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AN EXISTENCE THEOREM FOR A CLASS
OF ELLIPTIC PROBLEMS IN L!

Abstract. We prove an existence result for solutions of some class of
nonlinear elliptic problems having natural growth terms and L' data.

1. Introduction. Let {2 be an open bounded subset of RN, N > 2, with
the segment property, and let f € L'(§2). Consider the following nonlinear
Dirichlet problem:

(1.1) A(u) + g(z,u, Vu) = f

where A(u) = —div(a(x, u, Vu)) is a Leray—Lions operator defined on D(A)
C WLy (92), with M an N-function which satisfies the Ag-condition, and
g is a nonlinearity having “natural growth” and satisfies the classical “sign
condition” with respect to u.

In the variational case (i.e. where f € W1E(£2)), it is well known
that Gossez solved (1.1) in the case where g depends only on x and u. If g
does depend also on Vu, an existence theorem has recently been proved by
Benkirane and Elmahi in [4] and [5].

In the case where f € L(£2), they also give an existence result in [6] if
the nonlinearity g satisfies further the following coercivity condition:

(1.2) lg(z,5,Q)] = BM(|C|/p)  for [s] = .

It is our purpose, in this paper, to prove an existence result for some class
of problems of the kind (1.1), without assuming the coercivity condition
(1.2). The technical method used here allows us not only to generalize the
result of [21], but also to give a different proof for it.
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For the classical variational case in Orlicz spaces, the reader is referred,
for example, to [3-5, 7, 15-18], and for some results in the LP case, to [2,
10-14, 20, 21].

2. Preliminaries

2.1. Let M : R™ — R* be an N-function, i.e. M is continuous, convex,
with M(t) > 0 for t > 0, M(t)/t — 0 ast — 0 and M(t)/t — oo as
t — oo. Equivalently, M admits a representation M (t) = Sg a(s) ds where
a:RT — R7 is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for
t > 0 and a(t) tends to oo as t — oo.

The N-function M conjugate to M is defined by M = Sg a(s) ds, where
a:RT — RT is given by a(t) = sup{s : a(s) < t} (see [1]).

The N-function M is said to satisfy the As-condition, written M € As,
if for some k > 0,

(2.1) M(2t) < kM(t), Vt>0;

when (2.1) holds only for ¢ > some ¢ty > 0 then M is said to satisfy the
As-condition near infinity.

We will extend these N-functions to even functions on all R.

Let P and @ be two N-functions. P < ) means that P grows essentially
less rapidly than @, i.e. for each £ > 0, P(t)/Q(et) — 0 as t — oo. This is
the case if and only if lim;_., Q7 1(t)/P~1(t) = 0.

2.2. Let £2 be an open subset of RY. The Orlicz class Kpr(£2) (resp.
the Orlicz space Lp(§2)) is defined as the set of (equivalence classes of)
real-valued measurable functions u on (2 such that

S M(u(z))dx < oo (resp. S M (u(x)/)) dz < oo for some A > 0).
Q Q
Lys(£2) is a Banach space under the norm

ullpr. = inf {)\ >0: | M(u(x)/\) de < 1}
Q
and Kj/(£2) is a convex subset of Lys(f2).

The closure in Ljs(§2) of the set of bounded measurable functions with
compact support in £2 is denoted by Ej(£2).

The equality Enr(£2) = La(£2) holds if and only if M satisfies the Ag-
condition, for all ¢ or for ¢ large, according to whether {2 has infinite measure
or not.

The dual of Ep/(§2) can be identified with L3;(f2) by means of the pairing
§ uvdzr, and the dual norm of Lz({2) is equivalent to | - ||57 - The space
L (02) is reflexive if and only if M and M satisfy the As-condition, for all
t or for t large, according to whether {2 has infinite measure or not.
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2.3. We now turn to the Orlicz-Sobolev space. WL (£2) [resp.
WLEy(£2)] is the space of all functions u such that u and its distribu-
tional derivatives up to order 1 lie in Ly (£2) [resp. Eas(£2)]. It is a Banach
space under the norm

lulliar = ID%ullar.
laf<1
Thus, WILy(£2) and WEp(§2) can be identified with subspaces of the
product of N + 1 copies of Ljs(£2). Denoting this product by [[ Las, we will
use the weak topologies o([[ L, [[ E57) and o([] Las, [ Lyz)-

The space W) Ep(£2) is defined as the (norm) closure of the Schwartz
space D(£2) in WLEy(£2), and the space W} Ly (£2) as the o([] Las, [ Exp)
closure of D(£2) in WL (02).

We say that u,, converges to u for the modular convergencein WLy (£2)
if for some A > 0,

| M

<Daun — D%
0

3 >dx—>0 for all |a| < 1.

This implies convergence for o([[Las, [[ Lyz). If M satisfies the Ag-con-
dition on R, then modular convergence coincides with norm convergence.

2.4. Let W L7(£2) [resp. W 1E(£2)] denote the space of distribu-
tions on {2 which can be written as sums of derivatives of order < 1 of
functions in Lyz; [resp. E77(£2)]. It is a Banach space under the usual quo-
tient norm.

If the open set {2 has the segment property then the space D(f?2) is
dense in W} Ly (£2) for the modular convergence and thus for the topology
o(ITLam, [T L5z) (cf. [15, 16]). Consequently, the action of a distribution in
W1L37(£2) on an element of W Ly (£2) is well defined.

2.5. We recall some lemmas introduced in [5] which will be used in this
paper.

LEMMA 2.1. Let F : R — R be uniformly Lipschitzian, with F(0) = 0.
Let M be an N-function and let u € WLy (2) (resp. WIEy (£2)). Then
F(u) € WYLy () (resp. WEEN(£2)). Moreover, if the set D of discontinu-
ity points of F' is finite, then

0 ; .
iF(u) _ [ F(wgru ae in {z € 2:u(z) & D},
ox; 0 a.e. in {x € 2:u(x) € D}.

LEMMA 2.2. Let F : R — R be uniformly Lipschitzian with F(0) = 0.
Suppose that the set of discontinuity points of F' is finite. Let M be an
N-function. Then the mapping F : WLy (2) — WLy (82) is sequentially
continuous with respect to the weak™ topology o ([ L, [ Exy)-
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2.6. We now give the following lemma which concerns operators of the
Nemytskil type in Orlicz spaces (see [5]).

LEMMA 2.3. Let £2 be an open subset of RY with finite measure. Let
M, P and @ be N-functions such that Q < P, and let f: 2 xR — R be a
Carathéodory function such that for a.e. x € £2 and all s € R,

|f(z,5)| < c(z) + k1 P™ M (kas]),

where ki, ko are real constants and c(x) € Eg(£2). Then the Nemytskii op-
erator Ny defined by Ny(u)(x) = f(x,u(x)) is strongly continuous from
P(EM(Q), 1/k2) = {u < LM(Q) : d(u,EM(_Q)) < l/kg} nto EQ(Q)

3. The main result. Let {2 be an open bounded subset of RN, N > 2,
with the segment property.

Let M be an N-function satisfying the As-condition near infinity and
let P be an N-function such that P < M. Let A(u) = —div(a(z,u, Vu))
be a Leray-Lions operator defined on D(A) C WL (£2) into W1 Ly7(42)
where a : 2 x R x RV — R¥ is a Carathéodory function such that for a.e.
x € 2 and for all (,¢’ € RN (¢ #¢') and all s € R,

(3.1) la(@, s, Q)] < h(w) + ki P~ M (ka|s]) + ks M~ M (ka|C]),
(32) (a(:v, S, C) - a’(xv S, CI))(C - C/) >0,
(3.3) a(z,s,¢)¢ > aM([C]/N),

with a, A > 0, k1, ko, k3, ks >0, h € Em(g)
Furthermore let g : 2 x R x RV — R be a Carathéodory function such
that for a.e. z € 2 and for all s € R and all ¢ € RY,

(3-4) 9(z,5,¢)s =0,
(3.5) l9(z, 5, Q)| < b(|s])(e(x) + M([C]/1));

where b : Ry — R is a continuous nondecreasing function, ¢ is a given
nonnegative function in L'(2), and p > 0. Finally, we assume that

(3.6) feLy().
Consider the following Dirichlet problem:
(3.7) A(u) + g(z,u, Vu) = f in 2.

We define T, 01 M(Q) to be the set of measurable functions v : 2 — R such
that Ty (u) € WLy (£2), where

Ti(s) = max(—k,min(k,s)) for s € R and k> 0.

We shall prove the following existence theorem.
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THEOREM 3.1. Assume that (3.1)—(3.6) hold true. Then there exists at
least one solution of (3.7) in the following sense:

uweTyM(2),  glx,u, Vu) € LY(2),
S a(x,u, Vu)VTg(u — v) dx + S g(x,u, Vu)Ti(u — v) dx
(P) ) 19
< | fTe(w—v)de, VoeW§Ly(2)NL¥(R2), Vk > 0.
Q
REMARK 3.1. Our result covers the critical case M(t) = |t|log(1 + |¢|)
which satisfies the As-condition but M & As.
If M(t) = |t|P/p, we obtain the result given in [21].

REMARK 3.2. If u is a solution of (P) such that a(z,u, Vu) € L'(£2),
then it is also a solution of (3.7) in the distributional sense. This is the case,
for example, if we take a(z, s,¢) = a(z, s)|¢[P~2¢log® (1 + |¢]) with a(z, s) a
Carathéodory function satisfying

a<a(xr,s)<~vy forae ze€f2andalseR
where «, 3,7 > 0. Indeed, by choosing 0 < € < %%, it is easy to see that
there exists C. > 0 such that

log?(1 +[¢]) < C.[¢|P for |¢| large enough,
and so that

S la(z,u, Vu)| dx < ~C; S \VaulP~ 12 do 4 C.
Q Q

In view of the fact that p— 1+ 8 < N(p — 1)/(N — 1) one easily sees that
a(x,u, Vu) € L(02).
Proof of Theorem 3.1

STEP 1: A priori estimates. Consider the approximate problems:
Un €EWSLar(2), g(z,un, Vup) € LY(82), g(z,un, Vup)u, € L*(£2),

(3.8) (A(uy),v) + S g(x, un, Vup)vde = S fovde,
Q Q
Vo € WL (£2) N L($2),
where f,, is a sequence of smooth functions which converges strongly to f in
LY(£2). By Theorem 3.1 of [5], there exists at least one solution u,, of (3.8).
Taking v = T (uy,) as test function in (3.8) gives

S a(m, Unp, VUH)VTk(un) dx + S g(SC, Un, vun)Tk(un) dx = S fnTk(un) dx
(9} 2 2
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and by using the fact that g(z, up, Vu,)Ti(uy) > 0, we obtain
S a(z, up, Vi )Vu, dr < Ck.

{lun|<k}
Thanks to (3.3), one easily has
(3.9) a | M(|VTy(un)|/X) dx < Ck.
Q

On the other hand, thanks to Lemma 5.7 of [15], there exist two positive
constants ¢; and ¢y such that

(3.10) \ M(Ti(un)) do < e1 | M(co| VT (un)]) da.
2 (0]

By the Ag-condition there exist another two positive constants ¢} and c,
such that
Meat) <y + M(t/N)  for all t > 0.

We then deduce, by using (3.9) and (3.10), that

S M (Ty(uy)) dz < ¢ + 4k,

2
which implies

M (k)Ymeas{|u,| > k} < s + cjk

and finally
e+ ik

(3.11) meas{|u,| > k} < M)

Vn and Vk > 0.

We have, for every 6 > 0,
(3.12)  meas{|up, — um| > 0} < meas{|uy| > k} + meas{|u,,| > k}
+ meas{ | Ti(un) — Ty(um)] > 5}.
Since Ty (uy) is bounded in WLy (§2), there exists some v, € Wi Ly (£2)
such that
Ti(un) — v, weakly in Wy Ly () for o([] Las, [1 Exp)s
strongly in Ep(£2),
and almost everywhere in (2. Consequently, we can assume that Tj(u,) is a
Cauchy sequence in measure in 2.
Let € > 0. Then, by (3.11) and (3.12), there exists some k() > 0 such
that
meas{|u, — up| >0} <e¢
for all n,m > ng(k(e),d). This proves that (u,) is a Cauchy sequence in

measure, thus u, converges almost everywhere to some measurable func-
tion u.
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Finally, by Lemma 4.4 of [15], we obtain
Ti(un) — Ti(u)  weakly in Wy Ly (£2) for o([] Las, [1 Exp),
strongly in Enr(S2).

Let @ be an N-function such that M < ) and the continuous embedding
Wi L (2) C Eg(£2) holds (see [15]). Let & > 0. Then there exists C. > 0,
as in [6], such that
(3.13) la(z,5,¢)| < h(x) + Cc + k1 M 1Q(els|) + ks M M (£|¢])
for a.e. x € 2 and for all (s,¢) € R x RY. From (3.9) and (3.13) we deduce
that (a(x, Tx(un), VTk(un))n is bounded in (Lz7(£2))".

STEP 2: Almost everywhere convergence of the gradients. Fix r k>0
and define 2, = {z € 2 : |VT(u(z))| < r}. We denote by x, the charac-
teristic function of £2,. Consider now, as in [9],

In,r —
} 41a(a, Ti(wn), VTe(un) = ale, Tlun), VT()] [V Tx(1tn) = VTi(w))}? do
2
where 0 < 8 < 1. Let A, be the expression in braces above. Then for any
n >0,
I, = | AP da + | A? dz.
20| T (un) =T (w) | <n} £2:0{| Ty (un) —Tx (u)|>n}

From (3.13) we deduce that A, is bounded in L!'(£2) and by applying the

Holder inequality we obtain

(3.14) Iy < Cl{ { An dx}9

20 O{| T (un) =T (w) | <m}
+ Comeas{z : |Tj(un) — Tp(u)| > n}=0.
On the other hand, for any s > r we have
(3.15) | A, da
02| T (un) =T (w) | <n}
< | [a(2, Ti(un), VTk(un)) — a(a, Ti(un), VT3 (u)xs)]
{1 T (un) =T (w)|<n}

X [VTk(Un) - VTk(u)Xs)] dx

IN

| a(z, T (un), VT (un)) (VT (un) — VTk(u)xs) do
{ITx (wn) =T (w)] <1}

- | a(x, Ty (un), VTk(u)xs) (V Tk (un) — VT () xs) dv
{ITk (un) =T (u)|<n}
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= | a(@, T(un), VT () VT (T (un) — Ti(w)) da
02
+ | a(@, Te(un), VT (1n)) VT () X2\ 2, X{ T ()~ T () <} 0

(9}

- S a(:n, Tk(un)v VTk(u)Xs)(VTk(un) - VTk(u)Xs) dr.
(T (wn) =T (w) | <n}

The use of the test function T),(u, — T (u)) in (3.8) gives

(3.16)  (A(un), Ty(tn — Ti(w)) + | g(@, wn, Vuun) Ty (un — Tp(u) dz
2
< S fnTn(un - Tk(u) dx)
(9]
which implies
(3.17) (Aun), Ty (un — Ti(u))) < Cn.
Note that
(3.18)  (A(un), Ty (un — Ti(u)))

= S a(x, Ty (un), VT (un)) VI (T (un) — Tk (u)) dx
%
— | (@, Tesy(un), Visy (un))| |V Ti(w)] da.

|un|>k

We denote by €!(n) (i = 1,2,...) various sequences of real numbers
which tend to 0 as n — oo for n fixed.

The second term of the right hand side of (3.18) tends to zero since
(@, Ty (un), Vi (un)) is bounded in (L37(£2))" while X {4,553 | VT3 (1))
— 0 strongly in (Eps(£2))V. Consequently, from (3.17) and (3.18), we have

(3.19) | a(z, Tu(un), VT (un))VTy(Ti(tn) — Ti(u)) da < Cn + €7 (n).

Q
Since a(z, Tx(un), VT (un))X{|Ty (un)~Ti(u)|<n} 18 bounded in (L)Y it
follows that a(x, Tk (un), VTk(tn))X{|T5(un)—Ts (w)|<n} CONVerges to h weakly
in (Ly7(2))Y for o(T] L3z, [1 Em(£2)), for some h € (Lz7(£2))Y. We deduce
that the second term of the right hand side of (3.15) tends to

S hVTi(u)dxr asn — oo.
2\ 2

The third term of the right hand side of (3.15) tends to 0 since
a(@, Tk (un), VT (W) X)X Ty (un)—Tx (w)| <} CONVerges strongly to a(x, Ty (u),
VTi(u)xs) in Ey(2)Y by Lemma 2.3 while V7j(u,) tends weakly to
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VT (u) and
\ a(e, Th(u), VT3 (u)xs) [VTk(u) — VT (u)xs] da = 0.

2
Finally, from (3.15) and in view of (3.19) we have

L, <C (Cn +ed(n) + S VT (u)X 2\ 0, dfﬂ)e
0

+ Comeas{x : |Ti(upn) — Ti(u)| > 77}1797

which gives, by passing to the lim sup over n,

0
limsup I, < C(T] + S hV Ty (u)x o\ 2, da:) :
Q

n—00
Then by, letting s — oo and choosing 1 small enough, we obtain
lim [, =0
n—00
and so, as in [4],
(3.20) Vu, — Vu ae.in 2.

STEP 3: Strong convergence of M(|VTy(uy)|/p) in L' (£2) (i.e. modular
convergence of VT (uy) in (Lp(£2))). Now fix k > 0, and let

b(k)\ 2
v= (K %) , d(s) = sexp(vys?).
It is well known that

b(k 1
(3.21) #(5) - K X () > 1,
a 2
where K is a constant which will be used later.
Consider now the function h,,, m > 0, defined by

1 if [t| < m,
hm(t) = ¢ —(t/m)sgn(t) +2 if m <|t| < 2m,
0 if |t| > 2m.

Let vpm = hm(un)@(2n) with z, = Ti(uy,) — Ti(u). The use of v, ,, as test
function in (3.8) gives

(A(un), b (un)d(zn)) + S 9@, tn, Vg ) han (un ) 9(20) da
N

=\ folum (un)$(2n) da.
2

It follows that
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(3:22) | a(®, un, Vun)[VTk(un) — VT ()] (tn) ¢ (20) dov

Q
+ S a(z, un, Vun)Vuph, (un)¢(z,) dx
0
+ S 9(x, un, Vup) b (un) 9(2n) do < S Frnhm (un)P(2r) dz.
0 Q
Denote by €& (n),e2,(n), ... various sequences of real numbers which con-

verge to zero as n tends to infinity for any fixed value of m.
Since g(x, Upn, V) hm(un)P(2) > 0 on the subset {x € 2 : |uy(z)| > k},
we deduce from (3.22) that

(3:23) | a(x, un, Vun) [VTk(un) — VT ()] (un) ¢ (20) dov

02
+ S a(z, un, Vun)Vuphl (un)é(2,) dx
9]
+ | 9@ un, Vun) b (un)(zn) da < | b (un)é(20) dz = €, (n).
{Jun| <k} Q

The first term of the left hand side of (3.23) can be written as

(3:24) | a(w, un, Vun)[VT(un) — VTk ()] (tn) ¢ (20) dov
2
= S a(x, un, Vun)[VTk(un) — VT (w)]hm (un) @' (21,) dx
{lun|<k}
- S a(z, un, Vup ) VT () i (un) @' (2) da.
{lun|>k}
For the second term of the right hand side of (3.24), we have

Vo am, un, Vi) VT (1) i (1n) ¢ (2) dac
{lun|>k}
< Cy S la(z, Tom (un), VTam(un))| ‘VTk(u)|X{|Un|>k} dx
9]
where C), = ¢'(2k). The right hand side of the last inequality tends to 0
as n tends to infinity. Indeed, the sequence (a(x,Tom (un), VIom (un)))n is
bounded in (Ly;(£2))" while VT (u)x{jy, >k tends to 0 strongly in
(Ea ()N,
For the first term of the right hand side of (3.24), we can write
(3.25) S a(z, un, Vun) [V (un) — V()] hm (un) @' (2) dx

{lun|<k}

= S [a(m, Tk(un)7 VTk(un)) - a(a;, Tk(un)a VTk(u)Xs)]
2

X [VTx(un) — VTk(w)Xs)hm (un) @' (22,) d
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+ \ a(x, T (un), Vi (u)xs) [V Tk (un) — VTk(w)Xs)hm (un) @' (22) d

a x Tk Un VTk(un))VTk(u)X.Q\QShm(un)¢/(2n) dx.

L,{QL,

The second term of the right hand side of (3.25) tends to 0 since
a(z, Ty (un), VT (1) xs) him (un) @' (20) — a(a, Ti(u), VI (u)xs) hm(u)
strongly in (E7(2))"
by Lemma 2.3 and
VTi(up) — VTi(u)  weakly in (Ly(2))N for o(I] Las(2), [ E57(2)).
The third term of the right hand side of (3.25) tends to the quantity
—{p a(z, T (u), VTi(u) VTi(u)X 2\ 02, hm(u) dz as n — oo since
a(x, T (un), VTi(u)xs) = a(z, T(u), VIk(u)xs)
weakly for o(][ E57(£2), [ Lar(£2)).
Consequently, from (3.24) we have

(3.26)  { a(@, un, Vun) [VTi(un) — VT(w)] i () ¢ (20) daz
(9]

= S [CL(.%', Tk(“’n)ﬂ VTk<un)) - CL(Q?, Tk(un)v VTk(u)Xs)]
2

X [VTi(upn) — VT (w) x5 hm (un) @ (2) do

- S a(@, Tiy(w), V(1)) VT () x 0\ 0, o (1) da + €, ().
17}
On the other hand
‘ S a(z, up, Vun)Vuphl, (un)d(zn) dm‘
i)

20(2
< ¢ (2k) S a(z, Up, Vi)V, de

{m<|un|<2m}
and by using T}, (un, — T (uy,)) as test function in (3.8), we obtain
2 {lun|>m}

Thanks to the As-condition there exist two positive constants K and K’
such that

(3.28) M(t/u) < KM(t/)) + K',  Vt>0.

If we denote by Jy, ,, the third term of the left hand side of (3.23), then
(3.28) yields
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(329)  [Jaml < | (k) (c(@) + K"+ KM(|Vtn| /X)) i (tn)|$(20)| dz

{lun|<k}
< b(k) \(c(z) + K)|¢(2n)| d
(04
+K b(a—k) } (e, Ti(un), VT (1)) VT () i (1) |20 |
02
<)+ K bil—m Vla(e, Te(un), VTi(un)) = a(, Ti(un), VTi()xs)]
(0]

S [VTk(Un) - VTk(u)Xs]hm(un)|¢(Zn)| dx.
Indeed, we have

(3.30) S a(x, T (un), VI(un)) VT () b (un)|0(20)| d2
17

= S [CL(mv Tk(un)v VTk(un)) - a('% Tk(un)a VT]C(“’)XS)]

02
X [VTi(un) — VT (w)Xs)hm(un)|é(2n)| do
+ CL(:L’, Tk(un)7 VTk(un))VTk(u)Xshm(un)|¢(Zn)’ dx

CL(:L’, Tk(un)7 VTk(u)Xs)[VTk(un) - VTk(u)Xs]hm(un)’(b(zn)‘ dzx.
N

It is easy to see that the second term of the right hand side of (3.30)
tends to 0 as n tends to infinity, since (a(z, Tk (un), VIk(uy)))n is bounded
in (Ly7(£2))Y, and

VTi(u)Xshm(un)|¢(zn)] — 0 strongly in (Enr(£2))"
by Lebesgue’s theorem.

The third term of the right hand side of (3.30) also tends to 0 since
(3.31) a(z, T (un), VIk(w)xs)|¢(zn)| — 0 strongly in (Eg7(£2))™
by Lemma 2.3 while
(3.32) (VT (tun) — VTi(w)Xs)hm (un)  is bounded in (Lps(2))Y.
Combining (3.26) and (3.29) we obtain

Vla(@, Ti(un), VTi(un)) = ala, T (un), V() xs)]
’ X (VT (un) — VT (1) X har () (gb'(zn) -K @ \¢(zn)!> dx
< ep(n) — | ala, Ti(u), VTi(u) V(1) X\ @, T (1) dav
+ ¢(2k) ’ V[ falde,

{lun|zm}
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which implies, by (3.21),
S [a(m, Tk(un)7 ka(un)) - a(x, Tk(un)v VTIC(“’)XS)]

“ % [V Te(tn) — VT3 (1) xo) o (1) diz
< 2e5,(n) — 2 a(@, Ti(u), VI (1) VT () X\ @, Fom (1) dav
0
+4¢(2k) | |fulde.
{Jun|>m}
Hence
S a’(ajv Tk(un)v VTk(un))VTk(un)hm(un) dx
2

< Va(@, T(un), VTi(tn)) VT (u)xs do
2

+ S a(x, Ti(un), VTi(w)xs) [VTk(un) — VT (u)xs]hm(un) dx
2

+2ep,(n) = 2 | a(x, T(w), VTi(w) VTk(u)x 0\ 02, hon (u) da
2
+40(2k) | |fulde.
{lun|zm}
By passing to the lim sup over n, one has
(3.33)  limsup | a(x, T (un), VTk(tn)) VI (ttn) hn (1) daz

n—oo

0
< lim sup S CL(:L’, Tk(un)7 VTk(un))VTk(u)Xshm(un) dx

n—oo

Q
+ lim sup S a(x, Ty (un), VI(w)xs)[VTk(un) — VIg(w)Xs|hm(un) de

n—oo

2

-2 S a(x, Ty(u), VI (u)) VI (u)x o\ 0, hm (u) dz
Q

+49(2k) | |f]d.

{lu[zm}

The second term of the right hand side of (3.33) tends to 0, since
a(x, Ti(un), VIp(u)xs) — a(z, Tk(u), VI (u)xs) strongly in Eq7(f2) while
VT (uy) tends weakly to VT (u).

The first term of the right hand side of (3.33) tends to

S a($7 Tk(u)v VTk (u))VTk (U)Xshm(u) dx
0

since a(x, Tk (un), VIi(un))hm(un) — a(z, Ti(w), VI (w))hm(u) weakly in
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(L7(02))" for o(I[ L3z, [1 Eav) while VT (u)xs € En(§2). We deduce that

lim sup S a(x, Tp(u), VTp(u)) VT (uw)hy(u) de

n—00
2

< S a(x, Ty, (u), VI (u)) VT (uw)xshm(u) dz

(9]

=2 | a(x, Tho(u), VTk(u)) VT (1) X\ 2, hon (1) dz
(0]

+40(2k) | |fld.

{lu[zm}

Passing again to the limsup but now over m, and using the fact that
a(z, Ty (u), VI (u))VTi(u) € LY (2), f € LY(2) and hy,(u) — 1 as m — oo,
one easily obtains by Lebesgue’s theorem

lim sup lim sup S a(z, T (un), VT (un)) VT (un) b (uy) dz

m—00 n—oo 0

< Va(z, Te(u), VI3 (w) VT (u)xs da
(0]

— 2| a(x, Ti(u), VIi(u) V(1) x 0\ 0, da.
2

Using again the fact that a(z, Ty (u), VT (u))VTx(u) € LY(2) and letting
s — 0o we get, since meas(£2\(2;) — 0,

lim sup lim sup S a(z, T (un), VT (un)) VT (un) b (uy) dz

m—0o0 n—oo 0
< S a(x, T (u), VI (u))VTg(u) dz.
Q
On the other hand, by Fatou’s lemma,
| a(z, Th(w), VT () VT(u) dz
2
< limsuplim sup | a(x, Ty (un), VTi(tn))V Ti (1) i (un) d,

m—0o0 n—oo 0
which implies finally

(3.34)  limsuplimsup S a(x, T (un), VI (un)) VI () hm (uy) dz

m—oo  n—00
2

= [ ale, To(u), VIi(w) VTr(u) da.
(0]
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Taking now (1 — Ay, (un))Tk(uy) as test function in (3.8) we obtain

(A(un), (1 = hyn(un)) T (un)) + S 9(z, tn, Vn) (1 = hap (un)) Tk (un)) dz
9]

= | fu1 = P (1)) T ()
(9}

and thanks to the sign condition (3.4) we obtain

4)
(Alun), (1= hun (1)) Tio(wn)) < § fa(1 = hon (un)) T (un) dr,

02

and so
(3.35) | a(x, Te(un), VIk(un)) Vi (tn) (1 = i () da

2

< a0 = B (n) T () dze + | @@, 1, Vun) Vg, () T () .

0 2
Since
S a(z, un, Vun)Vuphl (un)Ti(uy) dz < Ld S a(x, Un, Vi) Vuy, dz
2 " (< un|<2m)

inequality (3.35) becomes
(3.36) S a(x, T (un), VIg(un)) VT (un) (1 — hp(uy)) dz

Q

S fn(1 un)) Tk (up) doe + Ll S a(z, upn, Vi) Vu, dz.

m
{m<|un|<2m}

By passing to the lim sup over n, one has

lim sup S a(x, Ti(un), VI (un)) VT (un) (1 — hp(uy)) dz

n—00
2

k
< S f(1 = hp(w)Tk(u) de + limsup — S a(x, Un, V) Vuy, dz.
17 n—oo MM {m<|un|<2m}
Passing again to the lim sup, but now over m, we obtain
(3.37)  limsuplimsup S a(x, Ti(un), VIg(un)) VT (un) (1 — hp(uy)) dz

m—00
2

k
< lim sup lim sup — S a(x, Up, V) Vu, dz.
On the other hand, since

1 S a(x, Up, V) Vuy, dr < S | ful dz

m
{m<|un|<2m} {lun|=m}
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one easily has
1
lim sup lim sup — S a(x, Up, Vi) Vu, de = 0.
e T g fug | <2m}

Hence, from (3.37) we deduce that
(3.38) limsup limsup S a(x, Ti(un), VIi(un)) VT (un)(1=hp (uy)) dz = 0.

m—oQ n—oo 0
Now, write
a(x, T (upn), VI (un)) VT (un)
= a(x, Tp(un), VT (un)) VT (un)hm (un)
+ a(z, T (un), VT (un)) VI (un)(1 = hp(uy)),
which gives, by (3.34) and (3.38),
lim sup lim sup S a(z, T (un), Vi (un)) VT (uy) dx

m—00 n—o0

n
< | a(z, Ti(u), VTi(w)) V(1) dz
9]
and so
(3.39)  limsup S a(x, Ty, (un), VI (upn)) VT (uy) dx
n—oo 0

< S a(z, T (u), VI (u))VTg(u) dz.
19
On the other hand, thanks to Fatou’s lemma, we have

S a(z, Tp(u), VI(u)) VT (u) dx
(]

n—o0

< liminf { a(x, T (un), Vi (un)) Vi (un) da.
(9]

Consequently, in view of (3.39), we obtain

(3.40) nh—>nc}o S a(x, Ty (up), VI (un)) VT (uy) de
9]

= S a(z, Tp(u), VI (u)) VT (u) d.
N
Thanks to (3.28) we have

M(IVTi(un)l /1) < K"+ KM (VT (un)|/A)
and then by using (3.40), one obtains, by Vitali’s theorem,
(341)  M(VTi(w)l/n) — M(VTk(w)l/p)  in L(9).
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STEP 4: Passage to the limit. By using Tj(u, — v) as test function in
(3.8), with v € WLy (2) N L®(£2), we get

(342) S a(m, Tk+\\v||oo (Un), VTk+||UHOO(un))VTk(un — ’U) dx
Q
+ S g(x, up, Vup) Ty (up —v) de = S Ty (up — v) d.
Q Q
By Fatou’s lemma and the fact that
a(, Thp o) oo (Un)s Vg oo (Un)) = a(®, Thp oo (W), Vg o)) (1)
weakly in (Lz7(£2))N for o(I] Lz, [[ Em) one easily sees that
(343) | a(@, Toppop (W), Vs o (@) V(1 — v) da
2

n—oo

S lim inf S a(x, Tk+||v||oo(un), VTk+“v||w(un))VTk(un — 1)) dx
9]

Our next purpose is to prove that
9(x, up, Vug) — g(2,u, Vu)  strongly in L'(£2).

In virtue of Vitali’s theorem, it is sufficient to prove that g(z,un,, Vuy,) is
equiintegrable in L!(§2). On the one hand, by taking T} (u, — Tj(u,)) as test
function in (3.8), we obtain

[l un Vua)lde < | |l de.

{lun|>1+1} {lunl>1}
Let £ > 0. Then there exists I(g) > 1 such that
(3.44) Vo 9@, un, V)| do < /2.
{lun|>1(e)}

For any measurable subset £ C {2, we have

V19(@,un, Vun) | dz < [ b((e)) (e(a) + M(IVTye) (un)|/p) da
E E
o 190 tn, V) de
{lunl>1(e)}
In view of (3.41) there exists n(e) > 0 such that

(345)  Jo(e)(e(@) + M(IVTye (un)l /1) du < ¢/2
E for all E such that |E| < n(e).
Finally, by combining (3.44) and (3.45) one easily has

S lg(z, un, Vuy)|de < e for all E such that |E| < n(e),
E
which allows us, by using (3.43), to pass to the limit in (3.42).
This completes the proof. =
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REMARK 3.3. We obtain the same result of our theorem if we replace
(3.1) by the general growth condition

(3.46) la(@, 5,¢)| < b(s)(h(z) + M~ M (k[C]))

where k > 0, h € Eg(2) and b : Ry — R is a continuous nondecreasing
function. Indeed, we consider the following approximate problems:

—div(a(z, Ty (un), Vuy)) + g(x, un, Vu,) = fr,  in D'(£2),
up € WELa(2),  g(z,un, Vuy,) € LY (02),  g(x,un, Vuy)u, € L1(02),

and we end the proof by using the same last steps.
For some results obtained in the LP case under the assumption (3.46),
we refer to [19] and [20].
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