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A PARABOLIC SYSTEM IN A WEIGHTED SOBOLEV SPACE

Abstract. We examine the regularity of solutions of a certain parabolic
system in the weighted Sobolev space W2 , where the weight is of the
form r#, r is the distance from a dlstlngmshed axis and p € (0,1).

1. Introduction. In this paper we consider a certain parabolic linear
system of two equations in a weighted Sobolev space. Here the weight is r#,
where 7 denotes the distance from a distinguished axis and p € (0,1). The
solutions of this system are conjugated by boundary conditions. Therefore we
first analyze weak solutions of localized problems and next we prove that they
are, together with their derivatives, square integrable with the above weight.
Finally, we apply the idea of regularizer, i.e. we glue together the solutions
of the localized problems and deduce some estimates which guarantee the
unique solvability of the main problem. We want to stress that we have to
be careful as regards constants. That is why we enumerate all parameters
which the constants depend on.

Our main problem (see (1) in Sect. 3) can be obtained from the Stokes
problem with the slip boundary conditions (see [Za04]), i.e

—divT(v,p) = f,
dive =0,
v-ng =0,
n-T(v,p) ms=0, i=12,
V|t=0 = v(0),

where T(v, p) = {I/(U;j + i) _péi,j}%j:p n is the unit outward normal vec-
tor to the boundary and 7; for ¢ = 1,2 are tangent vectors on the boundary.
Applying the rotation operator to the above problem we deduce problem (1).
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2. Notation and assumptions. For x € R¥ we denote by r = r(z)
the distance of = from the set {z € R¥; 21 = 29 = 0}, i.e. 7(z) = /27 + 23.
If € > 0, then we define x.(t) := x(e71t), where x € C*([0,00)) satisfies
0<x(t) <1, x(t)=1fort <1, x(t) =0 for t > 2 and |x*)(t)| < 2* for
k = 1,2. We recall the standard notation of function spaces. If U C R", then
lullL, @) == llu- "] L,w). The space H)'(U) is defined as the closure of
the set of smooth functions with compact support in U \ {x; r(z) = 0} with
respect to the norm

/
lull g - { Z D% ”L2u+m jal (U }1 g

la|<m

We denote by W37, (U) the space of functions u € Ly ,(U) such that D% €
Ly, (U) for || < m. The norm is given by

. 1/2
lullwgn, w) = {|Z D UH%M(U)}
al<m

For T > 0, set UT := U x (0,T); then for even m the space W,," m/2(UT)
defined similarly and it is equipped with the norm

i 1/2
[l wpm 2Ty 22{ Z HDth“H%g,H(UT)} :

|| +2s<m
We will also need the space W2 OQUTY :={u e Ly w(UT); Vyu € Ly ,(UT)}
with the norm HUHWIO = {HuHL2H pry + HvquLQ’M(UT)}I/Q, If u e

W21 U7y = W;g(UT) then we define

w e V(UT) & Julyr == esssup [ul-, )|y + Vot yory < .

The space V21’0(UT) consists of u € Vo(UT) such that the function t
[w(-st)|| oy is continuous.
If X is a Banach space of functions which are defined on U (U7 resp.),

then X denotes the closure of the subset of X consisting of the smooth
functions with compact support in U (U x [0,T] resp.). If X is a Banach
space of functions defined on UT, then X denotes the closure of the subset
of X consisting of the smooth functions vanishing for ¢t = 0. If S C 9U is a

part of the boundary of U, then W§7L2’3/4(ST) (W57L2’1/4(ST) resp.) denotes
the space of traces on S of functions u (Ou/dn resp.) for u € Wg;(UT) The
spaces I/V?’/2 3/4(ST) and W§{3’1/4(ST) are defined similarly. The norm of ¢
n Wg/2 3/4(ST) (W1/2’1/4(ST) resp.) is the infimum of Hunz LT) taken

over all u € WQM(UT) such that ug = ¢ (Ou/dng = ¢ resp.). The norms
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in W;”/j’g/Zl(ST) and W%f’l/zl(ST) are defined analogously. Finally, if m is

even, then for u € W;n/;m/z(UT) we set

s o 1/2
lullg,0m =1 3 IDDGulR, 0}

|a|+2s=m

Our main problem will be considered in a domain {2, which is an open and
bounded subset of R®. We denote by L the axis L := {z € R?; r(z) = 0}.
We assume that the boundary 0f2 is smooth and {2 is axially symmetric
with respect to L and 92N L = {p1,p2}. The boundary is described by
the equality (7, x3)—0, where 1 is some smooth function. We assume that
there exists a smooth vector-valued function a = (a1, az) defined in some
neighborhood of 02 such that a1 = ¢, /|VY|, az = 1z, /|VY| on 92 and
ajpg is the unit outward normal vector to 9f2 denoted by n. Finally, we
introduce the following notation: S := 92, @ := (—ag, a1). Now we are able
to formulate our main problem.

3. Main problem. We will consider the following system of parabolic
equations:

u —vAu=F in 027,

EU|S = ¢1 on ST,
(1) 9 ) = ¢ o

87’1 au)‘S — @2 f)n ’

Ujg—0 = Uo in (2,

where u = (u!,u?) and F = (F'}, F?). We shall prove the following theorem.

THEOREM 1. Assume that pn € (0,1) and T' > 0. Then for each F =
(B, F2) € Lo, (Q7)2, wo € W3,,(2), 61 € Wy 2 N(ST), 62 € Wy 21/4(ST),
if the compatibility conditions are fulfilled, i.e.

aug|s = P1p1=0
then there exists a unique solution u = (u',u?) € W;ﬁ(QTP of problem (1),
and for some constant ¢ = c¢(£2,T, u,v),
HUHW;;(QTV
< A F Ly, 0r)2 + H¢1HW§’/5’3/4(ST) + ||¢2HW21L271/4(5T) + lluollwy (@)}

REMARK 1. If we apply Lemma 2.11 in [KZ03|, then it is enough to
examine the existence of a solution of problem (1) with homogeneous initial

condition. Thus by the compatibility conditions and the equality W;/ 3 1/ 4(57)
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= W%{5’1/4(ST) we have to prove that for some 7 > 0 the problem
up — vAu = F,
(2) EU\S = ¢1,
0
%(au)w = P2,

where F € LQ’M(QT)Q, ¢ € W§(5’3/4(ST), P9 € W%{i’lﬂl

solution u € W%:;(QTP Then for some ¢ = ¢(§2, p, v),

(S7), has a unique

”uHWi’j(QTP < A F| Ly, 02 + H¢1HKV§,/3’3/4(ST) + ||¢2HZV;’/3,1/4(ST)}'

According to the above remark we only have to prove the existence of
solutions of problem (2). For that purpose we apply the regularizer technique
(see [La68, Chap. IV, §7]), which first requires the examination of localized
problems.

4. The model problem. In this section we deal with a model problem,
i.e. we consider a parabolic equation on R3 or on a half space ]Rﬁ_ with
homogeneous Dirichlet or Neumann boundary condition. Let us start with
the following remark.

REMARK 2. If 4 € (0,1), U =R} or U = R? and f € Ly, (UT), then
f € W;’O(UT)*, i.e. there exists a constant ¢ = c(u) such that for each
new, (U"),

’ | fﬁdxdt‘ < el fllp uomy Inllywro -
uUr

Indeed, if we apply the Schwarz inequality twice, then we get (see Section 2
for the definition of x1)

‘ i fndxdt‘ g‘ i lendxdt(+‘ | (1= 1) fndadt
uT uT uT

< (Ixar™nllL2ry + (X = xO)r " nll 2 or) 1 | 2, 0ry-
Clearly, we have [(1 — x1)r " #nll 2@y < [nllp2@r). Applying the Hardy
inequality [Ha34, Th. 330] and the inclusion supp x1 € B(0,2) we get the
imequality [hvir#nlym) < () Pl

In the next subsection we shall consider the existence and uniqueness of
weak solutions of model problems.

4.1. Weak solutions. We will denote by B the boundary operator, which

is of Dirichlet type Bw = wjpy or Neumann type Bw = g—%‘aU. We need

the following lemmas:
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LEMMA 1. Assume that p € (0,1), U := R} and T > 0. Then for
each f € Lo, (UT) there exists a unique weak solution w € V2 (UT) of the
problem

wy —vAw=f inUT,
(3) Bw =0 on 0U,
W)= = 0.
Furthermore, there exists a constant ¢ = c¢(T, p,v) such that for each T in
(0,7),
(4) lwlor < el fllz,,. )
LEMMA 2. Assume that p € (0,1), U := R3 and T > 0. Then for each

f € Lo (UT) there exists a unique weak solution w € Vy*(UT) of the prob-
lem
wy —vAw=f inUT,
(5) _
Wig=p = 0,
Furthermore, there exists a constant ¢ = (T, p,v) such that for each T in
(0,7),
(wlor < el fllz,,.wr)-
Proof of Lemma 1. We only consider the case of Bw = wygy, because

in the other case we proceed similarly. Hence, suppose that f € Lo, (UT),
where U = ]Ri. Then with the help of Remark 2 and the Riesz theorem we

get a unique g € W;’O(UT) such that
©) | fmdedt= | gidedt+ | VgVidwdt for all e Wy'(UT).

ur ur ur
If we write go := g, g; :== 0g/0x;, i = 1,2, 3, then applying Theorem 4.1 and
[La68, Chap. ITI, Lemma 4.1 (1)] we get a unique weak solution w € Vy°(U7)
of the problem

3
da
wy — VAW = gg — Z 8; in UT, wrz =0,  wj—o =0,
i=1

ie. for all n € I/(I)/é’l(UT) such that n(-,T) = 0 we have the identity

T T T 3
ggw.ﬁtdxdwrugWw.vwxdt:H(go.ﬁ+Zgz--mi)dxdt
ouU oU oU i=1

and for each 7 € (0,T) the estimate |w|y- < CZ?:Q |gill L2y is satisfied,
where ¢ = ¢(T,v). By the definition of a weak solution and the identity (6),

(*) Theorem 5.1 in the Neumann case.
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the above means that w is a weak solution of problem (3). In accordance
with Remark 2 and the determination of g; we have

3

2 A2 _ =

Z; lgillze@ry = N9l 10 r) = UST fgdazdt < ()|, wml9llwrowry,
1=

hence 37, 19ill L2wry < 2] fl L, ur)- Thus (4) holds and the proof is

finished.

Clearly, Lemma 2 can be proved similarly and in this case we apply |La68,
Chap. III, Theorem 5.2].
1

Now we shall obtain estimates in W22 P
Lemmas 1 and 2.

for the weak solutions given by

REMARK 3. We notice that if w is a weak solution of (3) with Dirichlet
(Neumann resp.) boundary condition, then if we extend w on R? x (0,T) by
odd (even resp.) reflection with respect to {x; x3 = 0}, we get a solution of
(5) with the r.h.s. obtained by the same extension. Thus it is enough to deal
with weak solutions of problem (5).

In the next two subsections we will deduce estimates in the weighted
space Wg; for the weak solutions of (5).

4.2. Estimate of the lower order terms. We now show that weak solutions
are integrable with weight if the data are. More precisely, we prove the
following:

LEMMA 3. Assume that U := R3, f € Ly ,(UT) and w € VQLO(UT) 18
a weak solution of the problem w; — vAw = f in UT and wij—g = 0. Then
there exists a constant ¢ = c(v, u, T') such that for each T € (0,T),

™ sy < ellflzauwn
Proof. From Lemma 2 we get the estimate
8) 0l soey < ellf o,
where ¢ = ¢(v, u, T'). Clearly,
HwHW;’S(UT) < HXleW;”S(UT) +[](1 - Xl)wHW;ﬁ(UT)
and
HXleWJ”S(UT) < C(/‘)”wHW;’O(UTy

Thus we only have to estimate the expression ||(1 — x1) . Denote

Wlhwiowe
by {7 }nen a family of smooth functions 7, = n,(r) such that supp Mn, C
{r;2nt <pr<2nfl} 0<n, <1and mgk)‘ <2 for k=1,2and n € N
and Y °° 1 m, = Lonsupp (1 — x1). Setting U, = {x € R3; 271 < p < 21}
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we get

x
0= X005y < 6 Il + 22 ol ey
s n=0 WM

The function n,w belongs to V21

the equation

Y(UT) and is the unique weak solution of

(mw)e — vA(nuw) = npf — 20V, - Vw —vAn, -w in Ut

where the r.h.s. is in Ly(U7T). Hence there exists a constant ¢ = ¢(v, T) such
that

Il < AN Lawg) + 195 - Vool Ly + 145 - wll o}
It is clear that ||V, - Vwl|r,@wr) < 27"|Vw||p,wr) and [[An, - w|p,wr) <
272"HTUHL2(U,§)- Therefore
Imewllzows < 2 lnlyo )
< 2|l awg) + 2 IVl awg) + 27 el Lo}
< 2% e{|| fll o gy + 2"V IV Lywg) + 27D w0l Lo }

< P fll o o) + [0y -

where we have used the assumption p < 1. Thus we see that for some
c=c(v,p,T) the sum > ° Hnan?/VLO(UT) is less than or equal to
2,1 n

{ > 161 0+ lol 10y b < 260012, 0y + 01110 -

Thanks to the estimate (8) the proof is finished. m

4.3. Estimate of the second derivatives. As we will see later, estimating
the second derivatives of a weak solution in R3 x (0,7) can be reduced
with the help of the partial Fourier transform to an appropriate estimate of
solutions of a certain problem in R? with parameter s := U{% + &1, where
&1,& € R. That is why we need the following lemma.

LEMMA 4. Assume that u € (0,1) and h € HY(R?) is a weak solution of
—Ah + sh = p, where p € Ly ,(R?). Then there ezists a constant ¢ = c(p)
such that

||D2h”L2,M(R2) + fsfl/ZHDh”Lg,M(ﬂ@) + I8l [l Ly, r2) < cllpllL,,, (r2)-
The proof will be divided into three steps, which we specify in Proposi-
tions 1-3. In the first and second steps we follow [SZ83].

PROPOSITION 1. Assume that p € (0,1) and h € HY(R?) is a weak
solution of —Ah 4+ sh = p, where p € LQ#(RQ). Then there exists a constant
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¢ = c(u) such that

(9) [sI'" 7 § (1WA + |s| 1) da < cllpl7, , 2.
R2
Proof. Recall the interpolation inequality

(10) | Illel " d < e | [Ty d + e | | d,
R?2 R2 R2
which holds for all ¢ > 0 and € H'(R?). If we apply the Schwarz inequality
and then the interpolation inequality with ¢ := |s|*1/ 2 we get
B _ _ B 1/2
(1) s/ | § prde| < 1P bl e (] Lol do)
R2 R2
1—p pn—1 2 “w 2 1/2
< 15"l s ey (112§ 1Vl da+ el § nf? der)
R2 R2
(1-p)/2 2 2 5 \M?
= 15| 2 pll ey (§ 19012t cu)ls| § Inf? d)
R2 R2

By the assumption h satisfies the identity
(12) SVh-VﬁdzH—SSh-ﬁdx: Sp-ﬁdm for n € H*(R?).
RQ RQ RQ

If we put 7 := h(1 +isign&;)|s|!™# € H'(R?) in (12) and compare the real
parts, then applying (11) we get

[sI' 7 Y (IVAI? + [s] |h[?) dz
R2
(1-p)/2 2 2y 5 \'/?
< V3]l pll 1y sy ( § (TR + sl 1f2) ) .
R2
Therefore we obtain (9) with the constant 2¢(u)3. m

PROPOSITION 2. Assume that p € (0,1) and h € H'(R?) is a weak
solution of —Ah + sh = p, where p € LQ’M(RQ). Then there exists a constant
¢ = c(u) such that

(13) |s| V(IR + [s] |B*) |2 da < clplF, , g2)-
R2
Proof. We fix s and for A > 1 we define
di:={zeR?:0<|z| < |s| /2,
dy == {z € R? : |s|71/% < [ < AV/2|5| 712},
ds := {x € R? : \V/20|s|71/2 < |z},
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and
|s|'=#  for x € dy,

Va(z) := < |s||z|** for z € da,
Als|'=#  for x € ds.

The function V) has the following properties:

(14) IVTAJ2 = { (2p)?|s|?|z[*=2  for z € da,
0 for x € dy U ds,
21)? B=2 d
(15) VA2Vt = {< w)?|s| [z[#=2 for x € dy,
0 for x € dy U ds,
(16) V)\|x’*2ﬂ < ‘S‘ for z € dy U ds.

It is clear that 7 := hV)(1 + isign&;) belongs to H!(R?). Hence using (12)
for such 7 and then applying the Schwarz inequality twice, we obtain

Jyi= JOVAE + |sl[hP)Vadz < V2| | phV dx( +V2| | vavWihda
R2 R2 R2
21,2121 1/2
< V2Dl e (] PPV dz)
RZ
1/2 1/2
+V2( [ IV ) (§ BRIV de)
R2 R2
Therefore, if we apply (14)—(16), then we get

1/2
(A7) Ir < VIl ey (12 § IRl dn 13| | 2Vade)
dy daUd3

1/2 1/2
+ 2\@( RS dm) : (1312—# { |h|2dx> .
R2 R2
If we apply (10) with n := h and € := ]5]‘1/2, and next use Proposition 1,
then we get
(18) |52 | |12 de < c(u)[s|" ™ | ([VAI* + 5] [B]?) da
dq R2
<ew)lpll7, , w2y

Applying Proposition 1 again we obtain
(19)  [s2# | Ihl2do < [l [ (VA2 + 15| [B2) do < clIpl2, o)

R2 R2
Hence from (17)-(19) we have Jx < c(u)[|pllz, , &2) ([Pl L, (r2) +J3)'/2, thus

(20) Iy < clpll, g2
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for some ¢ = ¢(u). Applying (20) and Proposition 1 we get

sl | (IVA[” + [s| [h[*)]2[* dz
d1Ud2

= [s| §(IVAP + Il [B1?) |2 do + § (IVA? + |s] [B]*)Va da
d1 d2

< Is/"# (VAP + [s| 1) dz + § (VR + || [B*)Vade < cllpll?, , ge).
dy R2
where ¢ = ¢(p). The above estimate holds for A > 1, thus if A — oo, then
we get (13). m

PROPOSITION 3. Assume that p € (0,1) and h € H*(R?) is a weak
solution of —Ah 4+ sh = p, where p € LQ,#(R2). Then there exists a constant
¢ =c(u) such that

(21) DAL, . r2) < cllpllL, ,r2):

Proof. We shall multiply A by a suitable cut-off function and then we
shall write the product as a sum (see (27)) whose components can be easily
estimated.

We fix s and R > 1. We set s := |s|"'/2R and

he :=h-g., where ¢.(z) := x.(|z]) ().

The function A, is in H'(R?) and it is a weak solution of —Ah, + sh, = G,
where

G:=p-g—2Vh- -V, — h- Ac.

If we use the properties of functions x1, ¢, and next apply Proposition 2
to h, then we get the estimate

(22) 1GlL,,.&2) < cllpllz,, @2y and suppG C Ba,

where ¢ = ¢(p) and Be denotes the ball with center at the origin and radius e.

Thus we can apply Proposition 2 to h, to obtain

(23) [s| § (IVhal® + |5l [he )| dz < ()G, @) < E)IPIIT, , (g2)-
R2

In particular, h, is a weak solution of —Ah, = q,, where ¢, := G — sh,, and
by (22) and (23) we have

(24) 16l L, r2) < )Pl Lo, (m2)-
On the other hand, there exists W € H7(R?) such that (see Lemma 3.5 in

(?) See Section 2 for the definition of y..
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[Za02])
(25) —AW =g and  [[W]nzre) < c(w)llgxllr,, &2)-
We set
V=W -«.
Then

—AV = g5 — 2VW - Vg, = W - Ag,.
We define U := h, — V. Then U € H'(R?), because supp V is compact.
Furthermore,
—AU = (1 = 6a) g + 2VW - Ve + W - A =t L.

The support of ¢, is compact and does not contain the origin, hence %, is in

L2(R?). Thus U € H%(R?) and

(26) ID*U | Lyw2) = il Lo e2)-
Clearly, by the definition we have

Now we estimate each component in (27). Applying (26) we obtain

ID?UZ, @2y = | [DUPJe|* de < (26)* | |D*U|* da
B2K, B2K,

2 2
= (2r)7|[tell7, (r2)-
We notice that ¢, has support in By, \ By, thus

HtHH%Q(RQ) <6 S (lgul® + VW - Ve + [W - Ag|?) da
BQN\BN

<6k | (gl + VW - Ve + (W - Agul?) e[ do
BQK,\BH

<6 | (Jgul? + 4672 VW + 165~ W ) |2 da
B2H\B.‘i

<27 (gl + 2 VW o+ W)l de
B2N\BR
< M2 (gl ey + I ey
Thus applying (24) and (25) we have
(28) 1D UllLs,m2) < 2" (lgell 2o @) + Wl zr2) < cllpllLy, g2),

where ¢ depends only on u. We can similarly estimate the norm of D2V .
Indeed, using the definition of V' we find that HDQVH%2  (r2) 18 less than or
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equal to
3\ (W D2%* + 2]V - Vo> + | D*W - 6, *) || da
R2
<3 | @6 WP+ 4 |VWP)a* dz + | [D*W || da
Bk \Bxk R2
<20 | (2l WP+ |2 VWP |2 da + | |D*W P |z da
B\ Bk R2
< 210HWH%{3(R2)'
Applying again (24) and (25) we get the estimate
(29) ID*V |1, ,.x2) < cllpllL,,, (z2),
where ¢ = ¢(u). Thus according to (27), if we apply (28) and (29), then we
obtain
(30) I1D?hell L, r2) < ellpllL, , (z2)-
By the definition of h, we have
(31)  llsw - D?hllL, ,(2)
< 4| D*hi| s, m2) + 8l DA [ Dl || 1,2y + 4l - D26, 2y
If we use the properties of ¢, and next the assumption that R > 1, and apply
the estimate from Proposition 2 to h, then we get
I |Dh| - 1Dl |l 1, , w2y + 1B - DSkl 1y, w2) < cllpll,,r2),
where ¢ = ¢(u). Hence the above estimate and estimates (30) and (31) give

s - DBz, ,v2) < cllpllLy,. 2
where ¢ depends only on p. Letting R — oo yields (21). =
Lemma 4 is a consequence of the estimates (13) and (21) from Proposi-
tions 2 and 3. Now we are able to deduce the crucial estimate for the weak
solutions of problem (5).
LEMMA 5. Assume that u € (0,1), U := R® and T > 0. Then there

exists a constant ¢ = ¢(p, v, T) with the following property. If w € VQI’O(UT)
is a weak solution of (5) with f € Lo ,(UT), then for each T € (0,T),

(32) @l my < el om)

Proof. By Lemma 3 it is enough to estimate the norms [lw||r, , ) and
| D2w|| L, (™)~ To do it we shall apply partial Fourier transform with respect
to xg and t. However, w is defined only for ¢ € (0,7T), so we have to extend it.
Moreover, we want to obtain estimates of the norm on U for each 7 € (0,7)
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with a constant independent of 7. Therefore suppose that 7 € (0,7); we may
assume that f(x,t) is zero for negative t. Then we define f*(z,t) = f(z,t)
for t < 7 and f*(z,t) = f(z,21 — t) for t > 7. Let w = w(t) be a smooth
function such that w(t) = 1 fort < 7, w(t) = 0fort > 74+ 1 =: 7/ and
lw®)(t)| < 2F for k = 0, 1. Clearly, ”f*HLz,H(UT/) < 2[|fllz,,. Uy, hence from

Lemma 2 we get a unique weak solution w* € VQI’O(UT/) of the problem
wf —vAw* = f*in U and w*;—g = 0. We extend w* onto R3 x (—o0,7")
by putting zero for negative t. We define
(33) vi=ww®.
Then vy — vAv = wf* + ww* =: g. It is clear that |lwf*||L, (rsxr) <
2| fllz,,.(vr), and applying Lemma 3 we get

oot 58y < 20y, oy < 2608, 0y < AellFllia 07y

where ¢ comes from Lemma 3. Thus we showed that for some ¢ = ¢(v, u, T),

(34) 191z, &3 xr) < €l fllLy, @)
Therefore v € Vo(R3 x R) N Ly(R3 x R) is a weak solution of v, — vAv = g
with g € Lg ,(R? x R), i.e. for each € W' (R? x R),
(35) — S v-nydrdt+v S Vo - Vidxdt = S g -mdxdt.
R3xR R3XR R3xR
We shall show that there exists a constant ¢ = ¢(v, ) such that

2
(36) vl L, (3 xr) + D30l Ly 3 xR) < llgllL,, ®3xr)-
For this purpose we denote by v the partial Fourier transform of v with
respect to x3 and ¢, i.e.

o(2', 69, 61) = S S v(a | ws,t) - e @) doa gy,

—00 —O0
where 2/ = (z1,x2). The identity (35) shows that for a.e. £1,& € R,
v S V'o-V'ndd + s S v-nda’ = S g-7mdx’  for each n € H'(R?),
R2 R2 R2

where g is the partial Fourier transform of g, s := v&3 +i¢; and the operator
V' acts on the 2’ variable. Thus for a.e. {1, & € R the function v(-, &2,&1) €
H'(R?) is a weak solution of —vA'0 + sv = g, where g(-,&,&1) € Lo, (R?).
Lemma 4 yields the estimate

V(ID%3(a/, &2, &) + 1D0(2', &, &) + 1630(2, &, &)%) |2/ [ da!

R2

+ S ’515@/752751”2@”2# d,l?/ < C(V’ :u) S g(x/7£2’£1)|m,’2u d:l"/
R2 R2
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for a.e. £1,& € R. If we integrate it with respect to &1, & € R and next
apply the Parseval identity, then we get (36). By the uniqueness of solutions
of (5) in VQI’O(UT) and the definition (33) we have w = w* = v in U”. Hence
applying Lemma 3 to v € V,"*(UT), next (36) and finally (34) we deduce
the estimate

21y = lollyzary < gl @) < 00,
where ¢ depends only on v, y and T. =

REMARK 4. Evidently, Lemma 4 is valid if we replace s = v&3 + i&; by
5 := &2, where ¢ € R. Hence, if u € H'(R?) is a weak solution of —Au =
f € Ly, (R3), then ”D2U||L2,H(R3) < ()| fll L, (r8)- The lower order terms
can be estimated as in the proof of Lemma 3, provided we already have the
estimate |[ul| g1(rsy < cf| Aul|L2(gs).-

To apply the regularizer method for problem (2) we need the following

lemma.

LEMMA 6. Assume that p € (0,1), U := R3, S := 9U and T > 0.
Then there exists a constant ¢ = c(v,u, T) with the following property. If
di,d2 € R satisfy d3 + d3 = 1, then for each f = (f1,f2) € La,(UT)?,
and any Y € Wg{5’3/4(ST), Py € W;{5’1/4(ST) there exists a unique weak
solution w = (w1, wy) € Vy''(UT)? of the problem

wy —vAw=f inUT,

(37) dw = on ST,
3 B .
8—1:3(dw) =1y on S,

Wyg—g =0 on U,

where d = (dy, d2), d= (—da,d1). Furthermore, for each T € (0,T),
39) el s < e amy + 191 garsarsgery + el sas or )
Proof. We define g := (c? f,df) and consider the system

w —vAu=g inUT,
up = ¢1 on ST,

39 0
(39) ——ug =19 on ST,
8303
Ug=p =0 on U,
where u = (u1,u2). The existence of weak solutions of (39) with homo-

geneous boundary conditions follows from Lemma 1. The estimate can be
deduced with the help of Remark 3 and Lemma 5. Finally, system (39) with
nonhomogeneous boundary conditions can be reduced to the homogeneous
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one with the help of the trace theorem. Thus system (39) has a unique weak
solution u = (u1,ug) € V,°(UT)?, which satisfies the estimate

HUHW;"}(UT)? < C{||g||L27H(QT)2 + leH‘éVg,/i»?’/‘l(ST) + ”1/)2”%[/;,/5’1/4(57—)}’

where ¢ = ¢(v, u, T'). We define w; := cju, wy = du. Then simple calcula-
tions show that w = (w1, ws) is a weak solution of (37) and ||w1 ||? + ||w2 | =
Jur 2 + a2, where || | := ||+ 7y learly, we have gl , orye =

[ £l L, (2ry2, thus the above estimate gives (38). Finally, system (37) is
uniquely solvable, because if w € V21’0(U 72 is a weak solution of the homo-

geneous problem, then u = (c:lw, dw) is a weak solution of the homogeneous
system (39). By the uniqueness of solutions of the latter problem we have

u = 0. Thus w = 0, since w = (c:lu,du). n

5. Problem in a bounded domain. In this section we prove Theo-
rem 1. By Remark 1 we have to show that there exists 7 > 0 such that prob-
lem (2) is solvable. We apply the regularizer technique (see [La68, Chap. IV,
§7]). Thus we have to define a continuous linear operator R such that if
A denotes the operator associated with problem (2), then for 7 > 0 small
enough, ||AR —Id|| < 1 and ||RA —Id|| < 1. Clearly, this means that A is
invertible, hence problem (2) is uniquely solvable.

5.1. The regularizer. By the assumption the boundary of (2 is smooth.
Thus there exists A\g € (0,1) such that for each \ € (O, Ao) there are families
of subsets of {2 denoted by {w(k te=1,.. K, and {Q }kzl 77777 K, which have
the following properties:

(P1) w® € 2" for each k, Uk Lwt® Ufﬁl Nk = 0

(P3) there exists Ny, independent of A, such that any intersection of
Ny + 1 sets from the family {h(Z(k)}k:17._,7KA is empty,

(P3) {1,..., K)} is a disjoint union of subsets Dy, Oy, N, M, and there
exists # € (1,3/2), independent of A, such that if k£ € O\ U M,
then w® and 2%) are cubes with sides of length A and B\ re-
spectively and center ¢®) € Q. If & € Ny U Dy, then w®) =
2 NK; and 2% = 2N K5, where K7 and Ky are cubes with
sides of length A and B respectively and center ¢®) € 82 Nw®),
If k € Oy, then ¢® € L and dist(2®),002) > \g/2. If k €
Ny, then w® N8N # 0 and 2®) N L = (. If & € D), then
w® N9 # 0 and ¢*¥) = pi or ¢ = py, where {p1,p2} =
oNL,

(P4) there exists v € (v/3/2,1), independent of X, such that if d¥) :=
dist(¢™*), L), then Milge A, UN, d®) > ),

-----
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REMARK 5. In order to apply the regularizer we have to consider the
local problems in four cases: in the neighborhoods of the axis L disjoint
(k € O)) and not disjoint (k € D)) from 9{2, and away from the axis L in
the neighborhoods disjoint (k € My) and not disjoint (k € N) from 92.
The first two cases will be considered in a weighted space. The remaining
ones will be considered in a Sobolev space without weight. Then the desired
estimates in weighted spaces are guaranteed by the condition (Py).

The smooth boundary of (2 is locally the graph of a smooth function.
Hence we introduce a local coordinate system y = (y1,y2,y3) with center
at ¢®) such that if & € Dy U Ny, then S®) = 902 N NF) is described
by ys = f®) (y1,42), where f*) is smooth and max(|y1], [y2|) < A3. We also
introduce the coordinates Z = (Zy 1, Zi 2, Z1,3), where Zj, ; :=y; for i = 1,2
and Zy 3 :=y3 — fF)(y1,90). I k € Oy UM,, then Zy, = (Zy.1, Z12, Z1.3) is
the cartesian coordinate system with center at ¢(*). The smoothness of 912
guarantees that the functions

M) = max su Y Zkm - VZ1(2) =V Zkm - VZii(q")],
m(A) pemax xEQI()k) 2 k, k() k, k1 (q")
() = max sup |a—a(¢™)

kEDA\UN ze(®)
have the following property:
(40) nm(A) — 0 and 72(A\) -0 as A —0.
Let ¢, denote the norm of ¢ in W and
co = maX{HDleHLOO(_Q(k)): ”Dle_IHLOO(Q(k)); k€ DyUNy, I =1,2}.
We set
Q) = Z, (W), wk) = Zp(wH),  S®) = 7, (SP).
Let {§(k); k =1,...,K,} be a family of smooth functions such that 0 <
W (z) < 1, W (z) =1 for z € w®, £®)(z) = 0for z € 2\ NF) and
e = 0. It is clear that (P3) gives |D7EW) (2)| < eA™I™l for |m| < 2,
on_|oU x
where c=¢(3). From (P1) and (P2) we deduce that 1 32221 (€%) (x))2 < Np.
We define

() D) = b
n\(x) == .
21 (€0 ()2
Then ®)(z) = 0 for = € 2\ 2F), 8ng) lou — 0 and
K
(42) Zn(k) £F =1 on 0,
k=1

(43) \D;”n(k) (x)] < ex—Iml for Im| < 2,
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where ¢ = ¢(3, Ny). We introduce the following notation:

- r 3/2,3/4 r 1/2,1/4 -
Y(29) i= Lo, (20002 x W (50m) s i1 (500,
XT(W) =W, (2W)2,

The spaces Y7 (£2) and X7 ({2) are defined similarly, by dropping the super-

script (k). We denote by A the operator associated with problem (2), i.e.
A:XT(02) = Y7(R2), and for u = (u!,u?) € X7 (£2) we define

0 - 0
Au = [(E —I/A)U, aug, %(au)w .

We shall show that for some 7 € (0,1) small enough, the operator A is
invertible. In order to do it we shall define a continuous linear operator

R:Y7(£2) — X7(£2) such that
(44) |AR —1d[ly-(p) <1 and [[RA—1Id|x-(o) <1

for some positive 7. Clearly, (44) guarantees that A~! exists. We shall define
R to be the sum of n®) R®) where R*) : Y7(2) — X7(2(")) will be linear,
continuous and for each k € {1,..., K} and h € Y7(£2),

(45) HR(k)h”XT(mk)) < CHhHYT(QUc))a

where ¢ = ¢(cp, p,v). In further considerations we shall assume that the
numbers A and 7 satisfy

(46) /A% < k, where k< 1.

Assume that h = (F', F? ¢1,¢2) € Y7(£2). We have to consider each
case of k. We define R®)} as follows.

CASE OF k € D). We set

fiz,t) = EWF (Z (), 1),

Pi(x,t) = Wi (2 (), 1) fori=1,2.

Clearly, f;, v; satisfy the assumptions of Lemma 6, thus we get a weak

solution w*) = (wgk),wék)) of problem (37), where we set d := a(q®). We
define

(48) R¥n(x,t) := w®(Zy(2),1).
Hence using the estimate (38) we get

(49)  [|IR®)R] k- (W) = callw®

(47)

”W2’1(5@) )2
< C{HfH Q(k) o T ||¢1|| 3/2 3/4 S(k) + ”711)2” 1/2 1/4 S(k) )}

where ¢ = ¢(v, i, c). Clearly, Hle CQHF HLZ’H(Q(k),T). Before we

L2,u(5(\k )Ty~
estimate the remaining terms in (49) we notice the following
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REMARK 6. There exists a constant ¢ = ¢(u, ¢) such that for each w €
2,1 _
W2’“(Q(k‘)7’r) and fOr ’m| S ]., ||D2’L'LU||L2’“(Q(I€)) S CTl |m|/2||w”L§H(~Q<k)’T)
Indeed, this is a consequence of vanishing of w for t = 0 and for |m| =1 it
may be deduced with the help of an interpolation inequality.

REMARK 7. The trace operator v — v|gu) (v — g—zlsw resp.) is linear
and continuous from W%’}L(Q(k)”) onto W;f’gM(S’(k‘)”) (W§/5’1/4(S(k)’T)
resp.), therefore it has a right inverse, which is also linear and continuous (?).

We chose the norm in the space of traces so as to get independence of the
norm of the trace operator and of its right inverse from A and 7.

Utilizing the right inverse of the trace operator we get a continuation
B € WL (2W7) of g1 € Wi/ 24 (S®):7). Then
_ (k) =1, __
||¢1||I[/)Vg,/i,3/4(s(k)’7—) S ”g gpl(Zk: ( ))Hlévgz;ll.(n(k)"r)
< callé(’“)@leg,L(mm,T) <clea) L+ AT H A, 0w
+e(c)l1+ XDV L, @00y + 191l 3 (@00.7)]
< cleq {252+ 72+ 1)+ K12 4w+ 9l 00y

< c(cq; )||¢1H 3/2:3/4 (507"

where we applied property (P3), condition (46) and Remark 6.
Similarly we prove the estimate

Hd}QH 1/2 14 Sk),T Ty = (CQv )H¢2H 1/271/4(5(19),7)'
Thus from (49) we deduce (45) for k € Dy, Where ¢ = c(eq, p,v), provided
(46) holds.

CASE OF k € O). We define f; as in (47). With the help of Lemma 2
we get w) = (w%k),wék)) such that wgk) is a weak solution of (5) with r.h.s.
equal to f;, i = 1,2. We define R®)h by (48). Then the estimate (32) gives
(45) with ¢ = ¢(p, v).

REMARK 8. In the remaining cases the sets £2(k) are disjoint from the
axis L. Therefore we may consider the local solutions in the space without
weight. However, we have to proceed carefully, because we need estimates
in weighted spaces.

CASE OF k € M. Let f; be as in (47). Then

) < —b || Ft .
15y < 50 7 P o

(®) Some details may be found in §6 of [Ku05].
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By (P3) and (P4) we have sup,x) r™# < M(y — §/2)* < oo, thus f; are
square integrable. Let w(k) be a weak solution of (5) with r.h.s. f;, and set

w® = (w" W), We define RWh by (48) and apply the Holder inequality
to get

”R(k)hHW;’l(Q(H 2 < zup k. HR( hHW2 (k)72 < CSUPT Hf”Lz Qk),7)2

< csupr“ 1E || 2(t).7y2 < esupr? - supr™ - [[F| 1, (o),
0k (k) (k)

where ¢ = ¢(u, v). The sets 2) satisfy (P3) and (P4), which guarantee the

estimate
2 12
ok o v —B/2

independently of X\. Thus we get (45) with ¢ = ¢(u, v).
CASE OF k € Ny. We define fi, ¥; as in (47) and let w*®) = (w%k),wé ))
be a weak solution of (37). We define R(®)h by (48). We use properties (P3)

and (P4) as in the previous case and the estimates used in the first case.
Thus we get (45) with ¢ = ¢(cq, p, v).

In this way we have shown the estimate (45) for each k € {1,..., K)},
where ¢ = c¢(cp, p,v), provided (46) holds. Clearly, if A € Y7({2), then
n®RE L € X7(£2). We define the operator R : Y7 (£2) — X7 (£2) by

Ky
(50) Rh:=Y n®™R®h for he Y ().

It is clear that R is linear. From the estimate (45) we get

IR %+ (o <C(M,CQ)HRhHL2 (a2

K
C(:u’ CQ,NO)ZHn(k) k)hHL2 _Q(k) T)2
k=1
K/\ A
< e(p, e, 5, No) Y HR(k)h”%g ()2 S ¢ IRl - o
k=1 ' k=1

where ¢ = ¢(p, v, ¢, No), provided (46) holds. Hence R is continuous, be-
K
cause Zké\l HhH2 T(Q(k)) < NO”h”%fr(_Q)

5.2. Estimate of the regularizer. Now we prove the estimates (44). Let
us start with the first one. If h = (F', F2 ¢1, ¢2) € Y7(£2), then by (42) we
may write
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K K
(51) ARh — h = AZ n® RKp — Z n® . g®)p,
k=1 k=1

REMARK 9. In this subsection all constants depend only on pu, v, ¢ and
Ny and may vary from line to line. The estimates below hold for all A and 7
that satisfy (46).

If i = 1,2, then we denote by R*): the ith coordinate of R*)h, hence
the first two coordinates in (51) are equal to

(52) }:n [(——VA>Rw”h—$@Fﬂ
K

—2y§:vn - VR®ip — )~ Ap®) . REVp,
k=1
The function R was deﬁned by a smooth change of variables from w’
which satisfies the equation (9/0t —vV)w'(z,t) = W F(Z,(z),t). Hence,
with the help of (45), after straightforward calculations, the first sum in (52)
is estimated by ¢(n1 () +T1/2)Hth7— . The norm of the second sum in (52)

can be estimated by cn1/2(ZK21 | R hH (@20 )) /2 Thus by (45) it is

at most Clil/2||h||y7— (@)- Similarly the norm of the last sum in (52) can be

estimated by ck||h|ly-(p). Summarizing, the norm in Lg ,(£27) of the first
two coordinates of (51) 1s estimated by
(53) c(mA) + 12 + &2 4 5)|[hlly- (o)

The third coordinate of (51) equals

(@Rh)g — ¢1 = Z B @RWhyg — W]
keD)\UN,,

= Y (G- ) RIn),
kED\UN,

because R¥)} satisfies the appropriate boundary condition. Hence, if we
apply the trace theorem and the estimate (45), then the norm of this function

n W%(S’BM(ST) is at most

(54) en2(M | Blly(e)-
Finally, the last coordinate of (51) is equal to

0
il oy — | E * R _
[3n(aRh)} IS 7= [8 ( 7 hﬂs ”
K K
da e
"= S k=1 S
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(B8] S o

k=1

Clearly, the last two terms vanish, because R*)} satisfies the appropriate
boundary condition. We recall that the normal derivative of (¥) vanishes on
the boundary, therefore the above expression is equal to

R R S
{an[;n (@ alg™)ROH] |

Hence, the trace theorem, Remark 6 and the estimate (45) show that the
1 /2 1 /4( S

|S

norm in W, is less than or equal to

(55) enz(M 1Ay (o)
To sum up, from (53)—(55) we get
(56)  [ARD = hlly+(2) < cx(m () +m(N) + 72 + 62 4+ K)|[hlly+ (o)

Now we turn our attention to the second estimate in (44). Suppose that
u € X7(£2). Then we get

(57)  IRAu—ul¥r gy < 3 [P (RO Au— D)% g,
k=

K
< ey InMR®(A - AM)ul3- )
k=1
Ky
+ CZ [|n*) (R(k)A(k)u — g(k)u) \|§(T(Q<k)),
k=1

where A%) denotes the operator A with coefficients “frozen” at ¢(*), i.e.
0 0
k), . k k
A0 | (5= vaYu s, - (alg®)us)
For the first sum in (57), according to Remark 6, the estimate (45) and the
trace theorem we obtain
(58) 1™ RE (A = AWl - oy < el RP(A = AW )] - ()
< el (A= APy (0

< e (M) [ull x-(u).
The second sum in (57) may be estimated in the following manner. Let
y := Z(x) be a local coordinate with origin at ¢*). Then R*) AWy (z, t) =
w®) (y,t), where w®) is a solution of the appropriate problem. Hence, the
estimates (32) and (38) yield
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||77(k)(R(k)A(k)u _ g )u)||W§,1(Q(k),T)2
AW

< cllg®Putt) - n<k>s<k>u\\W§,1<@,T)2
o &M

L2, (200,72

p—

+ 3laa™) ™ = n®e®u] o o725 570,

—

8 —
0| o falg ) (B — BB o

— b
‘é‘/;f,l/‘l(s(z@);)}

where the hat ™ over a function denotes this function in the y coordinates,

and 0, = 0 for k € M\ UQO, and §;, = 1 for k € Dy UN,. A straightforward
calculation gives

( % - m) [w® (y,1) = €Pu(Z (y), 1)] = v ALY - u(Z (), 1)

3
+ 20V WV u(Z (), 0]+ vEW Y T —(Z ), 1) - A2,

2

+ve® Z o ge Ze W)

nm—

Ay Zom Vo Zi (W) = VyZp - Vy Zi 1 (0)].

—

Thus, as before, the above norm in Ly ,,(£2(%):7)2 can be estimated by

(w2 + k472 Em) ull gz (w2

If k € D\ UN,, then according to the boundary conditions for w®) on Sk)T
we have

a(g™) [P — yPeB] =0,
0 1ag®) 0 — PP = 0.
dy3
Hence
I (RW A w— )| - ) < e+t 724 mA) ull g3 (w72
Thus the above inequality, (57) and (58) give

(59)  [|RAu — ull x-() < c2(2 + K5+ 772+ 01 (A) + n2(N) Jull x+(0)-
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Now we fix A € (0, \o) and 7 € (0,1) such that
(kY2 + Kk + 72 4 m(A) +m(\) <1 fori=1,2,

where ¢; for ¢ = 1,2 are the constants from (56) and (59) respectively.
Hence, for such A and 7 the estimates (44) hold and so the operator A :
X7(§2) — Y7(£2) is invertible. Thus we have shown that problem (2) is
uniquely solvable for some 7 > 0, and according to Remark 1 the proof of
Theorem 1 is complete.
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