2.2)] by means of [3, Definition 2.2]. Con-
sider a sequence {ep,}, €nn — €n as n — 00, epn € UM,

(i) Let vy, € Kp(Hp). By Lemma 1.2 there exists a sequence {vp,},
Vhn € Kn(Hpy), such that vg, — v, as n — oo. Then
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|On(enn)Vhn — On(en)vn] < [Ain| + | A2nl,
where

|A1n| = |¢§Ll)(ehn)vhn - ¢>§Ll)(€h)vh!
<16 (enn)vnn — 05 (en)onnl + 1657 (en)vnn — 65" (en)vn]

<3 (1orn ) Fn = Filds + onn () = on()] § Fids) — 0

E E
as n — 0o,

|)\2n| = ‘I}Ch(th)(Uhn) — IlCh(Hh)(vh)’ = 0 fOI‘ all n.
Altogether, we have
(1.17) lim @h(ehn)vhn = @h(eh)vh.

n—oo

Second, let vy, & Ky, (Hp). Setting vp, = vy, for all n =1,2,. .., we have

(1.18)  limsup @p(epn)vpn < limsupz S Frnlon(y)|ds + 0o
E

E
="\ Fulvn ()l ds + 82 (en)vn = Bn(en)vn.
E FE

Combining (1.17) and (1.18), we obtain

lim sup @, (enn)Vhn < Pp(ep)vp.

n—oo
(ii) Let vp, — v, as n — oo. We have
lim inf @y, (e )vpyn > liminf gbg) (€hn)Vhn + liminf qbf)(ehn)vhn.
Arguing as in the case of \1,, we obtain
lim @21)(ehn)vhn = @21)(eh)vh.
Next, we may write
lim inf IICh(th)('Uhn) =a,
where a is either 400 or zero. If a = +o00, then obviously
(119) a > IlCh(Hh)(Uh)'

If a = 0, there exists a subsequence {vp} C {vp,} such that vy, € K (Hpr)
for all k& — oo. By Lemma 1.2 the limit v, belongs to Kp(Hj), so that
I, (k) (vn) = 0 and (1.19) holds again. As a consequence,

lim inf @?(ehn)vhn > @22)(%)%

and the condition [3, (2.2)(ii)] is fulfilled.
To satisfy condition [3, (2.3)], we can choose a,, = 0 for all n, since
0 € Kn(Hpy) for all Hy,, € UER due to [3, (1.1)]. Then

Dp(epn)a, =0 foralln. m
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LEMMA 1.5. The functionals L85, Ll L8\, LRR satisfy condition
3, (25)].

Proof. The proof of the cases L}, and Lfq is the same as that for
[3, Lemma 2.5]. Let ep,, — ep, and vy, — vp, as n — co. We may write

Lo (€nny vin) = [P, vnnln — 2w0(Hp, vin)o + P,
[Vn| = 20[(Hpn — Hpy vian)o| < Cl|Hpn — Hplloo|vhnllo — 0.
Then
Jim LEom(€hny Vin) = [y vnln — 2w(Hp, vn)o = LEom(en, vn).
Next, we may write
(1.20) Lig (€nn, vhn) = Lbg(en, Vin) + My,
(1.21) | M| = (<(th — Hy,) grad vnn, grad 8% + 20(Hpn — Hp, 00

+ 3 U Zhn = Z0) (] Oor

S (Hth_HhHoo + HZhn_ZhHoo)(ClHUhn”l + 02) - Oa

using also estimate (1.15) in the last inequality. Making use of (1.15) again,
we obtain

(1.22)  [Lhr(en van) — Lhg(en, vn)| < Humax||vhn — vnll1]|0]|1

+ Zmax Z lvnn — vnllo, 2|00, 7 < Cllvnn — vnlli — 0.
T

Combining (1.20)—(1.22), we arrive at
nli_)ngo LA (€nns Vhn) = LAg (en,vp).
We define the following
APPROXIMATE WEIGHT MINIMIZATION PROBLEM. Find

(1.23) ej, =arg min Ly (e;en, up(en)),
E;LEUgd
where Ly is the penalized cost functional, defined in [3, Section 3].
THEOREM 1.6. The Approzimate Weight Minimization Problem (1.23)
has at least one solution for any positive € and any h sufficiently small.

Proof. In proving Theorem 1.1 we have verified all assumptions of the
abstract [3, Theorem 2.1], so that
up(enn) — un(en)

provided h is sufficiently small, ey, € U;‘d and ey, — ey as n — oo. Then

the functions
ehH[Fj(uh(eh)]Jr, jzl,...,M,
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are continuous in U/ (cf. the analogous proof of [3, Lemma 3.1]). Since the
weight (w, Hy)o is continuous in U, as well, we find that
en — Ly (e;en, un(en))

is continuous in the compact set U;d. As a consequence, a minimizer ej,
exists. m

2. Convergence results. In the present section we will study the con-
vergence of finite element approximations when the mesh size tends to zero.
To this end we establish the crucial

PROPOSITION 2.1. Let ¢, € U;Ld with e, — e in U as h — 0+. Then
up(ep) — u(e) in V as h — 0+.

Proof. For brevity, set up := up(ep). Substituting v, = 0 in the inequal-
ity (1.4) and using (1.1), (1.7), (1.13), we obtain

(CrHpmin — Clh)||uh||1 > <Ah(€h)uh,uh> [p7 Uh] + 2w(Hp, un)o
< Callup||1,

so that |lup|ls < C for all h sufficiently small. As a consequence, there exist
u € V and a subsequence of {u,} (denoted by the same symbol) such that

(2.1) up, = u  (weakly) in V.

One can prove that u € IC(H). Indeed, following [2, pp. 33-34], consider any
function ¢ € C§°(£2F) with ¢ > 0 and define a piecewise constant function

on=Y_ o(xr,
TC2;
where xr is the characteristic function of the triangle T" and -y is the centroid

of T Define ¢ = H — O; on {2} and v}, = Hy, — O;. Then

(2.2) lim V (un = n)onde = | (u—)pde,
o or
since up, — w in L?(£2}) by Rellich’s Theorem and ¢;, — ¢, ¥, — 1 in
L2(07).
On the other hand, we have
(2.3) V (un = n)pnde = Y o) {(un — ¢n) de
25 TCO; T

By definition of Ky (H},), we obtain

3
(2.4) S(uh — ¢h) dr meaST Z up — ¢h CL] > 0,
T Jj=1
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where a; are the vertices of 7. Combining (2.3) and (2.4), we arrive at
| (un —vn)endz > 0.
2

Then (2.2) yields

§ (u—)pdz >0,
2

which in turn implies that u > ¢ a.e. in §27, i.e., u € K(H).

Next, let us verify that u coincides with a solution u(e) of the variational
inequality [3, (1.7)]. Consider an arbitrary v € K(H ). There exists a function
Y € COY(0) such that ¢» = 0 on d2p, » = H — O; on §2f for all i =
1,...,N. Then

wi=v—9Ypey={weV:w>0ae in 2"}
Let us employ a regularization operator g, (see e.g. [4]). Let o, E and o, Fw
denote the regularization applied to a proper extension of the functions
and w to a larger domain 2 D 2, so that
0xEBw>0 and p,EO; =0; on 2, i=1,...,N.
We define
(25)  vn =mh(onEY + 0xEw + (0w EH — Hloo,0+ + |H — Hp|loo,2+)9),

where ¥ € C3°(§2) is such that 0 <9 < 11in 2 and ¥ =1 for x € 2* and 7,
denotes the Lagrange linear interpolation over 7. Consequently, v, € Vj
and for any node P € X, we have

vn(P) 2 0x BV (P) + [ox EH(P) — H(P)| + |H(P) — Hy(P)| = Hp(P) — O;,
so that vy, € Kp(Hy). Furthermore, we may write
(2.6) v —vlli = |mn(enEW) — ¢ + mh(onBw) — w
+ (loxEH — H|loo,0+ + [[H = Hp|loo, 2+ )01
<|lmn(exBY) — 0x BV + |l0xEY — Y|l
+ [mn(oxEw) — o Ew||1 + |loxnBw — w||1
+ (les EH — H|oo,0+ + | H — Hp|loo,0+)

as k — 0+ and h — 0+.
Here we have used the fact that H € WP (£2) for any p > 2 and

loxEH — H||oo,0+ < ClloxEH — H||1 2 — 0

as kK — 0+ (see [4, Thms. 2.1 and 3.1]).
For any ep, € Ua}fd, up € Vi, and v € V the following estimate holds (see
[3, (2.15)] for the definition of A(ep)):

(2.7) (A" (en)un, v) — (Alen)un, v)| < Chllun]1]vllo.

|1 — 0
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Indeed, we have
(2.7a) (A" (en)un,v) — (A(en)un, v)| = |bn(Zn; un, v) — b(Zn; up, v)|
| Tzl - s

TCO\R*T
<>V Zulun —un ()] - [o] dx < Chljunll1 v]lo,
T T

arguing as in the proof of Lemma 1.3.
Let us substitute vy, in the inequality (1.4) and pass to liminf as A — 0+.
It is easy to see that

(2.8) lim inf (A(e)un,un) > (A(e)u,u).

In fact, the functional u — a(H;u,u) is weakly lower semicontinuous,
being convex and differentiable. Second, we may write

(29 p(Zun,un) = b(Z5u,u)| < | Zlunlun]” — ulu] | da
2\0*
< CZmax([unllo + llullo)lun = ullo — 0
due to Rellich’s Theorem. Hence,
(2.10) liminf{a(H;up,up) + b(Z;up,un)} > a(H;u,u) + b(Z;u, u)
= (A(e)u,u).
Making use of [3, (2.1)(iv) and Lemma 2.3], we derive that
(2.11)  [(Alen)un, un) — (A(e)un, un)| < [|Alen)un — A(e)unl«[unlly — 0.
Therefore,
lim inf (A(ep)up, up) > lim inf (A(e)up, up) > (A(e)u, u)
by (2.10) and (2.11).
Making also use of (2.7), we obtain
(2.12)  lim inf (A" (ep), up, up) > lim inf (A(ep), up, up)
+ lim inf ((A" (ep)un, un) — (A(en)un, up)) > (A(e)u, u).

Next, we prove that

(2.13) lim (A" (ep)un, v) = (A(e)u,v)
for all v € V. Indeed, if we employ (2.7), it suffices to show that
(2.14) lim (A(ep)up,v) = (A(e)u, v).

First, we may write
(2.15)  [(Alen)un, v) = (A(e)un, v)| < [|Alen)un — Ae)un|l«||v][y — 0
by [3, (2.1)(iv) and Lemma 2.3]. Second,
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(2.16) a(H;up,v) — a(H;u,v)
by the weak convergence (2.1). Third, we have
[ 2(w]™ ~ [ )ods
2\2*
< Zmax/lun — ullo|lv]lo — 0.

Then (2.14) follows from (2.15)—(2.17).

Next, using the Lipschitz continuity of A"(e,) in V; (see (1.14)),
A"(ep)0 =0, (2.6) and (2.13), we obtain
(2.18)  [{A"(en)un, vn) — (A(e)u,v)]

< (A" (en)un, vn — v)| + [(A" (en)un, v) — (A(e)u, v)| — 0.
Consider the estimate

@nlenyon — B(enyonl = | D § Fallon()] = on]) ds
ECO§2c E

< Fnax Z S |vp () — v | ds.
E E

(2.17) |b(Z; up,v) — b(Z;u,v)| =

We may write
[on () — vn(s)| < 3LE|0vn/0s| < 5LElgradva(TE)|
<AlpCop'|vn|irs < Cloni Ty,

where £ = meas E, Tg is the triangle adjacent to the edge E and gr is the
radius of the largest circle inscribed in Tg.
Thus we obtain

>V ln(y) = vnlds <O lulonliry
E

E FE
~ 1/2 1/
< Ch1/2(Z£E> (Z |vh|iTE>
E E
As a consequence,

(2.19) Alh = \@h(eh)vh — @(eh)vh] — 0.
Since v € K(H), we have

2
< Ch'/?(meas Oﬁc)l/lehh,n — 0.

(2.20) Aoy, = |®(en)on — Dlen)v| = ] I Zullonl - o)) ds
0N¢
< j:max(meas aQC)l/quh - ’UHO,(?QC — 0.

Finally, we may write
(2.21)  Agp, = |P(en)v — D(e)v|

=| | Fn-Folds| < IF0 = Fllow | Ivlds —0.
39() GQC
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Combining (2.19)-(2.21), we arrive at
(2.22) |Pr(en)vn, — P(e)v] < Ay + Agp, + Agp, = 0 as h — 0+.
In a parallel way, we can deduce that
(2.23) |Py,(en)up, — P(e)ul — 0 as h — 0+,
using the boundedness of {u;} in V and the compactness of the trace oper-
ator (cf. (2.20)).
On the basis of (1.1), (2.6) and the weak convergence (2.1), we obtain
(2.24)  |[p, vn — un]n = (p,v — w)o|
< |[p, vn = upln = (p; vn = unjol + [(p, (vn —un) = (v—=u))o| — 0.
Finally, it is easy to see that
(2.25)  [(Hp,vp —up)o — (H,v — u)o|
< [(Hp — H,vp = un)o| + [(H, (vp — un) — (v —u))ol
< Cl|Hp = Hloo l[on = unllo + [|Hlo]lvn = vllo + |(H; u —un)o| — 0.
Coming back to the variational inequality (1.4) and passing to limes

inferior or limes superior as h — 04, we employ (2.12), (2.18), (2.22)—(2.25)
to get
(2.26)  (A(e)u,u) < liminf(A"(ep)up, up) < limsup(A™(ep)un, up)
< (A(e)u, v) + D)o — Ble)u+ (p— 20H,u— v)o
for all v € K(H).

Thus u is a solution of the inequality [3, (1.7)]. From the uniqueness of
u(e) we conclude that u = u(e) and the whole sequence {uy(ep)} tends to
u(e) weakly in V as h — 0+.

It remains to prove the strong convergence. We may set v := u in (2.26)
to obtain

(2.27) lim (A" (ep)un, un) = (A(e)u, u).

Next, we have

(2:28)  [(A(e)un, un) — (A" (en)un, un)|
< [(A(e)un, un) —(Alen)un, un)| + [(Alen)un, un) — (A" (en)un, un)|
< [|A(e)un — Alen)unl|«[lunlls + Chljunll1[[unllo — 0,

making use of (2.15) and (2.7). Thus

(2.29) lim (A(e)up, up) = (A(e)u,u)

follows from (2.27) and (2.28).
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Using (2.29), [3, (2.15)] and (2.9), we arrive at
(2.30) lima(H;up, up) = lim(A(e)up, up) — Him b(Z; up, up)
= (A(e)u,u) — b(Z;u,u) = a(H;u,u).

The bilinear form a(H;-,-) can be taken for a scalar product in V' (see
[3, (2.16)]). From (2.30) and the weak convergence of (up) we conclude that

lima(H;up — u,up, —u) =0,
which in turn implies that u, »uin V. m
PROPOSITION 2.2. Let ¢, € Ua’fd with ep, — e in U as h — 0+. Then
i (e, wnen) = £(e u(e))
for J =DD,ISS,COM, TR, and
o Lw (g5 en, un(en)) = Lw(g;e,ule))
for any € > 0.
Proof. Define u := u(e), up, := up(ep). It is readily seen that
[ (ensun) = Lo(e,u)] = | §((un = 2)2 = (u - 2)?) de]
Q
< [lun — ullollun +u = 22[o — 0,
|Liss(en, un) = Lrss(e,u)| = [lunlf = [ulf| < [lunly = [uli] - (Junl1 + [ul1)
< Clup, —u|y — 0.
Next, we have
|L&on(ens un) — Lcom(e, )]
< |L&om(en, un) — Loom(en, w)|+[Loom(en, u) — Loom(e, u)| = Ly + Lo,
where

Ly <|lp,unln — (p;un)ol + |{p, un — w)o| + 2w|(Hp, u — up)o|
< Chllunlly + C1llu — unllo — 0

by (1.1) and Proposition 2.1.
Moreover,

Lo = 2w|(H — Hy,un)o| < C||H = Hp||solunllo — 0,
so that
L on(en, un) — Loom(e,u).
Next, we may write
|Log (ens un) — Lrr (e, )|
< |Lhg(en,un) — Lrr(en, w)| + |Lrr(en, u) — Lrr(e,u)| = My + Mo.
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Using also (2.7a) in the final step, we derive that

My < |(Hy grad(un — ), grad ol + | > (Za(lun()]” = [u] "), 0)or|
TC\N2*

< HunaxCllus, = ully + Zunae 3. §(un(7) = un] + [un — u])|6] da
T T

< HynaxClln = ully + C1 (Rllunlla 8]0 + 3 lun = wllo,rl16llo.x) — 0.
T

Next, we also have
My < [{((Hp — H) grad u, grad 0)o| + 2w|(H — Hp, 0)o|
+1{(2) = 297, 0)0l < C([Hn — Hlloo + |12} = Z°[|oo)lull[|0]]s — 0,
so that
L£hy (en, un) — Lrr(e,u).
Finally, we may write

|Lw (e, en,un) — Lw(ese,u)|
M
< |(w, Hy = H)o| +¢7" Z |LE (un)) ™ — [F ()] |

< C{llHn = Hljoo + [lun — ullr(lunlly + [lufl)} — 0,
using an argument analogous to the proof of [3, Lemma 3.1]. m

LEMMA 2.3. For any e = {H,Z,F} € Usq and any sequence {h} with
h — 0+, there exists a sequence {en} such that

en = {Hp, Zn, Fry €U, en—e inU=C(0)xC(2\N2%) x C072¢c).

Proof. Let mp H denote the Lagrange linear interpolate of H over the
triangulation 7. Since H € W1°°(2), interpolation theory (see e.g. [1])
yields

1H — mnH 0,00 < Chl|H][1,00-

O_bviously, Hpyin < mpH < Hpax everywhere. For any straight-line segment
PQ € T parallel to the z;-axis and any triangle T' C 7}, we have
Q
|Om H[0x;| = ¢ H(Q) — H(P)| < ¢ | [0H/0x;| < CF,
P
where £ = |PQ)|.
Analogous arguments hold for 7, Z and for 7)F € X ¢ i.e., the Lagrange
linear interpolate of F over the partition of 0f2¢, generated by 7j,.
Now ej, = {mp, H, mh Z, 7727:} satisfies the conditions of the lemma. =
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THEOREM 2.4. Let {e3"}, h — 0+, be a sequence of solutions to the
Approximate Optimal Design Problem (1.6), J = DD, ISS, COM, TR. Then

there exists a subsequence {G?}E} C {e¥"} such that

(2.31) et et in U=C0) x O3\ 2°) x C(00c),

(2.32) uﬂe}ﬁ) —u(e}) inV,

where €% is a solution of the Optimal Design Problem [3, one of (1.14)-

(1.17)]. The limit of each subsequence of {e*l'}, converging in U, is a solu-
tion of the latter problem and an analogue of (2.32) holds.

Proof. Since each U;Ld C U,q and U,q is compact in U, there exists a
subsequence {e?ﬁ}, h — 0+, such that (2.31) holds. Consider an e € U,gq.
By Lemma 2.3, there exists a sequence of e; € U,Ed such that e; — e in U
as h — 0+. By definition, we have

Ll (e3 uz(ef) < L5(eq,uz(ez))-

Letting h — 0+ and applying Proposition 2.2 to both sides of this inequality,
we arrive at

EJ(eiklv u(ej)) < EJ(ev u(e))7

so that e’ is a solution of the original Optimal Design Problem. Making use
of Proposition 2.1, we obtain (2.32). This line of thought may be repeated
for any uniformly convergent subsequence of {e*"}. m

THEOREM 2.5. Let {e}}, h — 0+, be a sequence of solutions of the
Approzimate Weight Minimization Problem (1.23). Then there exists a sub-
sequence {e%} C {ej} such that

e% —e. in U,

where e is a solution of the penalized optimization problem [3, (3.1)].

Proof. Analogous to that of Theorem 2.4. m

3. Approximate reliable solutions. We shall introduce approxima-
tions of the method of reliable solution (alias worst scenario method), which
has been introduced in [3, Section 4] for problems with some uncertain input
data. In contrast with the previous sections, we keep the half-thickness H (z)
fixed, H € C9:1(02), H > 0 everywhere and O; > max, 5 H(z),1 <i < N
(see [3, (1.1)]). On the other hand, we allow the loading function p to vary
in the set U?,.

Here we use again the finite element spaces X, V},, and the sets Ua%h,
UZ[', but we introduce a new set Ugh = U, N X),. Assume that py € Xp,
for some triangulation 7y, .
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Hence we have to assume that the triangulations 7;, are consistent also
with the boundaries 0f2,,, m = 1,..., M, which play a role in the definition
of U, and with the boundaries of G, which appear in the definition of &,
and @5. Then we define

U

a

h Zh Fh
a=Upq xUsd' x Uyd
and consider approximate input data ej, = {pp, 25, Fn} € UM,
Instead of the criterions @;, i = 1,2, 3, we introduce

h —

D (vp) = 11£Jaxj (meas G) Z |vp ()| meas T,
TCGy

h _ _ -1 2

&3 (vp,) = Po(vy) = lrgjagJ(meas G;) GS lgrad vy, | dz,
J
D% (e, o) = (H grad vy, grad <P>o + (2wH — pr; #)o
+ Z (Zulon(M] ™ 0o, @ € Hy(2)N Xy,
TCo\2*

We solve the following approzimate mazximization problems: find

(3.1;) e = arg max Dh(en,unler)), i=1,2,3,

T
€h ad

where up,(er,) denotes the solution of the Approximate State Problem (1.4)
for the input data e, = {ppn, Zpn, Fn} € U:d, i.e., up(ep) € Kp(H) such that
(3.2) CL(H; uh(eh), Vhp — uh(eh)) + bh(Zh; uh(eh), Vh — uh(eh))
+ ®n(en)(vn) — Prlen)(un(en)) = (pn — 2wH, vy, — un(en))o
for all vy, € Kp,(H).
THEOREM 3.1. (i) The problem (3.2) has a unique solution up(ep) for
any ep € U;‘d and any h sufficiently small.

(ii) The approximate mazimization problem (3.1;),i = 1,2,3, has at least
one solution for any h sufficiently small.

Proof. The argument is analogous to that of Theorem 1.1. Let us ver-
ify the assumptions of [3, Theorem 2.1|, where we set K(e) := Kp(H),
<f,’l)h> - _2w<H7vh>07 <B€7’Uh> - <ph7'Uh>07 Uad = U ad? € = ehv V - Vh?
A(e) := Al (ep,),

(AM(en)vn, wr) = a(H;vp, wh) + by (Zn; vn, wh),

P(e)(vn) = Pnen)(vn) = Z S Fnlon(M]ds + I, (1) (vn)-
ECOQc E

Then Lemma 1.3 holds and Lemma 1.4 can be proved by nearly the same
(simpler) argument. Instead of Lemma 1.5 we prove the following
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LEMMA 3.2. Let ep,, — epn, €pn € UG1 and vy, — Up, Upn € Vi, as
n — o0o. Then

lim &”(epn, vnn) = DM (en,vn), i=1,2,3.
Proof. We may write

hm P (vpy) = lim max (meas G) E |Upn (77)| meas T
n— 1<5;<J oares

= max lim 1;(vp,) = max;(v,) = F (vp),
] n—oo J

since
‘ Z |Uhn (7)| meas T — Z |vh(’y)]measT‘
TCG]' TCGj
< Z |URn () — vp(y)| measT < Z |vhn — V|| co,r meas T

TCG; TCG;
< Z Cllvnn — vpllo,r(meas T)2 < Cllvp, — vpllo,c; meas G; — 0.
TCG;
Here we have used the inequality (1.15) in the final step.
Second, we have
‘ | (lgrad vnn | — [grad vnl?) dz| < [[vnn = vnll1([|onnlls + lonll) — O,
Gj
so that

lim @4 (vp,) = lim max (measG;) ™! X lgrad vp, |* dx
n— 00 n—oo 1<5<J G

= max lim (...) = &% (vy).

j n—oo
Third, we may write
|5 (s vin) — P5 (s v)| < D5 (hn, hn) — PF (en, vin)|
+ |95 (en, vnn) — @5 (en, vn)| = L1 + Lo,
and using (1.15) again,

Ly < [(pnn = s ©)ol + D 1{(Zhn = Z0)[onn(M] ™, #)o,7]

< C(llpan = pullo + [1Znn = Znllscllvanllo) — 0,
Ly < [(H grad(vnn — vn), grad p)o| + Y (Zn([onn(M)]™ = [on(M]7): 9)o,]
T

< Cllvnn = vnll + Zmax 3 1o = valloz - llellor — 0.
T
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As a consequence,

lim @g(ehn,vhn) = @g(eh,vh).

n—0o0o

Finally, the existence of solutions of the problems (3.1;) follows if we set
L=-D" u

4. Convergence results. Let us study the convergence of finite-
element approximations when the mesh size tends to zero. First of all, we
have to establish the following

PROPOSITION 4.1. Let e, € UM with e, — e in U as h — 0+. Then
up(ep) — u(e) in 'V as h — 0+.

Proof. The proof is analogous to that of Proposition 2.1. We can insert
vp, = 0 in the inequality (3.2) to get the boundedness of u; = up(en) as
h — 0+. In proving that the weak limit of a subsequence {uy} belongs to
K(H), we substitute Hj, := m, H, i.e., the linear Lagrange interpolate of H
over the triangulation 73, and use the fact that

|mnH — Hllo,0x — 0 as h— 0+
(cf. the proof of Lemma 2.3).
We derive (2.7)—(2.18), (2.22), (2.23). Instead of (2.24), (2.25) we obtain
(4.1)  [pn —2wH,vp, —up)o — (p — 2wH, v — u)o]
< C{llon = vllo + lun — ullo + llpn = pllec} — 0.

Passing to limes inferior or limes superior in the inequality (3.2) and em-
ploying (2.12), (2.18), (2.22), (2.23) and (4.1), we arrive at (2.26), so that
u satisfies the inequality [3, (1.7)]. As a consequence, the whole sequence
{un(en)} tends to u(e) weakly in V' as h — 0+.

The proof of strong convergence is the same as in the proof of Proposi-
tion 2.1. m

PROPOSITION 4.2. Let ¢, € Uahd with e, — e in U as h — 04+. Then

Jim @ (en, un(en)) = Pile,ue)), i=1,2,3.

Proof. For uy, := up(ep) and u := u(e) we may write

[ S fun()measT — § fulda| < 7 §(un() — unl + lun — ul) do

TCG; G; TCG; T

< (Mlunllig; + lun — ullo,g,) measG; — 0 as h — 0,



Control in obstacle-pseudoplate problems 93

by Proposition 4.1. As a consequence,

lim &% (up) = lim max (meas G,) E |up, ()| meas T’
h—0+ h—01<j<J i,

. -1
= rjnga}(}lLLH%)( L) = Iglg&m}(meas G;) st |u| dz = P1(u).
Since
‘ S lgrad uy,|* dz — S ]gradu|2dm‘ < Clup —ul1,q; — 0,
i i
we have

lim & = i 2
hl%l+ 2 (un) = hi%l—i- 1r<n]axj(measG) C;\graduh\ dx

= r}?}hgr&_(' ) = Do(u).
Third, we may write
(@5 (en, un) — P(e, u)| < D% (en, un) — Ps(en, u)| + [ Ds(en, u) — P3(e, u)|
= Ml + M2)
where
My < |(H grad(up, — u),grad)o| + > [(Za(fun()]” = [u] "), )or|
TCO\N2*
< Cllun = ully + Cr(hflunlly + [lun = ullo)ll@llo — 0

(cf. the proof of Proposition 2.2 for £1g), and
My <| § (Zn—2)lpda| + |(p—pn. o
2\02*
< C(2h = Zlloe + [lp = prlloc) — 0.
As a consequence, we obtain limy_.o ®%(ep,, up) = P3(e,u). m

LEMMA 4.3. For any e={p, Z,F} € Unq and any sequence {h}, h— 0+,
there exists a sequence {ep} such that ey, = {pn, Zn, Frn} € U, d and ep, — e
in U= ([[N_,C(2,)) x C(2\ 2%) x C(002¢c).

Proof. Consider the restriction p,, = p|£2, of any p € U, and define
pp = TpPe, where 7y, is the linear Lagrange interpolation over 7; and

pe=¢€po+ (1 —&)pm, T € O,

where ¢ is a real parameter, 0 < ¢ < 1. We have

(4.2)  [|0pe/0zillco, 2, < €[00/ Oilloo + (1 = &)||Opm /Di| o
< 027 = 17 2>
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by definitions of U,q and pg. Since
1Pelloc, 20 < €llPolloc + (1 = €)[IPmlloc < max{|pollc, [[Pmllec} = C,

we obtain
Hpaul,oo,ﬂm < 03 + 201 = C4

for all e. Using the estimate
lg = Thglloo, 2, < Chllgll1.00,0,,

we may write

(4.3) pn = Polloo, 2 < [IThPe — Pellos + IPe — Polloo
< CCsh+ (1 = €)[|pm — polloo
< CCh+(1- )0, < G

if

(4.4) CCyh < Cqe.

Let PQ C T C §2,, be a straight-line segment of length ¢, parallel to the
z;-axis. Then

Q Q
|0 hpe /O] = ‘51 S g]; dr;| < €71 S |Ope/Ox;| dx; < Cy
p P

by (4.2), so that
(4.5) 10pn /0|00, 2, < Ca, i=1,2.
Next, we have
(4.6)  llpn = Pmlloo.2,, < [ITnpe = Pelloc + [P = Pmlloo
S CC4h + 8||p(] - pmHoo
<CCyh+eCy —0 ash— 0+ and ¢ — 0+.
Combining (4.3)—(4.6), we can find a sequence {ps}, h — 0+, such that
pr € UPY and py, — p in [TV_, C(2,).
The components Z, and Fj can be defined as linear Lagrange interpo-
lates of Z and F, respectively (cf. the proof of Lemma 2.3). m

THEOREM 4.4. Let {e"}, h — 0+, be a sequence of solutions of the
approzimate mazimization problem (3.1;), i = 1,2,3. Then there exists a

subsequence {efﬁ} C {eh} such that
(4.7) erh
(4.8) ui(es™) = u(e) iV,
(4.9) P (e, uy (e;") — Biel u(e)),

)

—ef inU,
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where e} is a solution of the maximization problem (4.1); of [3]. The limit
of each subsequence of {e;-kh}, converging in U, is a solution of the prob-
lem (4.1); and the analogues of (4.8), (4.9) hold.

Proof. Analogous to that of Theorem 2.4. Instead of Proposition 2.2 and
Lemma 2.3, we employ Proposition 4.2 and Lemma 4.3. Proposition 2.1 is
replaced by Proposition 4.1. =
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