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AN EXISTENCE THEOREM FOR A CLASS
OF ELLIPTIC PROBLEMS IN L1

Abstract. We prove an existence result for solutions of some class of
nonlinear elliptic problems having natural growth terms and L1 data.

1. Introduction. Let Ω be an open bounded subset of RN , N ≥ 2, with
the segment property, and let f ∈ L1(Ω). Consider the following nonlinear
Dirichlet problem:

(1.1) A(u) + g(x, u,∇u) = f

where A(u) = −div(a(x, u,∇u)) is a Leray–Lions operator defined on D(A)
⊂ W 1

0LM (Ω), with M an N -function which satisfies the ∆2-condition, and
g is a nonlinearity having “natural growth” and satisfies the classical “sign
condition” with respect to u.

In the variational case (i.e. where f ∈ W−1EM (Ω)), it is well known
that Gossez solved (1.1) in the case where g depends only on x and u. If g
does depend also on ∇u, an existence theorem has recently been proved by
Benkirane and Elmahi in [4] and [5].

In the case where f ∈ L1(Ω), they also give an existence result in [6] if
the nonlinearity g satisfies further the following coercivity condition:

(1.2) |g(x, s, ζ)| ≥ βM(|ζ|/µ) for |s| ≥ γ.
It is our purpose, in this paper, to prove an existence result for some class

of problems of the kind (1.1), without assuming the coercivity condition
(1.2). The technical method used here allows us not only to generalize the
result of [21], but also to give a different proof for it.
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For the classical variational case in Orlicz spaces, the reader is referred,
for example, to [3–5, 7, 15–18], and for some results in the Lp case, to [2,
10–14, 20, 21].

2. Preliminaries

2.1. Let M : R+ → R+ be an N -function, i.e. M is continuous, convex,
with M(t) > 0 for t > 0, M(t)/t → 0 as t → 0 and M(t)/t → ∞ as
t → ∞. Equivalently, M admits a representation M(t) =

� t
0 a(s) ds where

a : R+ → R+ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for
t > 0 and a(t) tends to ∞ as t→∞.

The N -function M conjugate to M is defined by M =
� t
0 a(s) ds, where

a : R+ → R+ is given by a(t) = sup{s : a(s) ≤ t} (see [1]).
The N -function M is said to satisfy the ∆2-condition, written M ∈ ∆2,

if for some k > 0,

(2.1) M(2t) ≤ kM(t), ∀t ≥ 0;

when (2.1) holds only for t ≥ some t0 > 0 then M is said to satisfy the
∆2-condition near infinity.

We will extend these N -functions to even functions on all R.
Let P and Q be two N -functions. P � Q means that P grows essentially

less rapidly than Q, i.e. for each ε > 0, P (t)/Q(εt) → 0 as t → ∞. This is
the case if and only if limt→∞Q−1(t)/P−1(t) = 0.

2.2. Let Ω be an open subset of RN . The Orlicz class KM (Ω) (resp.
the Orlicz space LM (Ω)) is defined as the set of (equivalence classes of)
real-valued measurable functions u on Ω such that�

Ω

M(u(x)) dx <∞ (resp.
�

Ω

M(u(x)/λ) dx <∞ for some λ > 0).

LM (Ω) is a Banach space under the norm

‖u‖M,Ω = inf
{
λ > 0 :

�

Ω

M(u(x)/λ) dx ≤ 1
}

and KM (Ω) is a convex subset of LM(Ω).
The closure in LM (Ω) of the set of bounded measurable functions with

compact support in Ω is denoted by EM (Ω).
The equality EM (Ω) = LM(Ω) holds if and only if M satisfies the ∆2-

condition, for all t or for t large, according to whether Ω has infinite measure
or not.

The dual of EM (Ω) can be identified with LM (Ω) by means of the pairing�
Ω uv dx, and the dual norm of LM (Ω) is equivalent to ‖ · ‖M,Ω . The space
LM (Ω) is reflexive if and only if M and M satisfy the ∆2-condition, for all
t or for t large, according to whether Ω has infinite measure or not.
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2.3. We now turn to the Orlicz–Sobolev space. W 1LM (Ω) [resp.
W 1EM (Ω)] is the space of all functions u such that u and its distribu-
tional derivatives up to order 1 lie in LM (Ω) [resp. EM (Ω)]. It is a Banach
space under the norm

‖u‖1,M =
∑

|α|≤1

‖Dαu‖M .

Thus, W 1LM(Ω) and W 1EM (Ω) can be identified with subspaces of the
product of N + 1 copies of LM (Ω). Denoting this product by

∏
LM , we will

use the weak topologies σ(
∏
LM ,

∏
EM ) and σ(

∏
LM ,

∏
LM ).

The space W 1
0EM (Ω) is defined as the (norm) closure of the Schwartz

space D(Ω) in W 1EM (Ω), and the space W 1
0LM(Ω) as the σ(

∏
LM ,

∏
EM )

closure of D(Ω) in W 1LM(Ω).
We say that un converges to u for the modular convergence in W 1LM (Ω)

if for some λ > 0,
�

Ω

M

(
Dαun −Dαu

λ

)
dx→ 0 for all |α| ≤ 1.

This implies convergence for σ(
∏
LM ,

∏
LM ). If M satisfies the ∆2-con-

dition on R+, then modular convergence coincides with norm convergence.

2.4. Let W−1LM (Ω) [resp. W−1EM (Ω)] denote the space of distribu-
tions on Ω which can be written as sums of derivatives of order ≤ 1 of
functions in LM [resp. EM (Ω)]. It is a Banach space under the usual quo-
tient norm.

If the open set Ω has the segment property then the space D(Ω) is
dense in W 1

0LM (Ω) for the modular convergence and thus for the topology
σ(
∏
LM ,

∏
LM ) (cf. [15, 16]). Consequently, the action of a distribution in

W−1LM(Ω) on an element of W 1
0LM(Ω) is well defined.

2.5. We recall some lemmas introduced in [5] which will be used in this
paper.

Lemma 2.1. Let F : R → R be uniformly Lipschitzian, with F (0) = 0.
Let M be an N -function and let u ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Then
F (u) ∈W 1LM (Ω) (resp. W 1EM (Ω)). Moreover , if the set D of discontinu-
ity points of F ′ is finite, then

∂

∂xi
F (u) =

{
F ′(u) ∂

∂xi
u a.e. in {x ∈ Ω : u(x) 6∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.
Lemma 2.2. Let F : R → R be uniformly Lipschitzian with F (0) = 0.

Suppose that the set of discontinuity points of F ′ is finite. Let M be an
N -function. Then the mapping F : W 1LM(Ω)→W 1LM (Ω) is sequentially
continuous with respect to the weak* topology σ(

∏
LM ,

∏
EM ).
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2.6. We now give the following lemma which concerns operators of the
Nemytskĭı type in Orlicz spaces (see [5]).

Lemma 2.3. Let Ω be an open subset of RN with finite measure. Let
M,P and Q be N -functions such that Q� P , and let f : Ω × R→ R be a
Carathéodory function such that for a.e. x ∈ Ω and all s ∈ R,

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskĭı op-
erator Nf defined by Nf (u)(x) = f(x, u(x)) is strongly continuous from
P(EM (Ω), 1/k2) = {u ∈ LM (Ω) : d(u,EM (Ω)) < 1/k2} into EQ(Ω).

3. The main result. Let Ω be an open bounded subset of RN , N ≥ 2,
with the segment property.

Let M be an N -function satisfying the ∆2-condition near infinity and
let P be an N -function such that P � M . Let A(u) = −div(a(x, u,∇u))
be a Leray–Lions operator defined on D(A) ⊂ W 1

0LM (Ω) into W−1LM (Ω)
where a : Ω × R× RN → RN is a Carathéodory function such that for a.e.
x ∈ Ω and for all ζ, ζ ′ ∈ RN (ζ 6= ζ ′) and all s ∈ R,

|a(x, s, ζ)| ≤ h(x) + k1P
−1M(k2|s|) + k3M

−1M(k4|ζ|),(3.1)

(a(x, s, ζ)− a(x, s, ζ ′))(ζ − ζ ′) > 0,(3.2)

a(x, s, ζ)ζ ≥ αM(|ζ|/λ),(3.3)

with α, λ > 0, k1, k2, k3, k4 ≥ 0, h ∈ EM (Ω).
Furthermore let g : Ω × R × RN → R be a Carathéodory function such

that for a.e. x ∈ Ω and for all s ∈ R and all ζ ∈ RN ,

g(x, s, ζ)s ≥ 0,(3.4)

|g(x, s, ζ)| ≤ b(|s|)(c(x) +M(|ζ|/µ)),(3.5)

where b : R+ → R is a continuous nondecreasing function, c is a given
nonnegative function in L1(Ω), and µ > 0. Finally, we assume that

(3.6) f ∈ L1(Ω).

Consider the following Dirichlet problem:

(3.7) A(u) + g(x, u,∇u) = f in Ω.

We define T 1,M
0 (Ω) to be the set of measurable functions u : Ω → R such

that Tk(u) ∈W 1
0LM (Ω), where

Tk(s) = max(−k,min(k, s)) for s ∈ R and k ≥ 0.

We shall prove the following existence theorem.
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Theorem 3.1. Assume that (3.1)–(3.6) hold true. Then there exists at
least one solution of (3.7) in the following sense:

(P)





u ∈ T 1,M
0 (Ω), g(x, u,∇u) ∈ L1(Ω),�

Ω

a(x, u,∇u)∇Tk(u− v) dx+
�

Ω

g(x, u,∇u)Tk(u− v) dx

≤
�

Ω

fTk(u− v) dx, ∀v ∈W 1
0LM (Ω) ∩ L∞(Ω), ∀k > 0.

Remark 3.1. Our result covers the critical case M(t) = |t| log(1 + |t|)
which satisfies the ∆2-condition but M 6∈ ∆2.

If M(t) = |t|p/p, we obtain the result given in [21].

Remark 3.2. If u is a solution of (P) such that a(x, u,∇u) ∈ L1(Ω),
then it is also a solution of (3.7) in the distributional sense. This is the case,
for example, if we take a(x, s, ζ) = a(x, s)|ζ|p−2ζ logβ(1 + |ζ|) with a(x, s) a
Carathéodory function satisfying

α ≤ a(x, s) ≤ γ for a.e. x ∈ Ω and all s ∈ R
where α, β, γ > 0. Indeed, by choosing 0 < ε < 1

β
p−1
N−1 , it is easy to see that

there exists Cε > 0 such that

logβ(1 + |ζ|) ≤ Cε|ζ|βε for |ζ| large enough,

and so that
�

Ω

|a(x, u,∇u)| dx ≤ γCε
�

Ω

|∇u|p−1+βε dx+ C.

In view of the fact that p− 1 + βε < N(p− 1)/(N − 1) one easily sees that
a(x, u,∇u) ∈ L1(Ω).

Proof of Theorem 3.1

Step 1: A priori estimates. Consider the approximate problems:

(3.8)





un∈W 1
0LM (Ω), g(x, un,∇un)∈L1(Ω), g(x, un,∇un)un∈L1(Ω),

〈A(un), v〉+
�

Ω

g(x, un,∇un)v dx =
�

Ω

fnv dx,

∀v ∈W 1
0LM (Ω) ∩ L∞(Ω),

where fn is a sequence of smooth functions which converges strongly to f in
L1(Ω). By Theorem 3.1 of [5], there exists at least one solution un of (3.8).
Taking v = Tk(un) as test function in (3.8) gives

�

Ω

a(x, un,∇un)∇Tk(un) dx+
�

Ω

g(x, un,∇un)Tk(un) dx =
�

Ω

fnTk(un) dx
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and by using the fact that g(x, un,∇un)Tk(un) ≥ 0, we obtain
�

{|un|≤k}
a(x, un,∇un)∇un dx ≤ Ck.

Thanks to (3.3), one easily has

(3.9) α
�

Ω

M(|∇Tk(un)|/λ) dx ≤ Ck.

On the other hand, thanks to Lemma 5.7 of [15], there exist two positive
constants c1 and c2 such that

(3.10)
�

Ω

M(Tk(un)) dx ≤ c1

�

Ω

M(c2|∇Tk(un)|) dx.

By the ∆2-condition there exist another two positive constants c′1 and c′2
such that

M(c2t) ≤ c′1 + c′2M(t/λ) for all t ≥ 0.

We then deduce, by using (3.9) and (3.10), that
�

Ω

M(Tk(un)) dx ≤ c′3 + c′4k,

which implies
M(k)meas{|un| > k} ≤ c′3 + c′4k

and finally

(3.11) meas{|un| > k} ≤ c′3 + c′4k
M(k)

, ∀n and ∀k > 0.

We have, for every δ > 0,

meas{|un − um| > δ} ≤ meas{|un| > k}+ meas{|um| > k}(3.12)

+ meas{|Tk(un)− Tk(um)| > δ}.
Since Tk(un) is bounded in W 1

0LM (Ω), there exists some vk ∈ W 1
0LM (Ω)

such that
Tk(un) ⇀ vk weakly in W 1

0LM (Ω) for σ(
∏
LM ,

∏
EM ),

strongly in EM (Ω),

and almost everywhere in Ω. Consequently, we can assume that Tk(un) is a
Cauchy sequence in measure in Ω.

Let ε > 0. Then, by (3.11) and (3.12), there exists some k(ε) > 0 such
that

meas{|un − um| > δ} ≤ ε
for all n,m ≥ n0(k(ε), δ). This proves that (un) is a Cauchy sequence in
measure, thus un converges almost everywhere to some measurable func-
tion u.
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Finally, by Lemma 4.4 of [15], we obtain

Tk(un) ⇀ Tk(u) weakly in W 1
0LM (Ω) for σ(

∏
LM ,

∏
EM ),

strongly in EM (Ω).

Let Q be an N -function such that M � Q and the continuous embedding
W 1

0LM (Ω) ⊂ EQ(Ω) holds (see [15]). Let ε > 0. Then there exists Cε > 0,
as in [6], such that

(3.13) |a(x, s, ζ)| ≤ h(x) + Cε + k1M
−1Q(ε|s|) + k3M

−1M(ε|ζ|)
for a.e. x ∈ Ω and for all (s, ζ) ∈ R×RN . From (3.9) and (3.13) we deduce
that (a(x, Tk(un),∇Tk(un))n is bounded in (LM (Ω))N .

Step 2: Almost everywhere convergence of the gradients. Fix r, k > 0
and define Ωr = {x ∈ Ω : |∇Tk(u(x))| ≤ r}. We denote by χr the charac-
teristic function of Ωr. Consider now, as in [9],

In,r =
�

Ωr

{[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)−∇Tk(u)]}θ dx

where 0 < θ < 1. Let An be the expression in braces above. Then for any
η > 0,

In,r =
�

Ωr∩{|Tk(un)−Tk(u)|≤η}
Aθn dx+

�

Ωr∩{|Tk(un)−Tk(u)|>η}
Aθn dx.

From (3.13) we deduce that An is bounded in L1(Ω) and by applying the
Hölder inequality we obtain

In,r ≤ C1

{ �

Ωr∩{|Tk(un)−Tk(u)|≤η}
An dx

}θ
(3.14)

+ C2 meas{x : |Tk(un)− Tk(u)| > η}1−θ.
On the other hand, for any s ≥ r we have

(3.15)
�

Ωr∩{|Tk(un)−Tk(u)|≤η}
An dx

≤
�

{|Tk(un)−Tk(u)|≤η}
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs)] dx

≤
�

{|Tk(un)−Tk(u)|≤η}
a(x, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(u)χs) dx

−
�

{|Tk(un)−Tk(u)|≤η}
a(x, Tk(un),∇Tk(u)χs)(∇Tk(un)−∇Tk(u)χs) dx
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=
�

Ω

a(x, Tk(un),∇Tk(un))∇Tη(Tk(un)− Tk(u)) dx

+
�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(u)χΩ\Ωsχ{|Tk(un)−Tk(u)|≤η} dx

−
�

{|Tk(un)−Tk(u)|≤η}
a(x, Tk(un),∇Tk(u)χs)(∇Tk(un)−∇Tk(u)χs) dx.

The use of the test function Tη(un − Tk(u)) in (3.8) gives

(3.16) 〈A(un), Tη(un − Tk(u))〉+
�

Ω

g(x, un,∇un)Tη(un − Tk(u) dx

≤
�

Ω

fnTη(un − Tk(u) dx,

which implies

(3.17) 〈A(un), Tη(un − Tk(u))〉 ≤ Cη.
Note that

(3.18) 〈A(un), Tη(un − Tk(u))〉
≥

�

Ω

a(x, Tk(un),∇Tk(un))∇Tη(Tk(un)− Tk(u)) dx

−
�

|un|>k
|a(x, Tk+η(un),∇Tk+η(un))| |∇Tk(u)| dx.

We denote by εηi (n) (i = 1, 2, . . .) various sequences of real numbers
which tend to 0 as n→∞ for η fixed.

The second term of the right hand side of (3.18) tends to zero since
a(x, Tk+η(un),∇Tk+η(un)) is bounded in (LM (Ω))N while χ{|un|>k}|∇Tk(u)|
→ 0 strongly in (EM(Ω))N . Consequently, from (3.17) and (3.18), we have

(3.19)
�

Ω

a(x, Tk(un),∇Tk(un))∇Tη(Tk(un)− Tk(u)) dx ≤ Cη + εη1(n).

Since a(x, Tk(un),∇Tk(un))χ{|Tk(un)−Tk(u)|≤η} is bounded in (LM (Ω))N it
follows that a(x, Tk(un),∇Tk(un))χ{|Tk(un)−Tk(u)|≤η} converges to h weakly
in (LM (Ω))N for σ(

∏
LM ,

∏
EM (Ω)), for some h ∈ (LM (Ω))N . We deduce

that the second term of the right hand side of (3.15) tends to
�

Ω\Ωs
h∇Tk(u) dx as n→∞.

The third term of the right hand side of (3.15) tends to 0 since
a(x, Tk(un),∇Tk(u)χs)χ{|Tk(un)−Tk(u)|≤η} converges strongly to a(x, Tk(u),
∇Tk(u)χs) in EM (Ω)N by Lemma 2.3 while ∇Tk(un) tends weakly to
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∇Tk(u) and
�

Ω

a(x, Tk(u),∇Tk(u)χs)[∇Tk(u)−∇Tk(u)χs] dx = 0.

Finally, from (3.15) and in view of (3.19) we have

In,r ≤ C1

(
Cη + εη2(n) +

�

Ω

h∇Tk(u)χΩ\Ωs dx
)θ

+ C2 meas{x : |Tk(un)− Tk(u)| > η}1−θ,
which gives, by passing to the lim sup over n,

lim sup
n→∞

In,r ≤ C
(
η +

�

Ω

h∇Tk(u)χΩ\Ωs dx
)θ
.

Then by, letting s→∞ and choosing η small enough, we obtain

lim
n→∞

In,r = 0

and so, as in [4],

(3.20) ∇un →∇u a.e. in Ω.

Step 3: Strong convergence of M(|∇Tk(un)|/µ) in L1(Ω) (i.e. modular
convergence of ∇Tk(un) in (LM(Ω))N ). Now fix k > 0, and let

γ =
(
K
b(k)
2α

)2

, φ(s) = s exp(γs2).

It is well known that

(3.21) φ′(s)−K b(k)
α
|φ(s)| ≥ 1

2
, ∀s ∈ R,

where K is a constant which will be used later.
Consider now the function hm,m > 0, defined by

hm(t) =





1 if |t| ≤ m,
−(t/m) sgn(t) + 2 if m ≤ |t| ≤ 2m,
0 if |t| > 2m.

Let vn,m = hm(un)φ(zn) with zn = Tk(un)− Tk(u). The use of vn,m as test
function in (3.8) gives

〈A(un), hm(un)φ(zn)〉+
�

Ω

g(x, un,∇un)hm(un)φ(zn) dx

=
�

Ω

fnhm(un)φ(zn) dx.

It follows that
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(3.22)
�

Ω

a(x, un,∇un)[∇Tk(un)−∇Tk(u)]hm(un)φ′(zn) dx

+
�

Ω

a(x, un,∇un)∇unh′m(un)φ(zn) dx

+
�

Ω

g(x, un,∇un)hm(un)φ(zn) dx ≤
�

Ω

fnhm(un)φ(zn) dx.

Denote by ε1
m(n), ε2

m(n), . . . various sequences of real numbers which con-
verge to zero as n tends to infinity for any fixed value of m.

Since g(x, un,∇un)hm(un)φ(zn) ≥ 0 on the subset {x ∈ Ω : |un(x)| > k},
we deduce from (3.22) that

(3.23)
�

Ω

a(x, un,∇un)[∇Tk(un)−∇Tk(u)]hm(un)φ′(zn) dx

+
�

Ω

a(x, un,∇un)∇unh′m(un)φ(zn) dx

+
�

{|un|≤k}
g(x, un,∇un)hm(un)φ(zn) dx ≤

�

Ω

fnhm(un)φ(zn) dx = ε1
m(n).

The first term of the left hand side of (3.23) can be written as

(3.24)
�

Ω

a(x, un,∇un)[∇Tk(un)−∇Tk(u)]hm(un)φ′(zn) dx

=
�

{|un|≤k}
a(x, un,∇un)[∇Tk(un)−∇Tk(u)]hm(un)φ′(zn) dx

−
�

{|un|>k}
a(x, un,∇un)∇Tk(u)hm(un)φ′(zn) dx.

For the second term of the right hand side of (3.24), we have∣∣∣
�

{|un|>k}
a(x, un,∇un)∇Tk(u)hm(un)φ′(zn) dx

∣∣∣

≤ Ck
�

Ω

|a(x, T2m(un),∇T2m(un))| |∇Tk(u)|χ{|un|>k} dx

where Ck = φ′(2k). The right hand side of the last inequality tends to 0
as n tends to infinity. Indeed, the sequence (a(x, T2m(un),∇T2m(un)))n is
bounded in (LM (Ω))N while ∇Tk(u)χ{|un|>k} tends to 0 strongly in
(EM (Ω))N .

For the first term of the right hand side of (3.24), we can write

(3.25)
�

{|un|≤k}
a(x, un,∇un)[∇Tk(un)−∇Tk(u)]hm(un)φ′(zn) dx

=
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un)φ′(zn) dx
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+
�

Ω

a(x, Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]hm(un)φ′(zn) dx

−
�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(u)χΩ\Ωshm(un)φ′(zn) dx.

The second term of the right hand side of (3.25) tends to 0 since

a(x, Tk(un),∇Tk(u)χs)hm(un)φ′(zn)→ a(x, Tk(u),∇Tk(u)χs)hm(u)

strongly in (EM (Ω))N

by Lemma 2.3 and

∇Tk(un) ⇀ ∇Tk(u) weakly in (LM(Ω))N for σ(
∏
LM (Ω),

∏
EM (Ω)).

The third term of the right hand side of (3.25) tends to the quantity
−

�
Ω a(x, Tk(u), ∇Tk(u))∇Tk(u)χΩ\Ωshm(u) dx as n→∞ since

a(x, Tk(un),∇Tk(u)χs) ⇀ a(x, Tk(u),∇Tk(u)χs)

weakly for σ(
∏
EM (Ω),

∏
LM (Ω)).

Consequently, from (3.24) we have

(3.26)
�

Ω

a(x, un,∇un)[∇Tk(un)−∇Tk(u)]hm(un)φ′(zn) dx

=
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un)φ′(zn) dx

−
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωshm(u) dx+ ε2
m(n).

On the other hand∣∣∣
�

Ω

a(x, un,∇un)∇unh′m(un)φ(zn) dx
∣∣∣

≤ 2φ(2k)
m

�

{m≤|un|≤2m}
a(x, un,∇un)∇un dx

and by using Tm(un − Tm(un)) as test function in (3.8), we obtain

(3.27)
∣∣∣

�

Ω

a(x, un,∇un)∇unh′m(un)φ(zn) dx
∣∣∣ ≤ 2φ(2k)

�

{|un|≥m}
|fn| dx.

Thanks to the ∆2-condition there exist two positive constants K and K ′

such that

(3.28) M(t/µ) ≤ KM(t/λ) +K ′, ∀t ≥ 0.

If we denote by Jn,m the third term of the left hand side of (3.23), then
(3.28) yields
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(3.29) |Jn,m| ≤
�

{|un|≤k}
b(k)(c(x) +K ′ +KM(|∇un|/λ))hm(un)|φ(zn)| dx

≤ b(k)
�

Ω

(c(x) +K ′)|φ(zn)| dx

+K
b(k)
α

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un)|φ(zn)| dx

≤ ε3
m(n) +K

b(k)
α

�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un)|φ(zn)| dx.
Indeed, we have

(3.30)
�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un)|φ(zn)| dx

=
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un)|φ(zn)| dx
+

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(u)χshm(un)|φ(zn)| dx

+
�

Ω

a(x, Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]hm(un)|φ(zn)| dx.

It is easy to see that the second term of the right hand side of (3.30)
tends to 0 as n tends to infinity, since (a(x, Tk(un),∇Tk(un)))n is bounded
in (LM (Ω))N , and

∇Tk(u)χshm(un)|φ(zn)| → 0 strongly in (EM(Ω))N

by Lebesgue’s theorem.
The third term of the right hand side of (3.30) also tends to 0 since

(3.31) a(x, Tk(un),∇Tk(u)χs)|φ(zn)| → 0 strongly in (EM (Ω))N

by Lemma 2.3 while

(3.32) [∇Tk(un)−∇Tk(u)χs]hm(un) is bounded in (LM(Ω))N .

Combining (3.26) and (3.29) we obtain
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un)
(
φ′(zn)−K b(k)

α
|φ(zn)|

)
dx

≤ ε4
m(n)−

�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωshm(u) dx

+ φ(2k)
�

{|un|≥m}
|fn| dx,
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which implies, by (3.21),
�

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un) dx

≤ 2ε4
m(n)− 2

�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωshm(u) dx

+ 4φ(2k)
�

{|un|≥m}
|fn| dx.

Hence�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un) dx

≤
�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(u)χs dx

+
�

Ω

a(x, Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]hm(un) dx

+ 2ε4
m(n)− 2

�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωshm(u) dx

+ 4φ(2k)
�

{|un|≥m}
|fn| dx.

By passing to the lim sup over n, one has

(3.33) lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un) dx

≤ lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(u)χshm(un) dx

+ lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]hm(un) dx

− 2
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωshm(u) dx

+ 4φ(2k)
�

{|u|≥m}
|f | dx.

The second term of the right hand side of (3.33) tends to 0, since
a(x, Tk(un),∇Tk(u)χs) → a(x, Tk(u),∇Tk(u)χs) strongly in EM (Ω) while
∇Tk(un) tends weakly to ∇Tk(u).

The first term of the right hand side of (3.33) tends to
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χshm(u) dx

since a(x, Tk(un),∇Tk(un))hm(un) ⇀ a(x, Tk(u),∇Tk(u))hm(u) weakly in
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(LM(Ω))N for σ(
∏
LM ,

∏
EM ) while ∇Tk(u)χs ∈ EM (Ω). We deduce that

lim sup
n→∞

�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)hm(u) dx

≤
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χshm(u) dx

− 2
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωshm(u) dx

+ 4φ(2k)
�

{|u|≥m}
|f | dx.

Passing again to the lim sup but now over m, and using the fact that
a(x, Tk(u),∇Tk(u))∇Tk(u) ∈ L1(Ω), f ∈ L1(Ω) and hm(u)→ 1 as m→∞,
one easily obtains by Lebesgue’s theorem

lim sup
m→∞

lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un) dx

≤
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χs dx

− 2
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωs dx.

Using again the fact that a(x, Tk(u),∇Tk(u))∇Tk(u) ∈ L1(Ω) and letting
s→∞ we get, since meas(Ω\Ωs)→ 0,

lim sup
m→∞

lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un) dx

≤
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u) dx.

On the other hand, by Fatou’s lemma,
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u) dx

≤ lim sup
m→∞

lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un) dx,

which implies finally

(3.34) lim sup
m→∞

lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un) dx

=
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u) dx.
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Taking now (1− hm(un))Tk(un) as test function in (3.8) we obtain

〈A(un), (1− hm(un))Tk(un)〉+
�

Ω

g(x, un,∇un)(1− hm(un))Tk(un)) dx

=
�

Ω

fn(1− hm(un))Tk(un) dx

and thanks to the sign condition (3.4) we obtain

〈A(un), (1− hm(un))Tk(un)〉 ≤
�

Ω

fn(1− hm(un))Tk(un) dx,

and so

(3.35)
�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)(1− hm(un)) dx

≤
�

Ω

fn(1− hm(un))Tk(un) dx+
�

Ω

a(x, un,∇un)∇unh′m(un)Tk(un) dx.

Since
�

Ω

a(x, un,∇un)∇unh′m(un)Tk(un) dx ≤ k

m

�

{m≤|un|≤2m}
a(x, un,∇un)∇un dx

inequality (3.35) becomes

(3.36)
�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)(1− hm(un)) dx

≤
�

Ω

fn(1− hm(un))Tk(un) dx+
k

m

�

{m≤|un|≤2m}
a(x, un,∇un)∇un dx.

By passing to the lim sup over n, one has

lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)(1− hm(un)) dx

≤
�

Ω

f(1− hm(u))Tk(u) dx+ lim sup
n→∞

k

m

�

{m≤|un|≤2m}
a(x, un,∇un)∇un dx.

Passing again to the lim sup, but now over m, we obtain

(3.37) lim sup
m→∞

lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)(1− hm(un)) dx

≤ lim sup
m→∞

lim sup
n→∞

k

m

�

{m≤|un|≤2m}
a(x, un,∇un)∇un dx.

On the other hand, since
1
m

�

{m≤|un|≤2m}
a(x, un,∇un)∇un dx ≤

�

{|un|≥m}
|fn| dx
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one easily has

lim sup
m→∞

lim sup
n→∞

1
m

�

{m≤|un|≤2m}
a(x, un,∇un)∇un dx = 0.

Hence, from (3.37) we deduce that

(3.38) lim sup
m→∞

lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un)(1−hm(un)) dx = 0.

Now, write

a(x, Tk(un),∇Tk(un))∇Tk(un)

= a(x, Tk(un),∇Tk(un))∇Tk(un)hm(un)

+ a(x, Tk(un),∇Tk(un))∇Tk(un)(1− hm(un)),

which gives, by (3.34) and (3.38),

lim sup
m→∞

lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un) dx

≤
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u) dx

and so

(3.39) lim sup
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un) dx

≤
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u) dx.

On the other hand, thanks to Fatou’s lemma, we have
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u) dx

≤ lim inf
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un) dx.

Consequently, in view of (3.39), we obtain

(3.40) lim
n→∞

�

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un) dx

=
�

Ω

a(x, Tk(u),∇Tk(u))∇Tk(u) dx.

Thanks to (3.28) we have

M(|∇Tk(un)|/µ) ≤ K ′ +KM(|∇Tk(un)|/λ)

and then by using (3.40), one obtains, by Vitali’s theorem,

(3.41) M(|∇Tk(un)|/µ)→M(|∇Tk(u)|/µ) in L1(Ω).
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Step 4: Passage to the limit. By using Tk(un − v) as test function in
(3.8), with v ∈W 1

0LM(Ω) ∩ L∞(Ω), we get

(3.42)
�

Ω

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇Tk(un − v) dx

+
�

Ω

g(x, un,∇un)Tk(un − v) dx =
�

Ω

fnTk(un − v) dx.

By Fatou’s lemma and the fact that

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un)) ⇀ a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))

weakly in (LM (Ω))N for σ(
∏
LM ,

∏
EM ) one easily sees that

(3.43)
�

Ω

a(x, Tk+‖v‖∞(u),∇Tk+‖v‖∞(u))∇Tk(u− v) dx

≤ lim inf
n→∞

�

Ω

a(x, Tk+‖v‖∞(un),∇Tk+‖v‖∞(un))∇Tk(un − v) dx

Our next purpose is to prove that

g(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω).

In virtue of Vitali’s theorem, it is sufficient to prove that g(x, un,∇un) is
equiintegrable in L1(Ω). On the one hand, by taking T1(un−Tl(un)) as test
function in (3.8), we obtain

�

{|un|>l+1}
|g(x, un,∇un)| dx ≤

�

{|un|>l}
|fn| dx.

Let ε > 0. Then there exists l(ε) ≥ 1 such that

(3.44)
�

{|un|>l(ε)}
|g(x, un,∇un)| dx < ε/2.

For any measurable subset E ⊂ Ω, we have
�

E

|g(x, un,∇un)| dx ≤
�

E

b(l(ε))(c(x) +M(|∇Tl(ε)(un)|/µ)) dx

+
�

{|un|>l(ε)}
|g(x, un,∇un)| dx.

In view of (3.41) there exists η(ε) > 0 such that

(3.45)
�

E

b(l(ε))(c(x) +M(|∇Tl(ε)(un)|/µ)) dx < ε/2

for all E such that |E| < η(ε).

Finally, by combining (3.44) and (3.45) one easily has
�

E

|g(x, un,∇un)| dx < ε for all E such that |E| < η(ε),

which allows us, by using (3.43), to pass to the limit in (3.42).
This completes the proof.
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Remark 3.3. We obtain the same result of our theorem if we replace
(3.1) by the general growth condition

(3.46) |a(x, s, ζ)| ≤ b(s)(h(x) +M−1M(k|ζ|))
where k ≥ 0, h ∈ EM (Ω) and b : R+ → R is a continuous nondecreasing
function. Indeed, we consider the following approximate problems:{
−div(a(x, Tn(un),∇un)) + g(x, un,∇un) = fn in D′(Ω),
un ∈W 1

0LM (Ω), g(x, un,∇un) ∈ L1(Ω), g(x, un,∇un)un ∈ L1(Ω),

and we end the proof by using the same last steps.
For some results obtained in the Lp case under the assumption (3.46),

we refer to [19] and [20].
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