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UNIFORM ASYMPTOTIC NORMALITY
FOR THE BERNOULLI SCHEME

Abstract. Tt is easy to notice that no sequence of estimators of the prob-
ability of success € in a Bernoulli scheme can converge (when standardized)
to N(0,1) uniformly in 6 € ]0,1[. We show that the uniform asymptotic
normality can be achieved if we allow the sample size, that is, the number
of Bernoulli trials, to be chosen sequentially.

1. Introduction. Zielinski (2004) pointed out that for the Bernoulli
scheme with the probability of success 6, the central limit theorem (CLT)
does not hold uniformly in € € ]0,1[. For any fixed n (the number of trials),
the normal approximation deteriorates and its error exceeds 1/4 if 6 is close
to 0 or close to 1. In our paper we consider the following question: does
there exist a sequence of estimators of # which is uniformly asymptotically
normal? The answer is yes provided that we take into consideration sequential
estimators (which use a random number of observations, depending on the
outcomes of previous trials).

2. Main results. Let Z1,...,7,,... be a sequence of real-valued statis-
tics defined on a statistical space (£2,{Py: 6 € O}, F).

DEFINITION 2.1. The sequence Z,, is uniformly asymptotically normal
(UAN) if for some functions u(0) and o(6) # 0,

— 0,

(1) sup  sup

0 —oo<xr<oo

Po( L 2= 0] < )~ 0(a)
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where @ is the c.d.f. of the standard normal distribution. More explicitly,

Ve>0TnoVn>noVoVa | P (% [Zn, — 1(0)] < x) —&(z)| <e.

We will then write
(7, ()] =4 N(O.1)
a(0)
Uniform convergence in distribution was considered e.g. in Zieliniski
(2004), Salibian-Barrera and Zamar (2004), and Borovkov (1998). The def-
inition given above may be considered as a special case of that given in

Borovkov (1998) (Chapter II, par. 37, Def. 2).

THEOREM 2.2. Let X = X1,..., X, ... be i.i.d. with Py(X =1) =0 =
1 — Py(X =0). The parameter space is © =0, 1][.

(i) There is no sequence of estimators 0, = §n(X1, ..., Xpn) such that

% [971 - 0] =) N(07 1)'
(ii) There is a sequence of stopping rules T, (r =1,2,...) and sequential
estimators HNT = 9~T(X1, ..., X71.) such that
% [07" - 9] =4 N(O7 1)'
Proof of (i). For every n there exists  such that Py(X; =---=X,, =0)
> 1/2. Clearly, for such 6 the probability distribution of the random variable
(\/ﬁ/a(ﬂ))[é\n — 0] has an atom which contains more than 1/2 of the total
probability mass. It follows immediately that
sup B l(/o(0)) B — ] < 2] — B(x)| > 1/4
—oo<r <0
The proof of part (ii) requires some auxiliary facts and is presented in
the next section.

3. Proofs. For the sake of our proofs the following version of uniform
d-method will be useful.

LEMMA 3.1. Assume that Z, is a UAN sequence of statistics, that is,
(1) holds. Let h be a differentiable function defined on an open subset of the
real line such that p(6) belongs to the domain of h for every 0. If b (1u(0)) # 0

for all 6 and

2) h(p(0) + o(0)t) — h(p(0))
W (u(6))o (0)t

uniformly in 0, then h(Z,) is also UAN:

=1 ast—0,

v -
@ (age)) MEn) — MuO)] =a N(0.1).
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Proof. Let us write
Jn = Jn(0) = (Zy — 1(9)],

H, = H,(0) = W@(@)) (h(Za) — h(u(9))].

Fix an € > 0. In view of the uniform continuity of @, we can choose 17 > 0
such that

1
(3) sup[®(z +n) — D(x)] < e
Next, we choose b such that
1
(4) 1—-2(b) +2(-b) < &

By (2), there exists 6 > 0 such that for |t| < ¢ and for all 6,

(5) h(p(0) + o (0)t) — h(p(0))
h (1(6))o(6)

By assumption on Z,,, there exists ng such that for n > ng, all  and 6,

n
—t] < = |t

(6) Py(Jy < 2) — B(x)] < és.

We can assume additionally that \/ng > b/0.
We claim that for n > ng the following statements hold true for all 6.
First, by (4) and (6) we have

(7) Py(|Jp| > b) = Py(Jp, < —b) + Py(Jn > b)

1 1 3
< P(—b — 1—-o(b — — €.
< &( )+55+ ()+55<55

We now apply (5) with ¢ = J,/y/n. On the event |J,| < b we have
|Jn/+/n| < & and consequently |H,, — J,| < (n/b)|J,| < n. Therefore
3
(8) Py(|Hy, — Jn| >n) < Py(|Jn] > b) < s €
It is now sufficient to combine (6), (8) and (3) to obtain
Py(Hy <) < Py(Jp < +n) + Po(|Hp — Jn| >n)
1 3
<P(x+mn)+ 55+ 5 € < P(x) + e,
Py(Hp <) 2 Pyp(Jn < @ —n) — Py(|Hn — Jn| > 1)
1 3
>P(x—n)——-ec——-ec>P(x)—ec.
) )
Since ¢ is arbitrary, H,, =4 N(0,1) and the proof is complete. =
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REMARK. The strange looking assumption (2) is actually a kind of uni-
form differentiability condition. It is satisfied, for example, if

' (u(0) + o (0)t)
h! (u(0))
By the standard Berry—Esséen theorem we have

=1 (as t — 0, uniformly in 0).

THEOREM 3.2 (Berry-Esséen). For i.i.d. random variables Y1, ..., Yy, ...,
Sp =31 Vi, and Fy(x) = P(n='2071[S,, — nu] < x) we have
m3
o3/’

where mg = E|Y — u|® and C is an absolute constant.

[Fn(z) — @(2)] < C

1/4 1/2

. " 1/3 1/4
By the inequalities m3/ <my ,o=my " < m4/ , and
a7 3/ m
:? S 43 =—-o<— méll/4 = _zf
o o o o o

we obtain

COROLLARY 3.3.
|Fa(2) — ()] < C —2

—_ )
od\/n

where mq = B(Y — p)*.

Let us now consider the negative binomial scheme, that is, an i.i.d. se-
quence of random variables geometrically distributed with parameter 6. The
central limit theorem for this scheme does not hold uniformly in 6 € |0, 1]
(Zieliniski 2004): the normal approximation breaks down for 6 approaching 1.
In the following lemma we assume 8 to be bounded away from 1.

LEMMA 3.4 (Central limit theorem for the negative binomial scheme).
Let Y = Yi,...,Y,, ... be di.i.d. and let Py(Y = k) = 0(1 — 0)*~L for k =
1,2,.... Let T, =Y ;_, Yi. Assume that 0 <1 — K, i.e. the parameter space
is © =10,1 — k| for some k > 0. Then

(T 5) =

T 0

We will use the following elementary facts about the geometric distribu-
tion:

1-46
62’

Ey(Y) = é o2(0) = Vary (V) =
and
1—0)(6*—960+9)

m4(9) = EQ(Y - N(G))4 = ( 94
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Consequently, for § <1 — &,
ma(0) 62 —90+9 B 62

at®)  1-0 1-0
From Corollary 3.3 it follows that
0 T 1

ﬁﬁ<7_§>:dN(0’l)’ 0€)0,1—kK]. m

LEMMA 3.5. Under the assumptions of the previous lemmea,

% <TL - 9> —4 N(0,1).

Proof. It is enough to combine Lemma 3.4 with Lemma 3.1 (§-method)

with h(z) = 1/z, u(@) = 1/6, and o(0) = /1 —0/6; the function h(x)

obviously satisfies assumption (2) of Lemma 3.1. =

+9<-—+09.

x|

LEMMA 3.6. Let X1,...,X,,... be the Bernoulli scheme with probability

of success 0. Define the sequence of stopping rules T, = min{n : S, > r},
where Sy, = > | X;. The sequence /T is UAN in 0 < 1 — &, i.e. for the
parameter space © =10,1 — k.

Proof. This is a simple reformulation of Lemma 3.5. Indeed, it is easy to
see that T is a sum of i.i.d. geometrically distributed random variables. =

Proof of Theorem 2.2(ii). We construct a sequence of stopping times 7.,
r=1,2,..., as follows. Define

T) =min{n: S, >r},

T! =min{n:n— S, >r},

T, =min{n:S, >r,n—=S, >r} =max(T),T),
T. =T, +r.

We now construct a sequence of estimators 5,, as follows. Define two
auxiliary estimators 0. = /T and 6/ =1 —r /T, a random event

1 — 1
a= {23 x5 < 5
i=1

~ 0. on A,,
0/ on AC.

We claim that 6, is UAN on ]0,1[ with the asymptotic variance o2(6)
given by

and finally

— 2 or
02(0)_{(1 0)6% for 0 < 1/2,

(1—6)%0 for §>1/2.
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To prove that, fix € > 0 and choose § > 0 such that
x x
sup sup 45(7) - @<7>‘ <e/2.
1/2-5<0<1/2+5 = 0v1—106 \/5(1 —0)

Obviously § < 1/2. Choose r; such that for » > r; the inequality Py(A$)
< €/2 holds for all § < 1/2 —§ and Py(A,) < /2 holds for all § > 1/2 4 6.

From Lemma 3.6 we conclude that

i
0v1—0 (0, —6) =4 N(0,1) on]0,1/2+ 4]

and

\/7_" r
m (0, —0) =4 N(0,1) on [1/2 -4, 1]

Choose ry such that for r > ry and for all 6 < 1/2 46,

P9<\/F 0 — 6 <m> — &(x)

sup
x

0v1—6

= sup
x

PV~ ) < 0) - o
Then for r > 79 and for all # > 1/2 — 6 we also have

Py <\/F % < 1:) —&(x)

Py(V/r(0 — 0) < z) — @(ﬁ) ’ <e/2.

Define 19 = max(r1,r2). For the estimator 57« we obtain

PVE0 - 0) <) - o =)

ﬁ)\ <ef2.

sup
x

= sup
X

Sup 7 (0)
< sup |Py(V7(@, ~ 0) < 2, 4,) - Pe(fh@(%)'
s | Pl 0) < .49 - a7 )|

Since 0, = 5; on A, and 5; and A, are independent, and similarly 6, = 5;’
on A%, and 0/ and A¢ are independent, the right hand side of the latter
formula is equal to

PVET - 0) < 0) - 0 o)

Py(A) - sup 0

+ Py(A7) - sup
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From now on we assume that » > rg. For § < 1/2 —§ < 1/2 we have

Pp(AS) < g/2, a%(0) = (1 — 0)0?, and

R =]

For § > 1/2+6 > 1/2 we have Py(A,) < ¢/2, 0%(0) = (1 — 0)%0, and
‘Pg(ﬁ@’ —0) <) - ¢<L> ‘ <e/2.

Vo1 —6)
)
< [P/ - 0) <) @(mﬂﬂ@(ﬁ) ‘@(a—
and similarly

-0 <o-0( )

wsen<-o{ ) Wzzizg) ()|

Finally, we obtain

<e/2.

For1/2—-6<60<1/2+9,

P -0) <o) -o( 5

=|"

S~
N
™

<

sup
x

Py(\/r(6, —0) <) — ¢<—>‘ <&

which ends the proof. m
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