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LOCAL CONVERGENCE THEOREMS FOR
NEWTON’S METHOD FROM
DATA AT ONE POINT

Abstract. We provide local convergence theorems for the convergence of
Newton’s method to a solution of an equation in a Banach space utilizing
only information at one point. It turns out that for analytic operators the
convergence radius for Newton’s method is enlarged compared with earlier
results. A numerical example is also provided that compares our results
favorably with earlier ones.

1. Introduction. In this study, we are concerned with the problem of
approximating a solution z* of an equation

(1) F(x) =0,

where F' is sufficiently many times Fréchet-differentiable on an open, convex
subset D of a Banach space X, with values in a Banach space Y.
Newton’s method

(2) Tpy1 = xp — F'(x,) ' F(z,) (n>0, 29 € D)

has been used to generate a sequence converging to x*. There is an extensive
literature on local and semilocal convergence theorems for Newton’s method.
We refer the reader to [1]-[9] and the references there for such results.
Here we introduce some local results for Newton’s method, which enable
us to obtain a convergence radius larger than in earlier results [5], [7]-[10].
That is, we obtain a wider range of initial choices x¢ than it was possible be-
fore. This information is important and also finds applications in step length
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selection in predictor—corrector continuation procedures [4], [5], [7]-[10]. See
also Remark 5 for other applications.

At the end of the study we provide a numerical example to show that
indeed our results can provide a larger convergence radius than before.

2. Convergence analysis. We state the following local convergence
theorem for Newton’s method:

THEOREM 1. Let F : D C X — Y be twice Fréchet-differentiable. As-
sume:

(a) there exists a simple zero x* € D of F
(b) there exists a constant ¢ > 0 such that

(3) IF" (") F" ()] < € (2 € D);
(¢)
(4) U<x*,r1:%>:{m€XHx—a:*]ﬁrl}gD.

Then Newton’s method {z,} (n > 0) generated by (2) is well defined,
remains in U(z*,r1) for all n > 0, and converges to x* provided that
xg € U(x*,r1). Moreover, the following error bounds hold for all n > 0:

l
1=ty — ]
Proof. 1t follows from (3) that there exists Dy C D such that F’ is
£-Lipschitz on Dy, i.e.,
(6) |F'(a) " E () = F'(]| < Lllz =yl (= € Do).
Without loss of generality we can assume Dy = D. The rest of the theorem
follows exactly as in [9]. m

[

) i =l < g7

REMARK 1. In order for us to replace £ in Lipschitz conditions or as a
bound on Fréchet derivatives in convergence theorems for Newton’s method,
assume F' is analytic on D, set

1 1/(k—1)
(7) v(@) = sup || - F'(z) ' F®) () (z € D),
k>1 .
and
(8) v =y(x").

Moreover, assume that
U(x*,r/v) €D, rel0,1/7).
Then, for all z € U(z*,r),i=1,2,..., we get
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It follows from (6) that ¢ can be replaced by d2 (v # 0). In this case the
convergence condition is

(10 < L0
< 3y
which becomes
(11) 23 -322462-1<0, z=ry.

Solving (11) we finally deduce that Newton’s method converges, provided
that

zo € U(z*,m3) C D,

where

182269
(12) To =
Y

(v #0).
Hence, we showed:

THEOREM 2. Let F': D C X — Y be analytic, x* be as in Theorem 1,
~v and 19 as defined by (8) and (12) respectively. Moreover, assume:

(13) r2 € (0,1/7),
(14) X € U(CEO,Tg),
(15) [7(3)0,7"2) - D.

Then the conclusions of Theorem 1 for Newton’s method hold with 6o and
ro replacing £ and r1 respectively.

The following local convergence theorem was essentially proved, e.g., [2]

or [3].

THEOREM 3. Let F': D C X — Y be an (m + 1)-times (m > 2, an
integer) Fréchet-differentiable operator and x* be as in Theorem 1. Assume
that there exist nonnegative constants o, j = 2,...,m + 1, such that:
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(16) ||Fl(x*)_1F(j)(CU*)" < oy, j=2,...,m,
(17) IF' (%) "F ) ()| < agr (x € D).

Denote by rs the minimum positive zero, guaranteed to exist by Descartes’
rule of signs, of the function g given by

(18) g(r) = Bnt™ 4 Bm—1r™ ..+ B + Bo,
where

2m+1
(19) Bm = m AUm+1,

) -+ 2)(1+1
(20) IBZ:Z+((TZYL—:-1))E7Zn—:_ )041‘+1, 1=2,....,m—1,
(21) BrL = 30@,
(22) Bo = —1.

Then Newton’s method {x,} (n > 0) generated by (2) is well defined,
remains in U(xz*,r3) for all n > 0 and converges to x* provided that
xg € U(x*,r3). Moreover, the following error bounds hold for all n > 0:

(23) [2n11 = 2*|| < anllzn — "%,
where
m
24 by = [ — 2
(21) g e |
(m — l)Oém *||m—2 Q2
S — a4 22
* Ay *[|m—1
= S gy, — |,
m!
bn
26 = —.
(26) an n

REMARK 2. Note that condition (17) implies the weaker o, +1-Lipschitz
condition used in the proof of Theorem 2 in [2].

REMARK 3. We can now argue as we did after Theorem 1. Replace a1
in Theorem 3 by d,,4+1 and denote by r4 the minimum positive zero of the
function h defined as g with d,, 11 replacing o, y1.

We proved:
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THEOREM 4. Let F': D C X — 'Y be analytic, let x*, o, j =2,...,m,
be as in Theorem 3, and let v and ry4 be defined above. Moreover, assume:

(27) 4 € (0,1/7),
(28) Tg € U(m*,m),
(29) U(z*,r4) C D.

Then the conclusions of Theorem 3 for Newton’s method hold with d.,,+1 and
ry4 replacing ami1 and T3 respectively.

REMARK 4. Note that condition (15) in Theorem 2 or condition (29) in
Theorem 4 are automatically satisfied when D = X.

3. Applications

REMARK 5. As noted in [1]-[5], [8]-[10] our results can be used for pro-
jection methods such as Arnold’s, the generalized minimum residual method
(GMRES), the generalized conjugate residual method (GCR), and for com-
bined Newton-like/finite-difference projection methods.

REMARK 6. The results obtained here can also be used to solve equations
of the form F(z) = 0, where F” satisfies the autonomous differential equation

(4], [7])
(30) F'(x) = T(F(x)),
where T': Y — X is a known continuously sufficiently many times Fréchet-
differentiable operator. Since F'(x*) = T'(F(z*)) = T(0),
F'(a*) = F'(2")T"(F(2")) = T(0)T"(0)

etc., we can apply the results obtained here without actually knowing the
solution z* of equation (1).

We complete our study with such an example.

EXAMPLE. Let X =Y =R, D =U(0,1), and define a function F' on D
by
(31) F(z)=¢€"—1.
Then it can easily be seen that we can set T'(z) = x + 1 in (30).

Using (4), (6), (8), (12), (16)—(18), and (31) we obtain, for m = 2,

az=1, az=e, y=.5
r1=.245253, 1o = .364538, 13 =.411254048, 14 = .3822432.

Hence, our results provide a wider choice for xy than the corresponding
ones in [9], [10, Theorem 3.1, p. 585]. This observation is important and also
finds applications in step length selection in predictor—corrector continuation
procedures [5], [8], [10].
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