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VALUES OF MAJORITY VOTING GAMES
WITH DISTRUST OPERATORS

Abstract. A distrust operator, describing a kind of agreement among a
group of players, transforms any characteristic function game to another
game. In this new game, a player from this group can legally access a coali-
tion if and only if all players from the group do the same. A formula for
the Shapley value of games obtained by applying distrust operators to one
man–one vote majority voting games is given, and the cases in which such
an “agreement” is profitable to its parties are discussed. We also prove two
theorems concerning the limit behaviour of values of voting games with dis-
trust operators when the number of players tends to infinity but the winning
majority percentage remains constant.

1. Introduction. Games and operators. We study the values of ma-
jority voting games transformed by distrust operators. A distrust operator,
first introduced in [2] and closely related to representation and association
agreements studied in [1] and [3], is an example of an additional structure on
the set of players which transforms every cooperative game to another coop-
erative game. An interesting question is whether forming such a structure is
profitable (in some sense) for players who form it. We give a partial answer
to this question in the case where the game is a one man–one vote majority
voting game and profitability is understood as increasing the Shapley values
of the players involved.

Having introduced the necessary notions in the first two sections, we give
an explicit formula for the Shapley values of majority voting games with
distrust operators in Section 3. In Section 4 we present examples of both
profitable and unprofitable operators together with some general statements
on profitability. The last section describes the limit behaviour of values of
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“large” voting games with distrust operators when the number of players
tends to infinity and the minimal winning majority required is a constant
fraction of the number of players. Two cases are discussed there: in the first
one, the number of players forming an agreement remains constant, and in
the second one it is a constant fraction of the number of all players.

Let N = {1, . . . , n} be a finite set of players. Every subset of N is called
a coalition. An n-person cooperative game (characteristic function game)
is the pair (N, v), where v is the characteristic function—any real function
defined on the set N of all coalitions and satisfying v(∅) = 0. It is a standard
practice to identify every cooperative game with its characteristic function.
An important subclass of cooperative games are one man–one vote majority
voting games with the characteristic functions defined by

vµn(S) =
{

1 if #S ≥ µ,
0 if #S < µ.

Here, n is the number of players, #S denotes the cardinality of the coali-
tion S (#S ≤ n), and µ is the minimum winning majority (quorum)—any
number such that n/2 < µ ≤ n. Without loss of generality we can assume
that µ is an integer.

Majority voting games, on the other hand, belong to an important sub-
class of characteristic function games—simple games. A cooperative game
(N,w) is a simple game if the following conditions hold:

1. for every coalition S ⊂ N , w(S) = 0 or w(S) = 1,
2. w(N) = 1,
3. if S ⊂ T , then w(S) ≤ w(T ) (monotonicity).

In a simple game w, winning coalitions are those belonging to w−1(1), and
losing coalitions are those in w−1(0). Player i is decisive in a coalition S in a
simple game w if w(S) = 1 and w(S \ {i}) = 0, i.e. if i’s leaving the winning
coalition S changes it to a losing coalition. (In majority voting games, the
exit of i causes S to lose majority.)

Denote by Gn the set of all n-person cooperative games, and by G∗ =⋃∞
n=1 Gn the set of all cooperative games with finite numbers of players.

For any set N of players and any coalition Q ⊂ N with #Q ≥ 2, the
distrust operator DQ : Gn → Gn assigns to any game v ∈ Gn a new game
d = DQ(v) ∈ Gn defined by

d(S) =
{
v(S) if Q ⊂ S,
v(S \Q) if Q \ S 6= ∅.

A distrust operator DQ can be interpreted as a pre-play agreement signed
by all players belonging to Q, stating that any player from the set Q may
join any coalition T if and only if all players in Q do the same: an access to
T may only be collective (“all or none”). Even though the term “agreement”
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is established for similar operators [1], we prefer to use the term “operator”
instead in order to avoid disturbing “distrust agreements”. However, such
an arrangement between players may well make sense; a group of players
can agree upon it, for instance, expecting to strengthen their bargaining
position, and we shall see later that indeed this is often the case.

It is straightforward to check that for every N ⊃ Q, DQ is a linear
projection of the set Gn to Gn and that it transforms simple games to simple
games. However, if v is a voting game, then DQ(v) need not be a voting
game. If, for example, Q = {1, 2, 3}, then in the game DQ(v4

7) five-person
coalitions containing exactly two of players 1, 2 and 3 are losing, but four-
person coalitions {1, 2, 3, k} (k > 3) are winning.

2. Values. Values are tools for measuring the “power” of players in
cooperative games. A value is any vector-valued function ψ defined on G∗
such that for every n, ψ(Gn) ∈ Rn. The components of ψ(v), denoted by
ψk(v), are called individual values of players and should somehow reflect
the players’ positions in the game v.

The by far best-known and most commonly accepted value is the Shapley
value φ, first introduced in [6] and given by the formula

φi(v) =
∑

T⊂N

(t− 1)!(n− t)!
n!

(v(T )− v(T \ {i})

where t = #T .
When v is a simple game, it is obvious that the difference v(T )−v(T \{i})

is always equal to 0 or 1, and it equals 1 if and only if player i is decisive
in the coalition T . Thus, for simple games—and in particular for voting
games—the Shapley value can be expressed in a simpler form

φi(v) =
∑

T∈∆(i,v)

(t− 1)!(n− t)!
n!

where t = #T and ∆(i, v) is the set of all coalitions in which player i is
decisive (in the game v).

While computing the values of particular games, it is often useful to
apply the following well-known probabilistic interpretation of the Shapley
value (see e.g. [6] or [5]). For a given player j ∈ N and a permutation π
of the set N denote by Hπ,j the coalition consisting of player j and of all
players who precede j in the order determined by π:

Hπ,j = {k : π(k) ≤ π(j)}.
Now if we order all players in N at random and assume all orders on (=
permutations of) the set N to be equiprobable, then φi(v) is the expected
value of the contribution of player i to the (random) coalition Hπ,i, i.e., of
the difference v(Hπ,i)− v(Hπ,i \ {i}).
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In particular, when w is a simple game, then this expected value is just
the probability that i is decisive in the coalition Hπ,i. Since it is clear that
for every permutation π there is exactly one player k who is decisive in the
coalition Hπ,k (in the game w), we may denote that player by δ(π) and write

φi(w) = P(δ(π) = i) for i = 1, . . . , n.

Moreover, the Shapley value is known to have two fundamental properties:
efficiency and equal treatment property , which also often help compute val-
ues of games and will be used in what follows. Efficiency means that for every
n-person game v we have

∑n
i=1 φi(v) = v(N) (and thus, in particular, for

every n-person simple game w,
∑n

i=1 φi(w) = 1). Equal treatment property
means that if two players i, j are interchangeable in the game v, i.e., if for
every coalition T including neither i nor j we have v(T ∪ {i}) = v(T ∪ {j}),
then φi(v) = φj(v).

3. Formulae for the values. We now give explicit formulae for the
values of majority voting games before and after applying a distrust opera-
tor.

The computation of φ(vµn) is trivial thanks to efficiency and equal treat-
ment property of the Shapley value; these two properties together immedi-
ately imply that

φi(vµn) = 1/n for i = 1, . . . , n.

Now take any coalition Q ⊂ N and denote its cardinality by q. In order to
compute the value of DQ(vµn), set

dµn = DQ(vµn), dj = φj(dµn), dQ =
∑

j∈Q
dj .

(Obviously, both dj and dQ depend on n, µ and q, but we shall omit these
arguments whenever it causes no confusion.) Notice that in the game dµn all
players in Q are interchangeable and all players in N \Q are interchangeable.
Therefore efficiency and equal treatment property imply that

dj =





dQ
q

for j ∈ Q,
1− dQ
n− q for j 6∈ Q,

and so it suffices to compute dQ.
It will prove useful to distinguish between three cases:

Case 1 : q ≥ µ, i.e., the players entering the agreement themselves form
a winning coalition (both in vµn and in dµn). In this case it is obvious that
all players from N \ Q are null players (have zero contribution to every
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coalition), so in this case dQ = 1. We therefore exclude this case from all
further considerations.

Case 2 : max(q, n− q) < µ—neither Q nor N \Q is a winning coalition
in any of the two games. By analogy to [4] we shall call this situation the
non-interior case.

Case 3 : q < µ and n − q ≥ µ, i.e., the players who do not enter the
agreement can form a winning coalition. This is the interior case.

In what follows, let us adopt the notation

U lk = (k + 1)(k + 2) . . . l =
l!
k!

for any two natural numbers k, l such that l > k.

Theorem 1. For q < µ,

dQ =





1− (n− q)!(µ− 1)!
n!(µ− q − 1)!

=
Unn−q − Uµ−1

µ−q−1

Unn−q
if q > n− µ (the non-interior case),

(n− q)!
n!

[
(µ+ q − 1)!

(µ− 1)!
− (µ− 1)!

(µ− q − 1)!

]
=
Uµ+q−1
µ−1 − Uµ−1

µ−q−1

Unn−q
if q ≤ n− µ (the interior case).

Proof. In view of the aforementioned probabilistic interpretation of the
Shapley value, for every coalition T , dT is the probability that (given that
all permutations of N are equiprobable) for a random permutation π the
player δ(π) belongs to T .

Obviously, i = δ(π) if and only if the accession of player i to the set
of players who precede him—Hπ,i \ {i}—results in forming a new winning
coalition. In the game dµn, this is possible for player i belonging to Q only
if Hπ,i ⊃ Q, i.e., i is the “last” player from the set Q. (This follows di-
rectly from the definition of DQ: the contributions of players from Q to any
coalition which does not contain Q are zero.)

Thus, player δ(π) belongs to Q if and only if the permutation π satisfies
the following two conditions:

π−1({min(µ+ q, n+ 1), . . . , n− 1, n}) ∩Q = ∅,(1)

π−1({µ, µ+ 1, . . . , n}) ∩Q 6= ∅,(2)

i.e., all players from Q are placed at positions 1, 2, . . . ,min(µ + q − 1, n),
and at least one of them is placed at position µ, µ+ 1, . . . or n.

Denoting the event (1) by E and the event (2) by F , we have

dQ = P(E ∩ F ).
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But Ω \F ⊂ E: if there are no players from Q at places µ, µ+ 1, . . . , n, then
there are no players from Q at places µ+q, µ+q+1, . . . , n. Thus P(E∩F ) =
P(E)− P(Ω \ F ). These probabilities are given by

P (E) = 1 if q > n− µ,

P (E) =
(
µ+ q − 1

q

)/(
n

q

)
=

(µ+ q − 1)!(n− q)!
(µ− 1)!n!

if q ≤ n− µ,

P (\F ) =
(
µ− 1
q

)/(
n

q

)
=

(µ− 1)!(n− q)!
(µ− q − 1)!n!

,

which ends the proof.

4. Profitability: examples and basic lemmata. Having the formula
for dQ, we now address the question of profitability of distrust operators in
terms of the Shapley value. We shall say that DQ is profitable in the game
v if the sum of the Shapley values of all players in Q is greater in the game
DQ(v) than in v; if the reverse inequality holds, DQ is unprofitable. For one
man–one vote majority voting games, profitability of DQ in vµn is equivalent
to the increase of individual Shapley values of all players in Q, and thus to
dQ > q/n.

In this section and in the next one we shall always assume that q < µ.

Example 1 (Unanimity games). In the unanimity game of the grand
coalition (µ = n), regardless of the cardinality of Q the player coming last
is always decisive:

∀π δ(π) = π−1(n).

Thus, di = 1/n for every i ≤ n, and dQ = q/n for every Q. The operator
DQ is neither profitable nor unprofitable for players in Q; we might say that
it is neutral in this case.

Lemma 1. In the non-interior case (q > n−µ), DQ is always profitable
unless µ = n.

Proof. We have

dQ = 1− (n− q)!(µ− 1)!
n!(µ− q − 1)!

= 1− n− q
n
· (µ− q) . . . (µ− 1)

(n− q) . . . (n− 1)
> 1− n− q

n

whenever µ < n.

Thus, in the non-interior case, distrust operators are always either neu-
tral (when v is a unanimity game) or profitable (otherwise). This observation
allows us to confine all further considerations to the interior case.

Example 2 (q = 2). In this case

dQ =
µ(µ+ 1)− (µ− 1)(µ− 2)

n(n− 1)
=

2(2µ− 1)
n(n− 1)

>
2
n
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(since, as usual, µ > n/2), so two-person “distrust agreements” are strictly
profitable.

Example 3 (q = n−µ). This is the broadest agreement possible in the
interior case. We have

dQ =
µ!
n!

[
(n− 1)!
(µ− 1)!

− (µ− 1)!
(2µ− n− 1)!

]
=
µ

n
− (2µ− n) . . . (µ− 1)

(µ+ 1) . . . n

>
µ

n
− 2µ− n

n
=
q

n
.

All the above examples suggest that distrust operators are “usually”
profitable. However, this is not true. We show below that already three-
person “agreements” are not profitable in many cases, and that in voting
games with µ = [n/2] + 1 (“simple” majority) unprofitability is a rule.

Example 4 (q = 3). In this case

dQ =
µ(µ+ 1)(µ+ 2)− (µ− 1)(µ− 2)(µ− 3)

n(n− 1)(n− 2)

=
9µ2 − 9µ+ 6
n(n− 1)(n− 2)

=
q

n
· 3µ2 − 3µ+ 2
n2 − 3n+ 2

,

so for majorities which are small enough (satisfy µ2 − µ < n2/3− n) three-
person “agreements” are unprofitable.

Example 5 (Simple majority voting games: µ = [n/2] + 1). This is the
case when the minimal physical majority suffices to win. When n is odd, we
have n = 2µ− 1 and

dQ(n, µ, q) =
Uµ+q−1
µ−1 − Uµ−1

µ−q−1

U2µ−1
2µ−1−q

.

Set

r1(µ, q) =
Uµ+q−1
µ−1

U2µ−1
2µ−1−q

, r2(µ, q) =
Uµ−1
µ−q−1

U2µ−1
2µ−1−q

.

When µ/2 ≤ q < n− µ, we have the inequality

r1(µ, q) ≤ µ(µ+ 1)(µ+ 2)
(n− 2)(n− 1)n

<
q

n
,

so obviously dQ < q/n. When 3 ≤ q < µ/2, we shall show that the inequality
dQ < q/n implies dQ∪j < (q + 1)/n for j 6∈ Q. We have

dQ∪j − dQ = (r1(µ, q + 1)− r1(µ, q)) + (r2(µ, q)− r2(µ, q + 1))

=
1

n− q [(2q + 1− µ)r1(µ, q) + µr2(µ, q)]

=
1

n− q [(2q + 1− µ)dQ + (2q + 1)r2(µ, q)] <
2q + 1
n− q r2(µ, q).
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Therefore, whenever r2(µ, q) < (n−q)/((2q+1)n)—which holds for all µ > 6
and q such that 3 ≤ q ≤ µ/2—we obtain dq+1 − dq < 1/n, which proves
the required implication. On the other hand, we know from Example 4 that
for q = 3 and µ > 6 (i.e., for odd n > 11) the inequality dQ < 3/n holds.
This implies that for odd n > 11 and µ = (n+ 1)/2 we have dQ < q/n for
every q 6= 2 and q 6= n − µ in the interior case, that is, for every q in the
interval [3, µ−2]. (Direct calculations show that the reverse inequality holds
for every q in the interior case when µ ≤ 6, i.e., n ≤ 11.)

Similar estimations for n even (n = 2µ− 2) yield

dQ < q/n for every n ≥ 20, 3 ≤ q < n/2− 2

and every n ≥ 16, 4 ≤ q < n/2− 2,

dQ = q/n for n = 18, q = 3,

dQ > q/n for every n ≤ 14, 2 ≤ q < n/2− 1

and for n = 16, q = 3.

The games of simple majority considered in the above example form an
extreme case of unprofitability: when the majority required to win increases,
the values of dQ for fixed q also increase, eventually making the operator
profitable. This is stated in the following lemma.

Lemma 2. In the interior case, dQ(n, µ, q) is an increasing function
of µ.

Proof. We have

dQ(n, µ+ 1, q)− dQ(n, µ, q) =
Uµ+q
µ − Uµµ−q − Uµ+q−1

µ−1 + Uµ−1
µ−q−1

Unn−q

=
q

Unn−q
· (Uµ+q−1

µ − Uµ−1
µ−q ) > 0.

This lemma together with Lemma 1 and Example 5 implies the following

Corollary. When the number of players is less than 13 or equal to 14,
all distrust operators are either neutral (in unanimity games) or profitable
(in all other games).

5. Limit behaviour. For games with ten or more players, comparison
of dQ to q/n in the interior case is generally quite cumbersome. However,
something can be said about the limit behaviour of the ratio of these two
quantities when n tends to infinity and the winning majority percentage,
µ/n, has a limit. We consider two cases: q fixed and q/n having a positive
limit.

Denote by ΠQ(n, µ, q) the ratio of the sums of the Shapley values of all
players in Q after and before applying the operator DQ:
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ΠQ(n, µ, q) =
dQ(n, µ, q)

q/n
=
ndQ(n, µ, q)

q
;

DQ is profitable (resp. unprofitable) for players in Q if and only if ΠQ > 1
(resp. ΠQ < 1).

Proposition 1. Fix q ≥ 2 and let µn be a sequence of integers such
that µn > n/2 for every n and limn→∞ µn/n = c. Then

lim
n→∞

ΠQ(n, µn, q) = qcq−1.

Proof. It is clear that under these assumptions on µn and q for almost
all n the games dµnn are interior. Since

dQ =
Uµ+q−1
µ−1 − Uµ−1

µ−q−1

Unn−q

=
(n− q)!
n!

· [µq + (1 + . . .+ (q − 1))µq−1 +K+(µ)

− µq + (1 + . . .+ q)µq−1 +K−(µ)]

=
(n− q)!
n!

· (q2µq−1 +K(µ)),

where K+, K− and K are polynomials of degree q − 2, we obtain

ΠQ(n, µn, q) =
n

q
· dQ(n, µn, q) =

(n− q)!
(n− 1)!

· (qµq−1
n + q−1K(µn))

=
qµq−1

n + L(µn)
nq−1 +M(n)

,

where again L and M are polynomials of degree q−2. Therefore, as n→∞
and µn/n→ c, ΠQ(n, µn, q) converges to qcq−1.

This result enables us to draw some conclusions about the profitability
of distrust operators in games with sufficiently many players. For instance,
when q = 3 and n → ∞, DQ will eventually become profitable if 3c2 > 1,
i.e., when µ

√
3 > n. With increasing q, the threshold ratio c increases to

unity.

Proposition 2. Let qn and µn be sequences of integers such that
µn > n/2, limn→∞ qn/n = r, limn→∞ µn/n = c and r < c < 1− r. Then

lim
n→∞

ΠQ(n, µn, qn) = 0.

Proof. Again, the assumptions ensure that almost all games considered
are interior. Using the formula for dQ in the interior case, we obtain

ΠQ(n, µn, qn) <
n

qn
· µn(µn + 1) . . . (µn + qn)

(n− qn + 1) . . . (n− 1)n
<

n

qn
·
(
µn + qn

n

)qn
;

the quotient in parentheses converges to r + c, so is bounded away from
unity, and since the exponent qn →∞, obviously the limit is zero.
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This proposition also holds for games modified by more than one distrust
operator, i.e., games in which a number of pairwise disjoint groups of players
have concluded respective agreements. The formulae for values of such games
are very complex even for small n because a wide spectrum of cases need to
be analysed. However, the generalisation of Proposition 2 to such games is
easy even without knowing the formula for the Shapley value: it suffices to
observe that if for a given permutation π of N , the player δ(π) belongs to
Q, then all players from Q must belong to π−1(1, 2, . . . , µn). With #Q→∞
and µn/n→ c < 1, the probability of this event converges to zero.

Both Proposition 2 and its generalisation, while simple, are of some in-
terest and may even be considered surprising because they sharply con-
trast with the result of Milnor and Shapley [4]. Milnor and Shapley study
games with a fixed number of “large” players holding constant proportions
of all votes and an increasing number of “small” players whose individual
proportions of votes converge uniformly to zero. A large player in such a
game corresponds to a group of players entering a representation (“proxy”)
agreement as defined by Haller [1], and so the limit theorem by Milnor and
Shapley is a counterpart to the generalised version of Proposition 2. But
the results obtained are entirely different: in the games studied in [4] the
limits of Shapley values of “large” players are positive, and in the interior
case representation agreements are in fact always profitable in the limit.

References

[1] H. Haller, Collusion properties of values, Internat. J. Game Theory 23 (1994), 261–
281.

[2] M. Malawski, Equal treatment , symmetry and Banzhaf value axiomatizations, ibid.,
to appear.

[3] —, The Shapley value of majority voting games with multilateral collusion agree-
ments, Bull. Polish Acad. Sci. Math. 42 (1994), 37–42.

[4] J. W. Milnor and L. S. Shapley, Values of large games II : Oceanic games, Math.
Oper. Res. 3 (1978), 290–307.

[5] G. Owen, Game Theory, 3rd ed., Academic Press, 1995.
[6] L. S. Shapley, A value for n-person games, in: Contributions to the Theory of Games,

Vol. 2, H. Kuhn & A. W. Tucker (eds.), Princeton Univ. Press, 1953, 307–317.

Institute of Computer Science
Ordona 21
01-237 Warszawa, Poland
E-mail: malawski@ipipan.waw.pl

Received on 30.4.2001;
revised version on 23.1.2002 (1576)


